1
|
Hasani M, Khazdouz M, Sobhani S, Mardi P, Riahi S, Agh F, Mahdavi-Gorabi A, Mohammadipournami S, Gomnam F, Qorbani M. Association of heavy metals and bio-elements blood level with metabolic syndrome: a systematic review and meta-analysis of observational studies. J Diabetes Metab Disord 2024; 23:1719-1752. [PMID: 39610503 PMCID: PMC11599521 DOI: 10.1007/s40200-024-01500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 11/30/2024]
Abstract
Background and objectives The literature has reported heavy metals might alter the physiological and biochemical functions of body organs and cause several health problems. So, the present systematic review and meta-analysis aimed to investigate the association of blood levels of essential or non-essential metals with metabolic syndrome (MetS). Methods In this systematic review, some international databases including PubMed, Embase, Scopus, and Web of Science were searched up to February 2024. All observational studies which assessed the association of three heavy metals (cadmium, mercury, lead) and bio-elements (chromium, iron, manganese, and magnesium, copper) with the risk of MetS were included. There was no limitation in the time of publication and language. A random-effects meta-analysis was performed to estimate the pooled effect sizes. Possible sources of heterogeneity were explored by meta-regression analysis. Results Totally, 29 studies were eligible for meta-analysis. Our results showed that increased level of cadmium (pooled OR: 1.24, 95% CI: 1.05, 1.46) and mercury (pooled OR: 1.22, 95% CI: 1.08, 1.38) significantly increased the risk of MetS. In contrast, increased level of chromium significantly reduced the risk of developing MetS (pooled OR: 0.68, 95% CI: 0.56, 0.83). Moreover, association between lead, iron, copper, magnesium, and manganese with MetS was not statistically significant (P > 0.05). However, elevated lead levels in men increased the odds of MetS. Conclusion Our results show a significant association between blood levels of some heavy metals, including cadmium, mercury, and lead, with increased odds of MetS. On the other hand, chromium as a biometal decreased the odds of MetS. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01500-9.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Public Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Khazdouz
- Ali-Asghar Children’s Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Sobhani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Mardi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Shirin Riahi
- Educational Development Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fahimeh Agh
- Saveh University of Medical Sciences, Saveh, Iran
| | - Armita Mahdavi-Gorabi
- Molecular Medicine and Genetics Research Center for Advanced Technologies in Cardiovascular Medicine Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Mohammadipournami
- Student Research Committee, Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Gomnam
- Student Research Committee, Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Environmental Health, School of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Epidemiology and Biostatistics, School of Health, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
2
|
Panga MJ, Zhao Y. Male Reproductive Toxicity of Antifouling Chemicals: Insights into Oxidative Stress-Induced Infertility and Molecular Mechanisms of Zinc Pyrithione (ZPT). Antioxidants (Basel) 2024; 13:173. [PMID: 38397771 PMCID: PMC10886347 DOI: 10.3390/antiox13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Zinc pyrithione (ZPT), a widely utilized industrial chemical, is recognized for its versatile properties, including antimicrobial, antibacterial, antifungal, and antifouling activities. Despite its widespread use, recent research has shed light on its toxicity, particularly towards the male reproductive system. While investigations into ZPT's impact on male reproduction have been conducted, most of the attention has been directed towards marine organisms. Notably, ZPT has been identified as a catalyst for oxidative stress, contributing to various indicators of male infertility, such as a reduced sperm count, impaired sperm motility, diminished testosterone levels, apoptosis, and degenerative changes in the testicular tissue. Furthermore, discussions surrounding ZPT's effects on DNA and cellular structures have emerged. Despite the abundance of information regarding reproductive toxicity, the molecular mechanisms underlying ZPT's detrimental effects on the male reproductive system remain poorly understood. This review focuses specifically on ZPT, delving into its reported toxicity on male reproduction, while also addressing the broader context by discussing other antifouling chemicals, and emphasizing the need for further exploration into its molecular mechanisms.
