1
|
Verma SK, Patel KS, Naik BK. Coupled Discrete Phase and Eulerian Wall Film Models for Drug Deposition Efficacy Analysis in Human Respiratory Airways. Mol Pharm 2024; 21:5071-5087. [PMID: 39370819 DOI: 10.1021/acs.molpharmaceut.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The current study explores the effectiveness of drug particle deposition into human respiratory airways to cure various pulmonary-bound ailments. It has been assumed that drug solutions are inhaled in the form of tiny droplets or mist, which after striking create a thin layer along the inner surface of airways where the virus initially resides to infect the human body. A coupled Eulerian wall film (EWF) and discrete phase model (DPM) based simulation approach is used to capture these dynamics. Here, the Lagrangian DPM technique tracks the dynamics of tiny droplets, while the liquid layer formation after striking is captured using the Eulerian thin film approximations or the EWF model. Previous studies in this field primarily employed only the DPM method, which is inadequate to predict the poststriking dynamics of drug layer deposition and their spread to neutralize the respiratory virus. The drug delivery effectiveness is characterized by three different particle sizes, 1, 5, and 10 μm at the inhalation rates of 15, 30, and 60 L per minute (LPM). It has been found that the size of the drug particles significantly influences drug delivery effectiveness. The film thickness increases monotonically with particle sizes and inhalation rates. However, this increase in averaged film thickness is prominent in the range 5 to 10 μm (≈60%) compared to 1 to 5 μm (≈10%) droplet sizes at generation level 4 (G4). The other deposition parameters, e.g., deposition fraction, deposition density, and area coverage) roughly show similar behavior with the increase in droplet sizes. Therefore, it is recommended to vary the droplet sizes between 5 and 10 μm for better deposition effectiveness. The sizes of more than 10 μm mostly stuck into the oral cavity and cannot reach the targeted generations. In contrast, less than 5 μm may reach much deeper generations than the targeted one.
Collapse
Affiliation(s)
- Sameer Kumar Verma
- Department of Mechanical Engineering, National Institute of Technology Rourkela, Odisha-769008, India
- Sustainable Thermal Energy Systems Laboratory (STESL), Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha-769008, India
| | - Kishore Singh Patel
- Department of Mechanical Engineering, National Institute of Technology Rourkela, Odisha-769008, India
| | - B Kiran Naik
- Department of Mechanical Engineering, National Institute of Technology Rourkela, Odisha-769008, India
- Sustainable Thermal Energy Systems Laboratory (STESL), Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha-769008, India
| |
Collapse
|
2
|
Gou D, Zhu Q, Chan HK, Kourmatzis A, Cheng S, Yang R. Effects of the deformation and size of the upper airway on the deposition of aerosols. Int J Pharm 2024; 657:124165. [PMID: 38663643 DOI: 10.1016/j.ijpharm.2024.124165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Aerosol drug delivery in the human airway is significantly affected by the morphology and size of the airway. This work developed a CFD-DEM model to simulate and analyze air flow and powder dynamics in combined inhaler-airway systems with different degrees of airway deformation (non-deformed, 50%, and 75% deformed) and sizes (adult, 0.80, and 0.62 scaled). The airways were generated based on a regular airway constructed from the MRI images through finite element method (for deformed airways) or scaling-down (for smaller airways). The airways were connected to Turbuhaler® through a connector. The results showed that under the same flow rate, the variation in the airway geometry and size had a minimum impact on the flow field and powder deposition in the device and the connector. However, deformation caused more particle deposition in the deformed region. Notably, the airway with 50% deformation had the most particles passing through the airway with the largest particle sizes due to its lower air velocity in the deformed area. Reducing airway size resulted in more powder deposition on the airway, particularly at the pharynx and mouth regions. This was because, with the same flow rate, the flow velocity in the smaller airway was higher, causing more particle-wall collisions in the mouth and pharynx regions. More importantly, the deposition efficiency in the 0.62-scaled airway was significantly higher than the other two airways, highlighting the importance of the different administration of aerosol drugs for young children.
