1
|
Wilkman L, Ahlm C, Evander M, Lwande OW. Mosquito-borne viruses causing human disease in Fennoscandia—Past, current, and future perspectives. Front Med (Lausanne) 2023; 10:1152070. [PMID: 37051217 PMCID: PMC10083265 DOI: 10.3389/fmed.2023.1152070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/28/2023] Open
Abstract
Five different mosquito-borne viruses (moboviruses) significant to human disease are known to be endemic to Fennoscandia (Sindbis virus, Inkoo virus, Tahyna virus, Chatanga virus, and Batai virus). However, the incidence of mosquito-borne virus infections in Fennoscandia is unknown, largely due to underdiagnosing and lack of surveillance efforts. The Fennoscandian moboviruses are difficult to prevent due to their method of transmission, and often difficult to diagnose due to a lack of clear case definition criteria. Thus, many cases are likely to be mis-diagnosed, or even not diagnosed at all. Significant long-term effects, often in the form of malaise, rashes, and arthralgia have been found for some of these infections. Research into mobovirus disease is ongoing, though mainly focused on a few pathogens, with many others neglected. With moboviruses found as far north as the 69th parallel, studying mosquito-borne disease occurring in the tropics is only a small part of the whole picture. This review is written with the objective of summarizing current medically relevant knowledge of moboviruses occurring in Fennoscandia, while highlighting what is yet unknown and possibly overlooked.
Collapse
Affiliation(s)
- Lukas Wilkman
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå, Västerbotten, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå, Västerbotten, Sweden
| | - Olivia Wesula Lwande
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå, Västerbotten, Sweden
- *Correspondence: Olivia Wesula Lwande,
| |
Collapse
|
2
|
Jansen S, Heitmann A, Uusitalo R, Korhonen EM, Lühken R, Kliemke K, Lange U, Helms M, Kirjalainen L, Nykänen R, Gregow H, Pirinen P, Rossini G, Vapalahti O, Schmidt-Chanasit J, Huhtamo E. Vector Competence of Northern European Culex pipiens Biotype pipiens and Culex torrentium to West Nile Virus and Sindbis Virus. Viruses 2023; 15:v15030592. [PMID: 36992301 PMCID: PMC10056470 DOI: 10.3390/v15030592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The West Nile Virus (WNV) and Sindbis virus (SINV) are avian-hosted mosquito-borne zoonotic viruses that co-circulate in some geographical areas and share vector species such as Culex pipiens and Culex torrentium. These are widespread in Europe, including northern parts and Finland, where SINV is endemic, but WNV is currently not. As WNV is spreading northwards in Europe, we wanted to assess the experimental vector competence of Finnish Culex pipiens and Culex torrentium mosquitoes to WNV and SINV in different temperature profiles. Both mosquito species were found susceptible to both viruses and got infected via infectious blood meal at a mean temperature of 18 °C. WNV-positive saliva was detected at a mean temperature of 24 °C, whereas SINV-positive saliva was detected already at a mean temperature of 18 °C. Cx. torrentium was found to be a more efficient vector for WNV and SINV over Cx. pipiens. Overall, the results were in line with the previous studies performed with more southern vector populations. The current climate does not seem optimal for WNV circulation in Finland, but temporary summertime transmission could occur in the future if all other essential factors are in place. More field data would be needed for monitoring and understanding the northward spreading of WNV in Europe.