Collapse
Affiliation(s)
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Khafaji SS. Comparing the effects of Cyperus esculentus hydroethanolic extract and Euterpe oleracea on reproductive efficacy against cadmium-induced testicular toxicity in male rats. J Adv Vet Anim Res 2023; 10:685-695. [PMID: 38370884 PMCID: PMC10868703 DOI: 10.5455/javar.2023.j724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024] Open
Abstract
Objective Cadmium chloride (CdCl2) is an environmentally toxic pollutant that can cause reprotoxicity. Cyperus esculentus and Euterpe oleracea are potent antioxidant plants currently used to counteract the action of harmful pollutants. The present experiment was intended to evaluate and comp are the role of C. esculentus hydroethanolic extract (CHE) and E. oleracea in treating the reprotoxicity induced by CdCl2 in rats. Materials and Methods Forty adult male rats (160-210 gm) were allocated into five groups equally. Control group: received 5 ml of normal saline (NS); the other treatment groups were injected with CdCl2 as a single dose for two weeks to induce testicular toxicity. After 14 days, the four groups were treated orally daily for two months as follows: The cadmium group (Cd) received NS, the third group (TC) was administered 800 mg/kg BW of CHE, the fourth group (TO) received 500 mg/kg BW of E. oleracea, and the fifth group (TCO) received CHE with E. oleracea. Results The live sperm and motility, serum testosterone, follicle-stimulating hormone (FSH), testicular superoxide dismutase (SOD), catalase (CAT), steroidogenic acute regulatory protein (StAR), 17β-hydroxysteroid dehydrogenase, and 3β-hydroxysteroid dehydrogenase (3β-HSD) were significantly increased in the TCO, TC, and TO groups compared with the Cd group. Testicular nitric oxide and malondialdehyde were elevated significantly in the Cd group compared to the TC, TO, TCO, and control groups. The fold changes of Fshβ, Lhβ, and Gnrh genes were upregulated in the TCO group compared to the Cd and control groups. Conclusion The combination of CHE with E. oleracea showed improvements in rat testicles affected by cadmium toxicity via upregulated reproductive gene expression and its antioxidant effects.
Collapse
Affiliation(s)
- Sura Safi Khafaji
- Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, Al-Qasim Green University, Al-Qasim City, Babylon Province, Ministry of Higher Education and Scientific Research, Iraq
| |
Collapse
|
4
|
Basal WT, Issa AM, Abdelalem O, Omar AR. Salvia officinalis restores semen quality and testicular functionality in cadmium-intoxicated male rats. Sci Rep 2023; 13:20808. [PMID: 38012170 PMCID: PMC10682483 DOI: 10.1038/s41598-023-45193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023] Open
Abstract
The present study investigated the potential ability of Salvia officinalis, one of the oldest medicinal plants, to protect male rats against cadmium reproductive toxicity. Twenty-eight healthy male rats were randomly allocated into four groups (n = 7); control, Salvia-extract treated group, cadmium treated group and a group treated with both Cd and Salvia. Administration of cadmium reduced the relative testis to body weight and significantly affected sperm parameters by decreasing motility, viability, count and increasing morphological aberrations. Comet assay was used to detect DNA fragmentation in sperms of the rats exposed to Cd. Serum levels of testosterone T, follicle stimulating hormone FSH, and luteinizing hormone LH were significantly decreased. The biochemical analysis of testicular tissue showed a significant rise in Malondialdehyde MDA level coupled with a decrease in the activity of antioxidant enzymes (superoxide dismutase SOD, glutathione peroxidase GPx and catalase CAT). The histological examination of testis sections after Cd administration revealed severe degeneration of spermatogenic cells. Seminiferous tubules were filled with homogenous eosinophilic fluid associated with atrophy of other seminiferous tubules. Co-treatment with the Salvia officinalis extract restored the oxidative enzymes activities and decreased the formation of lipid peroxidation byproduct, which in turn ameliorated the effect of Cd on sperm parameters, DNA damage and testis histopathology. Taken together, it can be concluded that the synergistic antioxidant and radical savaging activities of Salvia officinalis prevented the effect of Cd on semen quality, sperm DNA damage, along with the oxidative stress and histological abnormalities in the testis tissues.