Collapse
Affiliation(s)
- Dazhao Gou
- School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia
| | - Qixuan Zhu
- School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, The University of Sydney, NSW 2006, Australia
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia
| | - Shaokoon Cheng
- School of Engineering, Macquarie University, NSW 2109, Australia
| | - Runyu Yang
- School of Materials Science and Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Jawaa ZT, Biswas KF, Khan MF, Moniruzzaman M. Source and respiratory deposition of trace elements in PM 2.5 at an urban location in Dhaka city. Heliyon 2024; 10:e25420. [PMID: 38375259 PMCID: PMC10875380 DOI: 10.1016/j.heliyon.2024.e25420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Air pollution has been creating severe environmental crises in Dhaka. This city ranks at the top among the major cities of the world. A multidimensional study is needed to assess the severity of this crisis. This study aims to determine the sources of trace elements in PM2.5 and their effects on health. We measured concentrations of 15 trace elements in PM2.5 every hour for eight days using a well-equipped mobile air quality monitoring system integrated with an automatic sampling system (AQMS, Horiba, Japan). We analyzed the concentrations of the trace elements to identify their potential sources and diurnal variation and to compute the respiratory deposition dose of the trace elements to estimate the health risks they pose. The daily average concentration of PM2.5 was higher than the allowable limit set by the World Health Organization (WHO). Among the trace elements, sulfur had the highest concentration and vanadium was the lowest. We found out that concentrations of the elements were the highest during the middle of the day and the lowest during midnight. Four source profiles of PM2.5 were identified by positive matrix factorization (PMF). Soil dust with sulfur-rich petroleum contributed about 65 %, industrial and non-exhaust emissions about 5 % each, and heavy engine oil combustion about 25 % to air pollution. Air mass backward trajectory analysis indicated that Dhaka's air contains both local and transboundary pollution. According to the determined respiratory deposition dose of the elements, males had higher deposition than females during heavy exercise. Sulfur and vanadium have the highest and lowest respiratory deposition dose, respectively. The highest amount of deposition occurred in the upper airways. We expect that this study will help professionals develop effective strategies to prevent and mitigate the emission of air pollutants.
Collapse
Affiliation(s)
- Zarin Tasneem Jawaa
- Department of Environmental Science and Management, North South University, Dhaka, Bangladesh
| | - Karabi Farhana Biswas
- Department of Environmental Science and Management, North South University, Dhaka, Bangladesh
| | - Md Firoz Khan
- Department of Environmental Science and Management, North South University, Dhaka, Bangladesh
| | | |
Collapse
|
4
|
Valerian Corda J, Shenoy BS, Ahmad KA, Lewis L, K P, Rao A, Zuber M. Comparison of microparticle transport and deposition in nasal cavity of three different age groups. Inhal Toxicol 2024; 36:44-56. [PMID: 38343121 DOI: 10.1080/08958378.2024.2312801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Objective: The nasal cavity effectively captures the particles present in inhaled air, thereby preventing harmful and toxic pollutants from reaching the lungs. This filtering ability of the nasal cavity can be effectively utilized for targeted nasal drug delivery applications. This study aims to understand the particle deposition patterns in three age groups: neonate, infant, and adult.Materials and methods: The CT scans are built using MIMICS 21.0, followed by CATIA V6 to generate a patient-specific airway model. Fluid flow is simulated using ANSYS FLUENT 2021 R2. Spherical monodisperse microparticles ranging from 2 to 60 µm and a density of 1100 kg/m3 are simulated at steady-state and sedentary inspiration conditions.Results: The highest nasal valve depositions for the neonate are 25% for 20 µm, for infants, 10% for 50 µm, 15% for adults, and 15% for 15 µm. At mid nasal region, deposition of 15% for 20 µm is observed for infant and 8% for neonate and adult nasal cavities at a particle size of 10 and 20 µm, respectively. The highest particle deposition at the olfactory region is about 2.7% for the adult nasal cavity for 20 µm, and it is <1% for neonate and infant nasal cavities.Discussion and conclusions: The study of preferred nasal depositions during natural sedentary breathing conditions is utilized to determine the size that allows medication particles to be targeted to specific nose regions.