Collapse
Affiliation(s)
- Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20146 Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Ruut Uusitalo
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, 00100 Helsinki, Finland
| | - Essi M. Korhonen
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Lauri Kirjalainen
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Roope Nykänen
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Hilppa Gregow
- Finnish Meteorological Institute, 00101 Helsinki, Finland
| | - Pentti Pirinen
- Finnish Meteorological Institute, 00101 Helsinki, Finland
| | - Giada Rossini
- Unit of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
- Virology and Immunology, Diagnostic Center, Helsinki University Hospital (HUSLAB), 00290 Helsinki, Finland
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20146 Hamburg, Germany
| | - Eili Huhtamo
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
- Correspondence:
| |
Collapse
|
3
|
Suvanto MT, Uusitalo R, Otte Im Kampe E, Vuorinen T, Kurkela S, Vapalahti O, Dub T, Huhtamo E, Korhonen EM. Sindbis virus outbreak and evidence for geographical expansion in Finland, 2021. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2022; 27. [PMID: 35929430 PMCID: PMC9358406 DOI: 10.2807/1560-7917.es.2022.27.31.2200580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sindbis virus (SINV) caused a large outbreak in Finland in 2021 with 566 laboratory-confirmed human cases and a notable geographical expansion. Compared with the last large outbreak in 2002, incidence was higher in several hospital districts but lower in traditionally endemic locations in eastern parts of the country. A high incidence is also expected in 2022. Awareness of SINV should be raised in Finland to increase recognition of the disease and prevent transmission through the promotion of control measures.
Collapse
Affiliation(s)
- Maija T Suvanto
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Eveline Otte Im Kampe
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland.,ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Tytti Vuorinen
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Satu Kurkela
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timothée Dub
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Eili Huhtamo
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Essi M Korhonen
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Assefa A, Tibebu A, Bihon A, Dagnachew A, Muktar Y. Ecological niche modeling predicting the potential distribution of African horse sickness virus from 2020 to 2060. Sci Rep 2022; 12:1748. [PMID: 35110661 PMCID: PMC8811056 DOI: 10.1038/s41598-022-05826-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
African horse sickness is a vector-borne, non-contagious and highly infectious disease of equines caused by African horse sickness viruses (AHSv) that mainly affect horses. The occurrence of the disease causes huge economic impacts because of its high fatality rate, trade ban and disease control costs. In the planning of vectors and vector-borne diseases like AHS, the application of Ecological niche models (ENM) used an enormous contribution in precisely delineating the suitable habitats of the vector. We developed an ENM to delineate the global suitability of AHSv based on retrospective outbreak data records from 2005 to 2019. The model was developed in an R software program using the Biomod2 package with an Ensemble modeling technique. Predictive environmental variables like mean diurnal range, mean precipitation of driest month(mm), precipitation seasonality (cv), mean annual maximum temperature (oc), mean annual minimum temperature (oc), mean precipitation of warmest quarter(mm), mean precipitation of coldest quarter (mm), mean annual precipitation (mm), solar radiation (kj /day), elevation/altitude (m), wind speed (m/s) were used to develop the model. From these variables, solar radiation, mean maximum temperature, average annual precipitation, altitude and precipitation seasonality contributed 36.83%, 17.1%, 14.34%, 7.61%, and 6.4%, respectively. The model depicted the sub-Sahara African continent as the most suitable area for the virus. Mainly Senegal, Burkina Faso, Niger, Nigeria, Ethiopia, Sudan, Somalia, South Africa, Zimbabwe, Madagascar and Malawi are African countries identified as highly suitable countries for the virus. Besides, OIE-listed disease-free countries like India, Australia, Brazil, Paraguay and Bolivia have been found suitable for the virus. This model can be used as an epidemiological tool in planning control and surveillance of diseases nationally or internationally.
Collapse
Affiliation(s)
- Ayalew Assefa
- Department of Veterinary Medicine, Woldia University, Woldia, Ethiopia.
| | - Abebe Tibebu
- Sekota Dryland Agricultural Research Center, Sekota, Ethiopia
| | - Amare Bihon
- Department of Veterinary Medicine, Woldia University, Woldia, Ethiopia
| | - Alemu Dagnachew
- Sekota Dryland Agricultural Research Center, Sekota, Ethiopia
| | - Yimer Muktar
- Department of Veterinary Medicine, Woldia University, Woldia, Ethiopia
| |
Collapse
|