Collapse
Affiliation(s)
- Wesam T Basal
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Aliaa M Issa
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Omnia Abdelalem
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amel R Omar
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
5
|
Makris A, Alevra AI, Exadactylos A, Papadopoulos S. The Role of Melatonin to Ameliorate Oxidative Stress in Sperm Cells. Int J Mol Sci 2023; 24:15056. [PMID: 37894737 PMCID: PMC10606652 DOI: 10.3390/ijms242015056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
It is widely accepted that oxidative stress (OS) coming from a wide variety of causes has detrimental effects on male fertility. Antioxidants could have a significant role in the treatment of male infertility, and the current systematic review on the role of melatonin to ameliorate OS clearly shows that improvement of semen parameters follows melatonin supplementation. Although melatonin has considerable promise, further studies are needed to clarify its ability to preserve or restore semen quality under stress conditions in varied species. The present review examines the actions of melatonin via receptor subtypes and its function in the context of OS across male vertebrates.
Collapse
Affiliation(s)
| | | | | | - Serafeim Papadopoulos
- Hydrobiology-Ichthyology Laboratory, Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece; (A.M.); (A.I.A.); (A.E.)
| |
Collapse
|
6
|
Venditti M, Santillo A, Latino D, Ben Rhouma M, Romano MZ, Haddadi A, Di Fiore MM, Minucci S, Messaoudi I, Chieffi Baccari G. Evidence of the protective role of D-Aspartate in counteracting/preventing cadmium-induced oxidative stress in the rat testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115067. [PMID: 37244200 DOI: 10.1016/j.ecoenv.2023.115067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Cadmium (Cd), by producing oxidative stress and acting as an endocrine disruptor, is known to cause severe testicular injury, documented by histological and biomolecular alterations, such as decreased serum testosterone (T) level and impairment of spermatogenesis. This is the first report on the potential counteractive/preventive action of D-Aspartate (D-Asp), a well-known stimulator of T biosynthesis and spermatogenesis progression by affecting hypothalamic-pituitary-gonadal axis, in alleviating Cd effects in the rat testis. Our results confirmed that Cd affects testicular activity, as documented by the reduction of serum T concentration and of the protein levels of steroidogenesis (StAR, 3β-HSD, and 17β-HSD) and spermatogenesis (PCNA, p-H3, and SYCP3) markers. Moreover, higher protein levels of cytochrome C and caspase 3, together with the number of cells positive to TUNEL assay, indicated the intensification of the apoptotic process. D-Asp administered either simultaneously to Cd, or for 15 days before the Cd-treatment, reduced the oxidative stress induced by the metal, alleviating the consequent harmful effects. Interestingly, the preventive action of D-Asp was more effective than its counteractive effect. A possible explanation is that giving D-Asp for 15 days induces its significant uptake in the testes, reaching the concentrations necessary for optimum function. In summary, this report highlights, for the first time, the beneficial role played by D-Asp in both counteracting/preventing the adverse Cd effects in the rat testis, strongly encouraging further investigations to consider the potential value of D-Asp also in improving human testicular health and male fertility.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Debora Latino
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Mariem Ben Rhouma
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy
| | - Asma Haddadi
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania 'Luigi Vanvitelli', via Santa Maria di Costantinopoli, 16-80138 Napoli, Italy.