Collapse
Affiliation(s)
- John Valerian Corda
- Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - B Satish Shenoy
- Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Kamarul Arifin Ahmad
- Department of Aerospace Engineering, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Leslie Lewis
- Department of Paediatrics, Kasturba Medical College & Hospital, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Prakashini K
- Department of Radio Diagnosis, Kasturba Medical College & Hospital, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Anoop Rao
- Department of Pediatrics, Neonatology, Stanford University, Palo Alto, CA, USA
| | - Mohammad Zuber
- Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
5
|
Jahed M, Kozinski J, Pakzad L. The impact of actuator nozzle and surroundings condition on drug delivery using pressurized-metered dose inhalers. Biomech Model Mechanobiol 2023; 22:2117-2133. [PMID: 37815674 DOI: 10.1007/s10237-023-01754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/16/2023] [Indexed: 10/11/2023]
Abstract
The most commonly used method to deliver aerosolized drugs to the lung is with pressurized metered-dose inhalers (pMDIs). The spray actuator is a critical component of pMDI, since it controls the atomization process by forming aerosol plumes and determining droplet size distribution. Through computational fluid dynamics (CFD) simulations, this study investigated the effect of two different nozzle types (single conventional and twin nozzles) on drug deposition in the mouth-throat (MT) region. We also studied the behavior of aerosol plumes in both an open-air environment and the MT geometry. Our study revealed that spray aerosol generated in an unconfined, open-air environment with no airflow behaves distinctly from spray introduced into the MT geometry in the presence of airflow. In addition, the actuator structure significantly impacts the device's efficacy. In the real MT model, we found that the twin nozzle increases drug deposition in the MT region, and its higher aerosol velocity negatively affects its efficiency.
Collapse
Affiliation(s)
- Mahsa Jahed
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Canada
| | - Janusz Kozinski
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Canada
| | - Leila Pakzad
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Canada.
| |
Collapse
|
6
|
Yu P, Xue C, Boeckenstedt B, Olsen H, Jiang JJ. Effects of vocal fold adduction on the particle deposition in the glottis: A numerical analysis and in vitro assessment. Comput Biol Med 2023; 166:107537. [PMID: 37820560 DOI: 10.1016/j.compbiomed.2023.107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The efficacy of inhalation therapy depends on the drug deposition in the human respiratory tract. This study investigates the effects of vocal fold adduction on the particle deposition in the glottis. METHODS A realistic mouth-throat (MT) geometry was built based on CT images of a healthy adult (MT-A). Mild (MT-B) and great (MT-C) vocal fold (VF) adduction were incorporated in the original model. Monodisperse particles range in size from 3 to 12 μm were simulated at inspiration flow rates of 15, 30 and 45 L per minute (LPM). The regional deposition of drug aerosols was performed in 3D-printed models and quantified using high-performance liquid chromatography. RESULTS Both the numerical analysis and in vitro experiments show that most particles are deposited in the mouth, pharynx and supraglottis, while few are deposited in the glottis and subglottis. For most cases in MT-A, the particle quantity in glottis is lower than 0.02 N/mm2 at 15 and 30 LPM while they increase dramatically at 45 LPM. It peaked at 0.347 N/mm2 for 5-μm particles at 45 LPM in MT-B and 2.324 N/mm2 for 6-μm particles at 30 LPM in MT-C. The lowest drug mass faction in the glottis in vitro were found at 15 LPM for MT-A and MT-C, and at 30 LPM for MT-B, whereas it peaked at 45 LPM for all MT models, 0.71% in MT-A, 1.16% in MT-B, and 2.53% in MT-C, respectively. CONCLUSION Based on the results of this study, larger particles are more likely to be deposited in the oral cavity, oropharynx, and supraglottis than in the glottis. However, particle deposition in the glottis generally increases with VF adduction and greater inspiratory flow rates.
