1
|
Huynh H, Upadhyay P, Lopez CH, Miyashiro MK, Van Winkle LS, Thomasy SM, Pinkerton KE. Inhalation of Silver Silicate Nanoparticles Leads to Transient and Differential Microglial Activation in the Rodent Olfactory Bulb. Toxicol Pathol 2022; 50:763-775. [PMID: 35768951 PMCID: PMC9529873 DOI: 10.1177/01926233221107607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Engineered silver nanoparticles (AgNPs), including silver silicate nanoparticles (Ag-SiO2 NPs), are used in a wide variety of medical and consumer applications. Inhaled AgNPs have been found to translocate to the olfactory bulb (OB) after inhalation and intranasal instillation. However, the biological effects of Ag-SiO2 NPs and their potential nose-to-brain transport have not been evaluated. The present study assessed whether inhaled Ag-SiO2 NPs can elicit microglial activation in the OB. Adult Sprague-Dawley rats inhaled aerosolized Ag-SiO2 NPs at a concentration of 1 mg/ml for 6 hours. On day 0, 1, 7, and 21 post-exposure, rats were necropsied and OB were harvested. Immunohistochemistry on OB tissues were performed with anti-ionized calcium-binding adapter molecule 1 and heme oxygenase-1 as markers of microglial activation and oxidative stress, respectively. Aerosol characterization indicated Ag-SiO2 NPs were sufficiently aerosolized with moderate agglomeration and high-efficiency deposition in the nasal cavity and olfactory epithelium. Findings suggested that acute inhalation of Ag-SiO2 NPs elicited transient and differential microglial activation in the OB without significant microglial recruitment or oxidative stress. The delayed and differential pattern of microglial activation in the OB implied that inhaled Ag-SiO2 may have translocated to the central nervous system via intra-neuronal pathways.
Collapse
Affiliation(s)
- Huong Huynh
- William R Pritchard Veterinary Medical Teaching Hospital, University of California-Davis, Davis, CA, USA.,Center for Health and the Environment, University of California – Davis, Davis, CA, USA
| | - Priya Upadhyay
- Center for Health and the Environment, University of California – Davis, Davis, CA, USA
| | - Cora H Lopez
- Center for Health and the Environment, University of California – Davis, Davis, CA, USA
| | - Malia K Miyashiro
- Center for Health and the Environment, University of California – Davis, Davis, CA, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California – Davis, Davis, CA, USA.,Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Department of Ophthalmology and Vision Science, School of Medicine, University of California - Davis, Davis, CA, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California – Davis, Davis, CA, USA.,Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| |
Collapse
|
2
|
Mo F, Zhou Q, He Y. Nano-Ag: Environmental applications and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154644. [PMID: 35307428 DOI: 10.1016/j.scitotenv.2022.154644] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) are promising bactericidal agents and plasmonic NPs for environmental applications, owing to their various favorable properties. For example, AgNPs enables reactive oxygen species (ROS) generation, surface plasmon resonance (SPR), and specific reaction selectivities. In fact, AgNPs-based materials and their antimicrobial, optical, and electrical effects are at the forefront of nanotechnology, having applications in environmental disinfection, elimination of environmental pollutants, environmental detection, and energy conversions. This review aims to comprehensively summarize the advanced applications and fundamental mechanisms to provide the guidelines for future work in the field of AgNPs implanted functional materials. The state-of-art terms including (photo)(electro)catalytic reactions, heterojunction formation, the generation and attacking of ROS, genetic damage, hot electron generation and transfer, localized surface plasmon resonance (LSPR), plasmon resonance energy transfer (PERT), near field electromagnetic enhancement, structure-function relationship, and reaction selectivities have been covered in this review. It is expected that this review may provide insights into the rational development in the next generation of AgNPs-based nanomaterials with excellent performances.
Collapse
Affiliation(s)
- Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuqing He
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|