1
|
Liu Y, Xu Y, Xu W, He Z, Fu C, Du F. Radon and lung cancer: Current status and future prospects. Crit Rev Oncol Hematol 2024; 198:104363. [PMID: 38657702 DOI: 10.1016/j.critrevonc.2024.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/24/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024] Open
Abstract
Beyond tobacco smoking, radon takes its place as the second most significant contributor to lung cancer, excluding hereditary and other biologically related factors. Radon and its byproducts play a pivotal role in exposing humans to elevated levels of natural radiation. Approximately 10-20 % of lung cancer cases worldwide can be attributed to radon exposure, leading to between 3 % and 20 % of all lung cancer-related deaths. Nevertheless, a knowledge gap persists regarding the association between radon and lung cancer, impeding radon risk reduction initiatives globally. This review presents a comprehensive overview of the current state of research in epidemiology, cell biology, dosimetry, and risk modeling concerning radon exposure and its relevance to lung cancer. It also delves into methods for measuring radon concentrations, monitoring radon risk zones, and identifying priorities for future research.
Collapse
Affiliation(s)
- Yan Liu
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei 430079, China
| | - Yanqing Xu
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei 430079, China.
| | - Wei Xu
- Health Management Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhengzhong He
- School of Nuclear Science and Technology, University of South China, Hengyang, Hunan 421001, China
| | - Cong Fu
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei 430079, China
| | - Fen Du
- Department of Biochemistry and Molecular Biology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei 430071, China
| |
Collapse
|
2
|
Urrutia-Pereira M, Chatkin JM, Chong-Neto HJ, Solé D. Radon exposure: a major cause of lung cancer in nonsmokers. J Bras Pneumol 2023; 49:e20230210. [PMID: 38055388 PMCID: PMC10760439 DOI: 10.36416/1806-3756/e20230210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/06/2023] [Indexed: 12/08/2023] Open
Abstract
Exposure to radon can impact human health. This is a nonsystematic review of articles written in English, Spanish, French, or Portuguese published in the last decade (2013-2023), using databases such as PubMed, Google Scholar, EMBASE, and SciELO. Search terms selected were radon, human health, respiratory diseases, children, and adults. After analyzing the titles and abstracts, the researchers initially identified 47 studies, which were subsequently reduced to 40 after excluding reviews, dissertations, theses, and case-control studies. The studies have shown that enclosed environments such as residences and workplaces have higher levels of radon than those outdoors. Moreover, radon is one of the leading causes of lung cancer, especially in nonsmokers. An association between exposure to radon and development of other lung diseases, such as asthma and COPD, was also observed. It is crucial to increase public awareness and implement governmental control measures to reduce radon exposure. It is essential to quantify radon levels in all types of buildings and train professionals to conduct such measurements according to proven efficacy standards. Health care professionals should also be informed about this threat and receive adequate training to deal with the effects of radon on human health.
Collapse
Affiliation(s)
- Marilyn Urrutia-Pereira
- . Departamento de Medicina, Universidade Federal do Pampa - UNIPAMPA - Uruguaiana (RS) Brasil
| | - José Miguel Chatkin
- . Disciplina de Medicina Interna e Pneumologia, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS - Porto Alegre (RS) Brasil
| | | | - Dirceu Solé
- . Disciplina de Pediatria, Escola Paulista de Medicina - EPM - Universidade Federal de São Paulo - UNIFESP - São Paulo (SP) Brasil
| |
Collapse
|
3
|
Nunes LJR, Curado A, da Graça LCC, Soares S, Lopes SI. Impacts of Indoor Radon on Health: A Comprehensive Review on Causes, Assessment and Remediation Strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073929. [PMID: 35409610 PMCID: PMC8997394 DOI: 10.3390/ijerph19073929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023]
Abstract
Indoor radon exposure is raising concerns due to its impact on health, namely its known relationship with lung cancer. Consequently, there is an urgent need to understand the risk factors associated with radon exposure, and how this can be harmful to the health of exposed populations. This article presents a comprehensive review of studies indicating a correlation between indoor radon exposure and the higher probability of occurrence of health problems in exposed populations. The analyzed studies statistically justify this correlation between exposure to indoor radon and the incidence of lung diseases in regions where concentrations are particularly high. However, some studies also showed that even in situations where indoor radon concentrations are lower, can be found a tendency, albeit smaller, for the occurrence of negative impacts on lung cancer incidence. Lastly, regarding risk remediation, an analysis has been conducted and presented in two core perspectives: (i) focusing on the identification and application of corrective measures in pre-existing buildings, and (ii) focusing on the implementation of preventive measures during the project design and before construction, both focusing on mitigating negative impacts of indoor radon exposure on the health of populations.