Collapse
Affiliation(s)
- Pengcheng Yu
- Department of Otolaryngology, EENT Hospital, Fudan University, Shanghai, 200031, China
| | - Chao Xue
- Department of Otolaryngology, EENT Hospital, Fudan University, Shanghai, 200031, China
| | - Bella Boeckenstedt
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, Madison, WI, 53792, USA
| | - Halli Olsen
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, Madison, WI, 53792, USA
| | - Jack J Jiang
- University of Wisconsin-Madison School of Medicine and Public Health, Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, Madison, WI, 53792, USA.
| |
Collapse
|
7
|
Rahman MM, Zhao M, Islam MS, Dong K, Saha SC. Nanoparticle transport and deposition in a heterogeneous human lung airway tree: An efficient one path model for CFD simulations. Eur J Pharm Sci 2022; 177:106279. [PMID: 35985443 DOI: 10.1016/j.ejps.2022.106279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Understanding nano-particle inhalation in human lung airways helps targeted drug delivery for treating lung diseases. A wide range of numerical models have been developed to analyse nano-particle transport and deposition (TD) in different parts of airways. However, a precise understanding of nano-particle TD in large-scale airways is still unavailable in the literature. This study developed an efficient one-path numerical model for simulating nano-particle TD in large-scale lung airway models. This first-ever one-path numerical approach simulates airflow and nano-particle TD in generations 0-11 of the human lung, accounting for 93% of the whole airway length. The one-path model enables the simulation of particle TD in many generations of airways with an affordable time. The particle TD of 5 nm, 10 nm and 20 nm particles is simulated at inhalation flow rates for two different physical activities: resting and moderate activity. It is found that particle deposition efficiency of 5 nm particles is 28.94% higher than 20 nm particles because of the higher dispersion capacity. It is further proved that the diffusion mechanism dominates the particle TD in generations 0-11. The deposition efficiency decreases with the increase of generation number irrespective of the flow rate and particle size. The effects of the particle size and flow rate on the escaping rate of each generation are opposite to the corresponding effects on the deposition rate. The quantified deposition and escaping rates at generations 0-11 provide valuable guidelines for drug delivery in human lungs.
Collapse
Affiliation(s)
- Md M Rahman
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia; Department of Mathematics, Faculty of Science, Islamic University, Kushtia 7003, Bangladesh
| | - Ming Zhao
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Mohammad S Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kejun Dong
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
8
|
Islam MS, Fang T, Oldfield C, Larpruenrudee P, Beni HM, Rahman MM, Husain S, Gu Y. Heat Wave and Bushfire Meteorology in New South Wales, Australia: Air Quality and Health Impacts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10388. [PMID: 36012020 PMCID: PMC9407765 DOI: 10.3390/ijerph191610388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The depletion of air quality is a major problem that is faced around the globe. In Australia, the pollutants emitted by bushfires play an important role in making the air polluted. These pollutants in the air result in many adverse impacts on the environment. This paper analysed the air pollution from the bushfires from November 2019 to July 2020 and identified how it affects the human respiratory system. The bush fires burnt over 13 million hectares, destroying over 2400 buildings. While these immediate effects were devastating, the long-term effects were just as devastating, with air pollution causing thousands of people to be admitted to hospitals and emergency departments because of respiratory complications. The pollutant that caused most of the health effects throughout Australia was Particulate Matter (PM) PM2.5 and PM10. Data collection and analysis were covered in this paper to illustrate where and when PM2.5 and PM10, and other pollutants were at their most concerning levels. Susceptible areas were identified by analysing environmental factors such as temperature and wind speed. The study identified how these pollutants in the air vary from region to region in the same time interval. This study also focused on how these pollutant distributions vary according to the temperature, which helps to determine the relationship between the heatwave and air quality. A computational model for PM2.5 aerosol transport to the realistic airways was also developed to understand the bushfire exhaust aerosol transport and deposition in airways. This study would improve the knowledge of the heat wave and bushfire meteorology and corresponding respiratory health impacts.
