1
|
Yan C, Ma J, Tian D, Yan T, Zhang C, Zhang F, Zhao Y, Fu S, Zhang Q, Xia M, Li Y, Sun Y. Evaluation of pulmonary artery pressure, blood indices, and myocardial microcirculation in rats returning from high altitude to moderate altitude. Eur Radiol Exp 2024; 8:131. [PMID: 39565546 PMCID: PMC11579275 DOI: 10.1186/s41747-024-00514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/09/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND To investigate changes in pulmonary artery pressure (PAP), blood indices, and myocardial microcirculation in rats returning from high altitude (HA) to moderate altitude (MA). METHODS Forty 4-week-old male Sprague-Dawley rats were randomly divided into four groups with ten rats in each group. One group was transported to the MA area (MA-group), and the other three groups were transported to HA (HA-group-A, HA-group-B, and HA-group-C). After 28 weeks of age, the rats from the HA area were transported to the MA area for 0 days, 10 days, and 20 days, respectively. PAP, routine blood tests, and computed tomography myocardial perfusion indices were measured. RESULTS Compared with the MA-group, the body weight of HA-groups decreased (p < 0.05), and PAP in HA-group-A and HA-group-B increased (p < 0.05). In the HA groups, PAP initially increased and then decreased. Compared with the MA-group, red blood cells (RBC), hemoglobin (HGB), and hematocrit (HCT) of rats in HA-group-A increased (p < 0.05). Compared with the HA-group-A, RBC, HGB, and HCT of HA-group-B gradually decreased (p < 0.05) while MCV decreased (p < 0.05), and PLT of HA-group-C increased (p < 0.05). Compared with the MA group, blood flow (BF) and blood volume (BV) of the HA-group-A decreased (p < 0.05). Compared with the HA-group-A, TTP increased first and then decreased (p < 0.05), and BF and BV increased gradually (p < 0.05). Pathological results showed that myocardial fiber arrangement was disordered, and cell space widened in the HA group. CONCLUSION PAP, blood parameters, and myocardial microcirculation in rats returning from high to MA exhibited significant changes. RELEVANCE STATEMENT This study provides an experimental basis for understanding the physiological and pathological mechanisms during the process of deacclimatization to HA and offers new insights for the prevention and treatment of deacclimatization to HA syndrome. KEY POINTS Forty rats were raised in a real plateau environment. Myocardial microcirculation was detected by CT myocardial perfusion imaging. The PAP of the unacclimated rats increased first and then decreased. The myocardial microcirculation of the deacclimated rats showed hyperperfusion changes.
Collapse
Affiliation(s)
- Chunlong Yan
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Department of Radiology, Jining No.1 People's Hospital, Jining, China
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Jinfeng Ma
- Department of Hematology, Jining No.1 People's Hospital, Jining, China
| | - Dengfeng Tian
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | | | - Chenhong Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Fengjuan Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Yuchun Zhao
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Shihan Fu
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, China
| | - Mengxue Xia
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Yue Li
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Yanqiu Sun
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China.
| |
Collapse
|
2
|
Sun Y, Ma J, Yan T, Tian D, Zhang C, Zhang F, Zhao Y, Fu S, Yan C. Evaluation of cardiac index and right ventricular hypertrophy index in rats under a chronic hypoxic environment at high altitude. Heliyon 2024; 10:e25229. [PMID: 38333787 PMCID: PMC10850543 DOI: 10.1016/j.heliyon.2024.e25229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
High-altitude areas are characterized by low pressure and hypoxia, which have a significant impact on various body systems. This study aimed to investigate the alterations in cardiac index and right ventricular hypertrophy index(RVHI) in rats at different altitudes.Twenty-one male Sprague-Dawley (SD) rats aged 4 weeks were randomly divided into three groups based on altitude. The rats were raised for 28 weeks and then transferred to Qinghai University Plateau Medicine Laboratory. Body weight was measured, heart organs were isolated and weighed, and cardiac index and right ventricular hypertrophy index were determined. Statistical analysis was performed on the data from the three groups. Compared with the plain group, the body weight of the middle-altitude group was significantly decreased (P < 0.05), and cardiac index, RVHI-1, RVHI-2 increased significantly ((P < 0.05). The body weight, whole heart mass, right ventricular mass were significantly decreased in high-altitude group (P < 0.05), RVHI-1 and RVHI-2 were significantly increased (P < 0.05). Compared with the middle-altitude group, the body weight, whole heart mass and right ventricular mass of the high-altitude group were significantly decreased (P < 0.05), and RVHI-1 and RVHI-2 were significantly increased (P < 0.05). Increasing altitude led to a decrease in body weight, whole heart mass, and right ventricular mass in rats, indicating structural changes in the right heart. Additionally, the proportion of right heart to body weight and whole heart increased with altitude.