Collapse
Affiliation(s)
- Leonel J. R. Nunes
- PROMETHEUS, Unidade de Investigação em Materiais, Energia e Ambiente para a Sustentabilidade, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal;
- Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, 4990-706 Ponte de Lima, Portugal
- Correspondence:
| | - António Curado
- PROMETHEUS, Unidade de Investigação em Materiais, Energia e Ambiente para a Sustentabilidade, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal;
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4900-348 Viana do Castelo, Portugal;
| | - Luís C. C. da Graça
- UICISA:E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Escola Superior de Saúde, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal; (L.C.C.d.G.); (S.S.)
| | - Salete Soares
- UICISA:E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Escola Superior de Saúde, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal; (L.C.C.d.G.); (S.S.)
| | - Sérgio Ivan Lopes
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4900-348 Viana do Castelo, Portugal;
- ADiT-Lab, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
- Instituto de Telecomunicações (I), Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Designing a Multicriteria WebGIS-Based Pre-Diagnosis Tool for Indoor Radon Potential Assessment. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Radon (222Rn) is a well-known source of indoor air contamination since in its gaseous form it is a reported source of ionizing radiation that belongs to the group of rare gases. Radon occurs naturally in soils and rocks and results from the radioactive decay of its longer-lived progenitors, i.e., radium, uranium, and thorium. Radon releases itself from the soil and rocks, which mainly occurs in outdoor environments, not causing any kind of impact due to its fast dilution into the atmosphere. However, when this release occurs in confined and poorly ventilated indoor environments, this release can result in the accumulation of high concentrations of radon gas, being recognized by the World Health Organization (WHO) as the second cause of lung cancer, after smoking. Assessing the indoor radon concentration demands specific know-how involving the implementation of several time-consuming tasks that may include the following stages: (1) radon potential assessment; (2) short-term/long-term radon measurement; (3) laboratory data analysis and processing; and (4) technical reporting. Thus, during stage 1, the use of indirect methods to assess the radon occurrence potential, such as taking advantage of existent natural radiation maps (which have been made available by the uranium mineral prospecting campaigns performed since the early 1950s), is crucial to put forward an ICT (Information and Communication Technology) platform that opens up a straightforward approach for assessing indoor radon potential at an early stage, operating as a pre-diagnosis evaluation tool that is of great value for supporting decision making towards the transition to stage 2, which typically has increased costs due to the need for certified professionals to handle certified instruments for short-term/long-term radon measurement. As a pre-diagnosis tool, the methodology proposed in this article allows the assessment of the radon potential of a specific building through a WebGIS-based platform that adopts ICT and Internet technologies to display and analyze spatially related data, employing a multicriteria approach, including (a) gamma radiation maps, (b) built environment characteristics, and (c) occupancy profile, and thus helping to determine when the radon assessment process should proceed to stage 2, or, alternatively, by eliminating the need to perform additional actions.
Collapse
|
5
|
Internet of Things (IoT) Technologies for Managing Indoor Radon Risk Exposure: Applications, Opportunities, and Future Challenges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112211064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Radon gas is a harmful pollutant with a well-documented adverse influence on public health. In poorly ventilated environments, that are often prone to significant radon levels, studies indicate a known relationship between human radon exposure and lung cancer. Recent technology advances, notably on the Internet of Things (IoT) ecosystem, allow the integration of sensors, computing, and communication capabilities into low-cost and small-scale devices that can be used for implementing specific cyber-physical systems (CPS) for online and real-time radon management. These technologies are crucial for improving the overall building indoor air quality (IAQ), contributing toward the so-called cognitive buildings, where human-based control is tending to decline, and building management systems (BMS) are focused on balancing critical factors, such as energy efficiency, human radon exposure management, and user experience, to achieve a more transparent and harmonious integration between technology and the built environment. This work surveys recent IoT technologies for indoor radon exposure management (monitoring, assessment and mitigation), and discusses its main challenges and opportunities, by focusing on methods, techniques, and technologies to answer the following questions: (i) What technologies have been recently in use for radon exposure management; (ii) how they operate; (iii) what type of radon detection mechanisms do they use; and (iv) what type of system architectures, components, and communication technologies have been used to assist the referred technologies. This contribution is relevant to pave the way for designing more intelligent and sustainable systems that rely on IoT and Information and Communications Technology (ICT), to achieve an optimal balance between these two critical factors: human radon exposure management and building energy efficiency.
Collapse
|