Collapse
Affiliation(s)
- Mohammad S. Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia
| | - Tianxin Fang
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia
| | - Callum Oldfield
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia
| | - Puchanee Larpruenrudee
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia
| | - Hamidreza Mortazavy Beni
- Department of Biomedical Engineering, Arsanjan Branch, Islamic Azad University, Arsanjan 6134937333, Iran
| | - Md. M. Rahman
- School of Computing, Engineering, and Mathematics, Western Sydney University, Penrith, NSW 2751, Australia
| | - Shahid Husain
- Department of Mechanical Engineering, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202001, India
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
9
|
How Nanoparticle Aerosols Transport through Multi-Stenosis Sections of Upper Airways: A CFD-DPM Modelling. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Airway stenosis is a global respiratory health problem that is caused by airway injury, endotracheal intubation, malignant tumor, lung aging, or autoimmune diseases. A precise understanding of the airflow dynamics and pharmaceutical aerosol transport through the multi-stenosis airways is vital for targeted drug delivery, and is missing from the literature. The object of this study primarily relates to behaviors and nanoparticle transport through the multi-stenosis sections of the trachea and upper airways. The combination of a CT-based mouth–throat model and Weibel’s model was adopted in the ANSYS FLUENT solver for the numerical simulation of the Euler–Lagrange (E-L) method. Comprehensive grid refinement and validation were performed. The results from this study indicated that, for all flow rates, a higher velocity was usually found in the stenosis section. The maximum velocity was found in the stenosis section having a 75% reduction, followed by the stenosis section having a 50% reduction. Increasing flow rate resulted in higher wall shear stress, especially in stenosis sections. The highest pressure was found in the mouth–throat section for all flow rates. The lowest pressure was usually found in stenosis sections, especially in the third generation. Particle escape rate was dependent on flow rate and inversely dependent on particle size. The overall deposition efficiency was observed to be significantly higher in the mouth–throat and stenosis sections compared to other areas. However, this was proven to be only the case for a particle size of 1 nm. Moreover, smaller nanoparticles were usually trapped in the mouth–throat section, whereas larger nanoparticle sizes escaped through the lower airways from the left side of the lung; this accounted for approximately 50% of the total injected particles, and 36% escaped from the right side. The findings of this study can improve the comprehensive understanding of airflow patterns and nanoparticle deposition. This would be beneficial in work with polydisperse particle deposition for treatment of comprehensive stenosis with specific drugs under various disease conditions.
Collapse
|
10
|
A computational approach to understand the breathing dynamics and pharmaceutical aerosol transport in a realistic airways. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
11
|
The Effect of Metro Construction on the Air Quality in the Railway Transport System of Sydney, Australia. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sydney Metro is the biggest project of Australia’s public transport, which was designed to provide passengers with more trains and faster services. This project was first implemented in 2017 and is planned to be completed in 2024. As presented, the project is currently in the construction stage located on the ground stations of the Sydney Trains Bankstown line (T3). Based on this stage, several construction activities will generate air pollutants, which will affect the air quality around construction areas. Moreover, it might cause health problems to people around there and also the passengers who usually take the train on the T3 line. However, there is no specific data for air quality inside the train that may be affected by the construction from each area. Therefore, the aim of this study is to investigate the air quality inside the train carriage of all related stations from the T3 line. A sampling campaign was conducted over 3 months to analyze particulate matter (PM) concentration, the main indoor pollutants including formaldehyde (HCHO) and total volatile organic compounds (TVOC). The results of the T3 line were analyzed and compared to Airport & South line (T8) that were not affected by the project’s construction. The results of this study indicate that Sydney Metro construction activities insignificantly affected the air quality inside the train. Average PM2.5 and PM10 inside the train of T3 line in the daytime were slightly higher than in the nighttime. The differences in PM2.5 and PM10 concentrations from these periods were around 6.8 μg/m3 and 12.1 μg/m3, respectively. The PM concentrations inside the train from the T3 line were slightly higher than the T8 line. However, these concentrations were still lower than those recommended by the national air quality standards. For HCHO and TVOC, the average HCHO and TVOC concentrations were less than the recommendation criteria.