Collapse
Affiliation(s)
- Yanqiu Sun
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Jinfeng Ma
- Department of Hematology, Jining No.1 People's Hospital, Jining, China
| | | | - Dengfeng Tian
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Chenhong Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
| | - Fengjuan Zhang
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Yuchun Zhao
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Shihan Fu
- Department of Radiology, Qinghai Provincial People's Hospital, Xining, China
- Graduate School of Qinghai University, Xining, China
| | - Chunlong Yan
- Department of Radiology, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
3
|
Yan C, Tian D, Zhang C, Zhang Q, Sun Y. Evaluation of blood cellular and biochemical parameters in rats under a chronic hypoxic environment at high altitude. Ann Med 2023; 55:898-907. [PMID: 36896573 PMCID: PMC10796155 DOI: 10.1080/07853890.2023.2184859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND The purpose of this study was to explore the changes in blood cellular and biochemical parameters of rats in a natural environment of low pressure and low oxygen on the plateau. METHODS Male Sprague-Dawley rats in two groups were raised in different environments from 4 weeks of age for a period of 24 weeks. They were raised to 28 weeks of age and then transported to the plateau medical laboratory of Qinghai University. Blood cellular and biochemical parameters were measured and the data of the two groups were statistically analyzed. RESULTS 1. RBC in the HA group was higher than that in the Control group, but there was no significant difference between the two groups (p > 0.05), Compared with the Control group, HGB, MCV, MCH, MCHC and RDW in the HA group were significantly higher (p < 0.05). 2. Compared with the Control group, WBC, LYMP, EO, LYMP% and EO% in the HA group decreased significantly (p < 0.05), and ANC% increased significantly (p < 0.05). 3. In the platelet index, compared with the Control group, PLT in the HA group was significantly reduced (p < 0.05), PDW, MRV, P-LCR were significantly increased (p < 0.05). 4. In blood biochemical indicators, compared with the Control group, AST, TBIL, IBIL, LDH in the HA group decreased significantly (p < 0.05), CK in the HA group increased significantly (p < 0.05). CONCLUSIONS 1. The indexes related to red blood cells, white blood cells, platelets and some biochemical indexes in the blood of rats at high altitude have changed. 2. Under the high altitude environment, the oxygen carrying capacity of SD rats is improved, the resistance to disease may be reduced, the coagulation and hemostasis functions may be affected, and there is a risk of bleeding. The liver function, renal function, heart function and skeletal muscle energy metabolism may be affected. 3. This study can provide an experimental basis for the research on the pathogenesis of high-altitude diseases from the perspective of blood.KEY MESSAGESIn this study, red blood cells, white blood cells, platelets and blood biochemical indicators were included in the real plateau environment to comprehensively analyze the changes of blood cellular and biochemical parameters in rats under the chronic plateau hypobaric hypoxia environment.From the perspective of blood, this study can provide an experimental basis for research on the pathogenesis of high-altitude diseases.Explore the data support of oxygen-carrying capacity, disease resistance and energy metabolism of the body in the natural environment at high altitude.
Collapse
Affiliation(s)
- Chunlong Yan
- Suzhou Medical College of Soochow University, suzhou, China
- Department of Radiology, Jining No.1 People’s Hospital, Jining, China
- Department of Radiology, Qinghai Provincial People’s Hospital, Xining, China
| | - Dengfeng Tian
- Department of Radiology, Qinghai Provincial People’s Hospital, Xining, China
| | - Chenhong Zhang
- Department of Radiology, Qinghai Provincial People’s Hospital, Xining, China
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, China
| | - Yanqiu Sun
- Department of Radiology, Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
4
|
Tsao TM, Hwang JS, Chen CY, Lin ST, Tsai MJ, Su TC. Urban climate and cardiovascular health: Focused on seasonal variation of urban temperature, relative humidity, and PM 2.5 air pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115358. [PMID: 37595350 DOI: 10.1016/j.ecoenv.2023.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Seasonal effects on subclinical cardiovascular functions (CVFs) are an important emerging health issue for people living in urban environment. The objectives of this study were to demonstrate the effects of seasonal variations of temperature, relative humidity, and PM2.5 air pollution on CVFs. A total of 86 office workers in Taipei City were recruited, their arterial pressure waveform was recorded by cuff sphygmomanometer using an oscillometric blood pressure (BP) device for CVFs assessment. Results of paried t-test with Bonferroni correction showed significantly increased systolic and diastolic BP (SBP, DBP), central end-systolic and diastolic BP (cSBP, cDBP) and systemic vascular resistance, but decreased heart rate (HR), stroke volume (SV), cardio output (CO), and cardiac index in winter compared with other seasons. After controlling for related confounding factors, SBP, DBP, cSBP, cDBP, LV dp/dt max, and brachial-ankle pulse wave velocity (baPWV) were negatively associated with, and SV was positively associated with seasonal temperature changes. Seasonal changes of air pollution in terms of PM2.5 were significantly positively associated with DBP and cDBP, as well as negatively associated with HR and CO. Seasonal changes of relative humidity were significantly negatively associated with DBP, and cDBP, as well as positively associated with HR, CO, and baPWV. This study provides evidence of greater susceptibility to cardiovascular events in winter compared with other seasons, with ambient temperature, relative humidity, and PM2.5 as the major factors of seasonal variation of CVFs.