| | - Imed Messaoudi
- LR11ES41: Génetique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Via Vivaldi, 43-81100 Caserta, Italy
| |
Collapse
|
7
|
Espinosa-Ahedo BA, Madrigal-Bujaidar E, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Morales-González JA, Madrigal-Santillán EO, Álvarez-González I. Potential protective effect of beta-caryophyllene against cadmium chloride-induced damage to the male reproductive system in mouse. Reprod Toxicol 2022; 110:19-30. [PMID: 35318111 DOI: 10.1016/j.reprotox.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Cadmium is a metal that can affect the male reproductive process, possibly leading to infertility. In contrast, beta-caryophyllene (BC) is a sesquiterpene that has shown antigenotoxic, anticancer, and antioxidant properties. Therefore, the aim of the present study was to determine the protective effect of BC against the deleterious effects of cadmium chloride (CC) on various mouse testicular and sperm parameters. We tested three doses of BC (20, 200, and 400 mg/kg) given before and during exposure to 3 mg/kg CC (six days after a single administration). Our results show significant alleviation of the damage induced by CC after the three doses of BC. Regarding the sperm concentration and morphology, the protection with the high dose was complete, and regarding sperm mobility and viability, the protection was more than 74%. In the comet assay, the highest dose showed a reduction of 92.5% in the damage induced by CC, and regarding the number of micronuclei in the spermatids, the reduction was 83.3%. In the oxidative evaluation, regarding sperm lipoperoxidation, the improvement was complete with the high dose, and in the ABTS.+ test, the improvement in the response to the BC high dose was 26.3%. Regarding testicular lipoperoxidation and protein oxidation, the protective effects of the high BC dose were 87.6% and 89.9%, respectively. We also found that BC protected against the histological and morphometric alterations induced by CC. Therefore, our study clearly demonstrates the beneficial, chemopreventive effect of BC against the mouse sperm and testicular alterations induced by CC.
Collapse
Affiliation(s)
- Beatriz A Espinosa-Ahedo
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuatla, Pachuca de Soto 42080, Mexico
| | - Jeannett A Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuatla, Pachuca de Soto 42080, Mexico
| | - José A Morales-González
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Eduardo O Madrigal-Santillán
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Ciudad de México 07738, Mexico.
| |
Collapse
|
8
|
Minucci S, Venditti M. New Insight on the In Vitro Effects of Melatonin in Preserving Human Sperm Quality. Int J Mol Sci 2022; 23:ijms23095128. [PMID: 35563519 PMCID: PMC9100642 DOI: 10.3390/ijms23095128] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Spermatozoa (SPZ) are sensitive to stressful conditions, particularly oxidative stress, which alters their quality; thus, the use of protective molecules as an antioxidant is encouraged. Herein, we used melatonin (MLT) to investigate its in vitro effects on human sperm parameters under conditions of oxidative stress induced by cadmium (Cd). Fifteen human semen samples were divided into control, Cd-treated, MLT-treated, and Cd+MLT-treated groups and analyzed after 30 min, 6 h, and 24 h of exposure. Results showed a time-dependent decrease in SPZ motility, DNA integrity, and increased apoptosis induced by oxidative stress, and these effects were counteracted by MLT co-treatment. Based on these data, we further explored additional parameters just at 24 h. The induced oxidative stress, highlighted by the increased lipid peroxidation, reduced the percentage of SPZ able to undertake acrosome reaction and altered the levels and localization of some protein markers of motility (PREP, RSPH6A), morphology (DAAM1), and acrosome membrane (PTMA, IAM38); all these effects were counteracted by MLT co-treatment. Interestingly, MLT alone was able to ameliorate motility at 30 min of incubation compared to the control, while at 24 h, it prevented the physiological alteration in terms of motility, DNA integrity, and apoptosis. Collectively, the data encourage MLT use as an integrative molecule to ameliorate human gamete quality when compromised by stressful conditions.