Collapse
|
12
|
Investigation of the Upper Respiratory Tract of a Male Smoker with Laryngeal Cancer by Inhaling Air Associated with Various Physical Activity Levels. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Smokers are at a higher risk of laryngeal cancer, which is a type of head and neck cancer in which cancer cells proliferate and can metastasize to other tissues after a tumor has formed. Cigarette smoke greatly reduces the inhaled air quality and can also lead to laryngeal cancer. In this study, the upper airway of a 70-year-old smoker with laryngeal cancer was reconstructed by taking a CT scan using Mimics software. To solve the governing equations, computational fluid dynamics (CFD) with a pressure base approach was used with the help of Ansys 2021 R1 software. As a result, the maximum turbulence intensity occurred in the larynx. At 13 L/min, 55 L/min, and 100 L/min, the maximum turbulence intensity was 1.1, 3.5, and 6.1, respectively. The turbulence intensity in the respiratory system is crucial because it demonstrates the ability to transfer energy. The maximum wall shear stress (WSS) also occurred in the larynx. At 13 L/min, 55 L/min, and 100 L/min, the maximum WSS was 0.62 Pa, 5.4 Pa, and 12.4 Pa, respectively. The WSS index cannot be calculated in vivo and should be calculated in vitro. Excessive WSS in the epiglottis is inappropriate and can lead to an airway obstruction. Furthermore, real mathematical modeling outcomes provide an approach for future prevention, treatment, and management planning by forecasting the zones prone to an acceleration of disease progression. In this regard, accurate computational modeling leads to pre-visualization in surgical planning to define the best reformative techniques to determine the most probable patient condition consequences.
Collapse
|
13
|
Duong BV, Larpruenrudee P, Fang T, Hossain SI, Saha SC, Gu Y, Islam MS. Is the SARS CoV-2 Omicron Variant Deadlier and More Transmissible Than Delta Variant? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4586. [PMID: 35457468 PMCID: PMC9032753 DOI: 10.3390/ijerph19084586] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/20/2022]
Abstract
Genetic variants of severe acute respiratory syndrome coronavirus (SARS-CoV-2) have been globally surging and devastating many countries around the world. There are at least eleven reported variants dedicated with inevitably catastrophic consequences. In 2021, the most dominant Delta and Omicron variants were estimated to lead to more severity and deaths than other variants. Furthermore, these variants have some contagious characteristics involving high transmissibility, more severe illness, and an increased mortality rate. All outbreaks caused by the Delta variant have been rapidly skyrocketing in infection cases in communities despite tough restrictions in 2021. Apart from it, the United States, the United Kingdom and other high-rate vaccination rollout countries are still wrestling with this trend because the Delta variant can result in a significant number of breakthrough infections. However, the pandemic has changed since the latest SARS-CoV-2 variant in late 2021 in South Africa, Omicron. The preliminary data suggest that the Omicron variant possesses 100-fold greater than the Delta variant in transmissibility. Therefore, this paper aims to review these characteristics based on the available meta-data and information from the first emergence to recent days. Australia and the five most affected countries, including the United States, India, Brazil, France, as well as the United Kingdom, are selected in order to review the transmissibility, severity and fatality due to Delta and Omicron variants. Finally, the vaccination programs for each country are also reviewed as the main factor in prevention.
Collapse
Affiliation(s)
- Bao V. Duong
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.V.D.); (P.L.); (T.F.); (S.C.S.)
| | - Puchanee Larpruenrudee
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.V.D.); (P.L.); (T.F.); (S.C.S.)
| | - Tianxin Fang
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.V.D.); (P.L.); (T.F.); (S.C.S.)
| | - Sheikh I. Hossain
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.V.D.); (P.L.); (T.F.); (S.C.S.)