Collapse
Affiliation(s)
- Tsung-Ming Tsao
- The Experimental Forest, College of Bio-Resource and Agriculture, National Taiwan University, Nantou County, 55750, Taiwan
| | - Jing-Shiang Hwang
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Yen Chen
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin 640203, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei 10055, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Sung-Tsun Lin
- The Experimental Forest, College of Bio-Resource and Agriculture, National Taiwan University, Nantou County, 55750, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei 10055, Taiwan
| | - Ming-Jer Tsai
- The Experimental Forest, College of Bio-Resource and Agriculture, National Taiwan University, Nantou County, 55750, Taiwan; School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan
| | - Ta-Chen Su
- The Experimental Forest, College of Bio-Resource and Agriculture, National Taiwan University, Nantou County, 55750, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei 10055, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; Divisions of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan.
| |
Collapse
|
5
|
Barbosa ECD, Farina GS, Basso CS, Camafort M, Coca A, Nadruz W. Seasonal variation in blood pressure: what is still missing? Front Cardiovasc Med 2023; 10:1233325. [PMID: 37663410 PMCID: PMC10469506 DOI: 10.3389/fcvm.2023.1233325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Seasonal variation of blood pressure (BP) is a topic in cardiology that has gained more attention throughout the years. Although it is extensively documented that BP increases in seasons coupled with lower temperatures, there are still many gaps in this knowledge field that need to be explored. Notably, seasonal variation of BP phenotypes, such as masked and white coat hypertension, and the impact of air pollution, latitude, and altitude on seasonal variation of BP are still poorly described in the literature, and the levels of the existing evidence are low. Therefore, further investigations on these topics are needed to provide robust evidence that can be used in clinical practice.
Collapse
Affiliation(s)
- Eduardo Costa Duarte Barbosa
- Hypertension Leagueof Porto Alegre, Porto Alegre, Brazil
- Department of Internal Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
- Department of Hypertension and Cardiometabolism, São Francisco Hospital, Santa Casa de Misericórdia de Porto Alegre, Feevale University, Porto Alegre, Brazil
| | - Giovani Schulte Farina
- Hypertension Leagueof Porto Alegre, Porto Alegre, Brazil
- Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University, Dresden, Germany
| | - Carolina Souza Basso
- Hypertension Leagueof Porto Alegre, Porto Alegre, Brazil
- School of Medicine, Lutheran University of Brazil, Canoas, Brazil
| | - Miguel Camafort
- Hypertension and Vascular Risk Unit, Hospital Clínic (IDIBAPS), Department of Internal Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Coca
- Hypertension and Vascular Risk Unit, Hospital Clínic (IDIBAPS), Department of Internal Medicine, University of Barcelona, Barcelona, Spain
| | - Wilson Nadruz
- Department of Internal Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| |
Collapse
|
6
|
Yan C, Ma J, Tian D, Zhang C, Zhang F, Zhao Y, Fu S, Sun Y, Zhang Q. Evaluation of Myocardial Microcirculation in Rats under a High-Altitude Hypoxic Environment by Computed Tomography Myocardial Perfusion Imaging. Int Heart J 2023; 64:928-934. [PMID: 37778996 DOI: 10.1536/ihj.23-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This study aims to examine the changes in myocardial microcirculation in rats in a high-altitude hypoxic environment via computed tomography (CT) myocardial perfusion imaging technology. Rats in two groups were raised in different environments from 4 weeks of age for a period of 24 weeks. At 28 weeks of age, both groups underwent CT myocardial perfusion scanning, and the following myocardial perfusion parameters were measured: time to peak (TTP), mean transit time (MTT), blood flow (BF), and blood volume (BV). Following the scan, the rats were sacrificed, the cardiac index and right ventricular hypertrophy index were obtained, and hematoxylin-eosin (HE) staining was utilized to observe the pathological changes in the myocardium. In the group of rats that are subject to a high-altitude hypoxic environment for 24 weeks (the high-altitude group), the TTP and MTT values were increased (P < 0.05), the BF and BV values were lower (P < 0.05), the right heart mass was higher (P < 0.05) than that in the low-altitude group. As shown by the pathological results of HE staining, the gap between cardiomyocytes in the high-altitude group was widened, the arrangement of cardiomyocytes was irregular, and the cells were filled with a few fat vacuoles. The myocardial microcirculation is altered in a high-altitude hypoxic environment. In particular, the myocardium is in a state of inadequate perfusion, the BF in the myocardium slows down, and the right heart displays compensatory hypertrophy.
Collapse
Affiliation(s)
- Chunlong Yan
- Suzhou Medical College of Soochow University
- Department of Radiology, Qinghai Provincial People's Hospital
- Department of Radiology, Jining No.1 People's Hospital
| | - Jinfeng Ma
- Suzhou Medical College of Soochow University
- Department of Hematology, Jining No.1 People's Hospital
| | - Dengfeng Tian
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Chenhong Zhang
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Fengjuan Zhang
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Yuchun Zhao
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Shihan Fu
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Yanqiu Sun
- Suzhou Medical College of Soochow University
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital
| |
Collapse
|