Collapse
|
9
|
Effects of Cadmium Exposure on Leydig Cells and Blood Vessels in Mouse Testis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042416. [PMID: 35206604 PMCID: PMC8878469 DOI: 10.3390/ijerph19042416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
Environmental exposure to cadmium (Cd) contributes to a decline in the quality of human semen. Although the testis is sensitive to Cd exposure, the mechanism underlying how cadmium affects the testis remains to be defined. In this study, male mice were treated with intraperitoneal injections of 0, 0.5, 1.5 and 2.5 mg CdCl2/kg/day for 10 days, respectively. Both the testicular weight and the 3β-HSD activity of Leydig cells were significantly reduced with the administration of 2.5 mg CdCl2/kg/day. The height of endothelial cells in the interstitial blood vessels significantly increased with the use of 2.5 mg CdCl2/kg/day compared with the control. Western blot data showed that the protein levels of CD31, αSMA, caveolin and Ng2 increased with cadmium exposure, and this increase was particularly significant with the administration of 2.5 mg CdCl2/kg/day. CD31, αSMA, caveolin and Ng2 are related to angiogenesis. Based on our data, cadmium exposure may stimulate the proliferation of the mural cells and endothelial cells of blood vessels, which may lead to abnormal function of the testis.
Collapse
|
10
|
Iqbal T, Jahan S, Ain QU, Ullah H, Li C, Chen L, Zhou X. Ameliorative effects of morel mushroom (Morchella esculenta) against Cadmium-induced reproductive toxicity in adult male rats. BRAZ J BIOL 2021; 82:e250865. [PMID: 34378681 DOI: 10.1590/1519-6984.250865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022] Open
Abstract
Cadmium (Cd) is one of the major toxicants, which affects human health through occupational and environmental exposure. In the current study, we evaluated the protective effects of morel mushrooms against Cd-induced reproductive damages in rats. For this purpose, 30 male rats were divided into 6 groups (n=5/group), the first group served as the control group, second group was treated with an intraperitoneal (i.p) injection of 1 mg/kg/day of Cd. Third and fourth groups were co-treated with 1 mg/kg/day of Cd (i.p) and 10 and 20 mg/kg/day of morel mushroom extract (orally) respectively. The final 2 groups received oral gavage of 10 and 20 mg/kg/day of morel mushroom extract alone. After treatment for 17 days, the animals were euthanized, and testes and epididymis were dissected out. One testis and epididymis of each animal were processed for histology, while the other testis and epididymis were used for daily sperm production (DSP) and comet assay. Our results showed that Cd and morel mushrooms have no effect on animal weight, but Cd significantly decreases the DSP count and damages the heritable DNA which is reversed in co-treatment groups. Similarly, the histopathological results of testes and epididymis show that morel mushrooms control the damage to these tissues. Whereas the morel mushroom extract alone could enhance the production of testosterone. These results conclude that morel mushrooms not only control the damage done by Cd, but it could also be used as a protection mechanism for heritable DNA damage.
Collapse
Affiliation(s)
- T Iqbal
- Jilin University, College of Animal Science and Veterinary Medicine, Lab of Animal Genetics, Breeding and Reproduction, Changchun, China.,Quaid-i-Azam University, Department of Animal Sciences, Reproductive Physiology Lab, Islamabad, Pakistan
| | - S Jahan
- Quaid-i-Azam University, Department of Animal Sciences, Reproductive Physiology Lab, Islamabad, Pakistan
| | - Q Ul Ain
- Quaid-i-Azam University, Department of Animal Sciences, Reproductive Physiology Lab, Islamabad, Pakistan
| | - H Ullah
- Quaid-i-Azam University, Department of Animal Sciences, Reproductive Physiology Lab, Islamabad, Pakistan
| | - C Li
- Jilin University, College of Animal Science and Veterinary Medicine, Lab of Animal Genetics, Breeding and Reproduction, Changchun, China
| | - L Chen
- Jilin University, College of Animal Science and Veterinary Medicine, Lab of Animal Genetics, Breeding and Reproduction, Changchun, China
| | - X Zhou
- Jilin University, College of Animal Science and Veterinary Medicine, Lab of Animal Genetics, Breeding and Reproduction, Changchun, China
| |
Collapse
|