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Mohammad S. Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; (B.V.D.); (P.L.); (T.F.); (S.C.S.)
| |
Collapse
|
14
|
Rahman M, Zhao M, Islam MS, Dong K, Saha SC. Numerical study of nano and micro pollutant particle transport and deposition in realistic human lung airways. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Pourmehran O, Cazzolato B, Tian Z, Arjomandi M. The effect of inlet flow profile and nozzle diameter on drug delivery to the maxillary sinus. Biomech Model Mechanobiol 2022; 21:849-870. [PMID: 35137283 PMCID: PMC9132880 DOI: 10.1007/s10237-022-01563-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
In this paper, the effect of the turbulence and swirling of the inlet flow and the diameter of the nozzle on the flow characteristics and the particles' transport/deposition patterns in a realistic combination of the nasal cavity (NC) and the maxillary sinus (MS) were examined. A computational fluid dynamics (CFD) model was developed in ANSYS® Fluent using a hybrid Reynolds averaged Navier–Stokes–large-eddy simulation algorithm. For the validation of the CFD model, the pressure distribution in the NC was compared with the experimental data available in the literature. An Eulerian–Lagrangian approach was employed for the prediction of the particle trajectories using a discrete phase model. Different inlet flow conditions were investigated, with turbulence intensities of 0.15 and 0.3, and swirl numbers of 0.6 and 0.9 applied to the inlet flow at a flow rate of 7 L/min. Monodispersed particles with a diameter of 5 µm were released into the nostril for various nozzle diameters. The results demonstrate that the nasal valve plays a key role in nasal resistance, which damps the turbulence and swirl intensities of the inlet flow. Moreover, it was found that the effect of turbulence at the inlet of the NC on drug delivery to the MS is negligible. It was also demonstrated that increasing the flow swirl at the inlet and decreasing the nozzle diameter improves the total particle deposition more than threefold due to the generation of the centrifugal force, which acts on the particles in the nostril and vestibule. The results also suggest that the drug delivery efficiency to the MS can be increased by using a swirling flow with a moderate swirl number of 0.6. It was found that decreasing the nozzle diameter can increase drug delivery to the proximity of the ostium in the middle meatus by more than 45%, which subsequently increases the drug delivery to the MS. The results can help engineers design a nebulizer to improve the efficiency of drug delivery to the maxillary sinuses.
Collapse
Affiliation(s)
- Oveis Pourmehran
- School of Mechanical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| | - Benjamin Cazzolato
- School of Mechanical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Zhao Tian
- School of Mechanical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Maziar Arjomandi
- School of Mechanical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| |
Collapse
|
16
|
Beni HM, Mortazavi H, Islam MS. Biomedical and biophysical limits to mathematical modeling of pulmonary system mechanics: a scoping review on aerosol and drug delivery. Biomech Model Mechanobiol 2022; 21:79-87. [PMID: 34725744 PMCID: PMC8559917 DOI: 10.1007/s10237-021-01531-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/10/2021] [Indexed: 11/29/2022]
Abstract
Undoubtedly, the construction of the biomechanical geometry systems with the help of computer tomography (CT) and magnetic resonance imaging (MRI) has made a significant advancement in studying in vitro numerical models as accurately as possible. However, some simplifying assumptions in the computational studies of the respiratory system have caused errors and deviations from the in vivo actual state. The most important of these hypotheses is how to generate volume from the point cloud exported from CT or MRI images, not paying attention to the wall thickness and its effect in computational fluid dynamic method, statistical logic of aerosol trap in software; and most importantly, the viscoelastic effect of respiratory tract wall in living tissue pointed in the fluid-structure interaction method. So that applying the viscoelastic dynamic mesh effect in the form of the moving deforming mesh can be very effective in achieving more appropriate response quality. Also, changing the volume fraction of the pulmonary extracellular matrix constituents leads to changes in elastic modulus (storage modulus) and the viscous modulus (loss modulus) of lung tissue. Therefore, in the biomedical computational methods where the model wall is considered flexible, the viscoelastic properties of the texture must be considered correctly.
Collapse
Affiliation(s)
| | - Hamed Mortazavi
- Department of Biomedical Engineering, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Mohammad Saidul Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
17
|
Aerosol Particle Transport and Deposition in Upper and Lower Airways of Infant, Child and Adult Human Lungs. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding transportation and deposition (TD) of aerosol particles in the human respiratory system can help clinical treatment of lung diseases using medicines. The lung airway diameters and the breathing capacity of human lungs normally increase with age until the age of 30. Many studies have analyzed the particle TD in the human lung airways. However, the knowledge of the nanoparticle TD in airways of infants and children with varying inhalation flow rates is still limited in the literature. This study investigates nanoparticle (5 nm ≤ dp ≤ 500 nm) TD in the lungs of infants, children, and adults. The inhalation air flow rates corresponding to three ages are considered as Qin=3.22 L/min (infant), 8.09 L/min (Child), and Qin=14 L/min (adult). It is found that less particles are deposited in upper lung airways (G0–G3) than in lower airways (G12–G15) in the lungs of all the three age groups. The results suggest that the particle deposition efficiency in lung airways increases with the decrease of particle size due to the Brownian diffusion mechanism. About 3% of 500 nm particles are deposited in airways G12–G15 for the three age groups. As the particle size is decreased to 5 nm, the deposition rate in G12–G15 is increased to over 95%. The present findings can help medical therapy by individually simulating the distribution of drug-aerosol for the patient-specific lung.
Collapse
|
18
|
Islam MS, Larpruenrudee P, Saha SC, Pourmehran O, Paul AR, Gemci T, Collins R, Paul G, Gu Y. How severe acute respiratory syndrome coronavirus-2 aerosol propagates through the age-specific upper airways. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:081911. [PMID: 34552312 PMCID: PMC8450910 DOI: 10.1063/5.0061627] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/24/2021] [Indexed: 05/22/2023]
Abstract
The recent outbreak of the COVID-19 causes significant respirational health problems, including high mortality rates worldwide. The deadly corona virus-containing aerosol enters the atmospheric air through sneezing, exhalation, or talking, assembling with the particulate matter, and subsequently transferring to the respiratory system. This recent outbreak illustrates that the severe acute respiratory syndrome (SARS) coronavirus-2 is deadlier for aged people than for other age groups. It is evident that the airway diameter reduces with age, and an accurate understanding of SARS aerosol transport through different elderly people's airways could potentially help the overall respiratory health assessment, which is currently lacking in the literature. This first-ever study investigates SARS COVID-2 aerosol transport in age-specific airway systems. A highly asymmetric age-specific airway model and fluent solver (ANSYS 19.2) are used for the investigation. The computational fluid dynamics measurement predicts higher SARS COVID-2 aerosol concentration in the airway wall for older adults than for younger people. The numerical study reports that the smaller SARS coronavirus-2 aerosol deposition rate in the right lung is higher than that in the left lung, and the opposite scenario occurs for the larger SARS coronavirus-2 aerosol rate. The numerical results show a fluctuating trend of pressure at different generations of the age-specific model. The findings of this study would improve the knowledge of SARS coronavirus-2 aerosol transportation to the upper airways which would thus ameliorate the targeted aerosol drug delivery system.
Collapse
Affiliation(s)
- Mohammad S. Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia
- Authors to whom correspondence should be addressed: and
| | - Puchanee Larpruenrudee
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia
- Authors to whom correspondence should be addressed: and
| | - Oveis Pourmehran
- School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia and Department of Surgery—Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Akshoy Ranjan Paul
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | | | - Richard Collins
- Biomechanics International, Cranberry Township, Pennsylvania 16066, USA
| | - Gunther Paul
- James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Queensland 4810, Australia
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|