1
|
Kong H, Zhang Y, Yin M, Xu K, Sun Q, Xie Y, Girard O. Effects of blood flow restriction training on cardiometabolic health and body composition in adults with overweight and obesity: a meta-analysis. Front Physiol 2025; 15:1521995. [PMID: 39896196 PMCID: PMC11782172 DOI: 10.3389/fphys.2024.1521995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Objective This meta-analysis aims to evaluate the effects of blood flow restriction (BFR) training on cardiometabolic health and body composition in adults with overweight and obesity. Method Following PRISMA guidelines, a systematic search of PubMed (MEDLINE), EMBASE, Web of Science, Cochrane, and Scopus databases was conducted on 15 March 2024. Pooled effects for each outcome were summarized using Hedge's g (g) through meta-analysis-based random effects models, and subgroup analyses were used to explore moderators. Results A total of 11 studies with 242 participants (Age:32.6 ± 3.6, BMI:27.2 ± 3.5) were included. Regarding cardiometabolic health, BFR training significantly reduced systolic blood pressure (g = 0.62 [0.08, 1.16], p = 0.02), while no significant differences were observed in maximal oxygen uptake (g = 0.48 [-0.21, 1.17], p = 0.17) or diastolic blood pressure (g = 0.31 [-0.22, 0.84], p = 0.25). Regarding body composition, BFR training significantly reduced body fat percentage (g = 0.30 [0.01, 0.58]; p = 0.04), while no significant differences (p > 0.05) were observed in body weight (g = 0.14 [-0.14, 0.42]), body mass index (g = 0.08 [-0.21, 0.38]), waist circumference (g = 0.13 [-0.28, 0.53]), or waist-to-hip ratio (g = 0.48 [-0.19, 1.15]). Subgroup analysis revealed no significant difference in improving systolic blood pressure (g = 0.57 [-0.10, 1.24] vs. g = 0.70 [-0.18, 1.59]) and body fat percentage (g = 0.20 [-0.20, 0.61] vs. g = 0.45 [-0.05, 0.95]) between BFR resistance training and BFR aerobic training. In all selected studies, the overall risk of bias was categorized as "some concern". The certainty of evidence for the BFR outcomes was low. Conclusion BFR training shows promise in improving cardiometabolic health and body composition, indicating that it may serve as a beneficial, individualized exercise prescription for improving cardiovascular disease risk and fat loss in adults with excess body weight and obesity. Systematic Review Registration https://archive.org/details/osf-registrations-uv6jx-v1.
Collapse
Affiliation(s)
- Hao Kong
- Athletic Training Institute, Tianjin University of Sport, Tianjin, China
| | - Yilin Zhang
- Athletic Training Institute, Tianjin University of Sport, Tianjin, China
| | - Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Kai Xu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - QingGuo Sun
- Athletic Training Institute, Tianjin University of Sport, Tianjin, China
| | - Yun Xie
- Athletic Training Institute, Tianjin University of Sport, Tianjin, China
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| |
Collapse
|
2
|
Cho C, Lee S. The Effects of Blood Flow Restriction Aerobic Exercise on Body Composition, Muscle Strength, Blood Biomarkers, and Cardiovascular Function: A Narrative Review. Int J Mol Sci 2024; 25:9274. [PMID: 39273223 PMCID: PMC11394695 DOI: 10.3390/ijms25179274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Blood flow restriction exercise has emerged as a promising alternative, particularly for elderly individuals and those unable to participate in high-intensity exercise. However, existing research has predominantly focused on blood flow restriction resistance exercise. There remains a notable gap in understanding the comprehensive effects of blood flow restriction aerobic exercise (BFRAE) on body composition, lipid profiles, glycemic metabolism, and cardiovascular function. This review aims to explore the physiological effects induced by chronic BFRAE. Chronic BFRAE has been shown to decrease fat mass, increase muscle mass, and enhance muscular strength, potentially benefiting lipid profiles, glycemic metabolism, and overall function. Thus, the BFRAE offers additional benefits beyond traditional aerobic exercise effects. Notably, the BFRAE approach may be particularly suitable for individuals with low fitness levels, those prone to injury, the elderly, obese individuals, and those with metabolic disorders.
Collapse
Affiliation(s)
- Chaeeun Cho
- Department of Human Movement Science, Graduate School, Incheon National University, Incheon 22012, Republic of Korea
| | - Sewon Lee
- Division of Sport Science, College of Arts & Physical Education, Incheon National University, Incheon 22012, Republic of Korea
- Sport Science Institute, College of Arts & Physical Education, Incheon National University, Incheon 22012, Republic of Korea
- Health Promotion Center, College of Arts & Physical Education, Incheon National University, Incheon 22012, Republic of Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
3
|
Su Y, Wang F, Wang M, He S, Yang X, Luan Z. Effects of blood flow restriction training on muscle fitness and cardiovascular risk of obese college students. Front Physiol 2024; 14:1252052. [PMID: 38235388 PMCID: PMC10791898 DOI: 10.3389/fphys.2023.1252052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Purpose: The aim of this study was to investigate the effect of blood flow restriction (BFR) combined with low-intensity resistance training (RT) on cardiovascular risk factors in obese individuals. Methods: Twenty-six male obese college students were recruited and randomly assigned to a control group (CON, n = 8), a low-intensity RT group (RT, n = 9), and a combined BFR training and low-intensity RT group (BFRT, n = 9). Results: The subjects in BFRT group showed significant reductions in body fat percentage and waist-to-hip ratio and a significant increase in lean mass and muscle mass; the peak torque, peak power, and endurance ratio of knee extensors and elbow flexors were significantly upregulated; the root mean square (RMS) for the medial femoral muscle, lateral femoral muscle and biceps significantly increased; the diastolic blood pressure (DBP) showed a significant decrease. The BFRT group also showed significant up-regulations in RMS of the difference between the adjacent R-R intervals (RMSSD), high-frequency power (HF) of parasympathetic modulatory capacity, the standard deviation of R-R intervals (SDNN) of overall heart rate variability (HRV) changes and low-frequency power (LF) of predominantly sympathetic activity. In addition, glycated hemoglobin (HbA1C), insulin resistance index (HOMA-IR) and fasting blood glucose (FBG) were all significantly downregulated in BFRT group. In parallel, low-density lipoprotein (LDL-C) significantly reduced while high-density lipoprotein (HDL-C) significantly increased in BFRT group. Conclusion: BFR combined with low-intensity RT training effectively improved body composition index, increased muscle mass, improved neuromuscular activation, enhanced muscle strength and endurance, which in turn improved abnormal glucolipid metabolism and enhanced cardiac autonomic regulation.
Collapse
Affiliation(s)
- Yanhong Su
- Key Laboratory of Sports Human Science in Liaoning Province, College of Physical Education, Liaoning Normal University, Dalian, China
| | - Fuqing Wang
- Key Laboratory of Sports Human Science in Liaoning Province, College of Physical Education, Liaoning Normal University, Dalian, China
| | - Meng Wang
- Key Laboratory of Sports Human Science in Liaoning Province, College of Physical Education, Liaoning Normal University, Dalian, China
| | - Shiyong He
- Key Laboratory of Sports Human Science in Liaoning Province, College of Physical Education, Liaoning Normal University, Dalian, China
| | - Xiaolei Yang
- Key Laboratory of Sports Human Science in Liaoning Province, College of Physical Education, Liaoning Normal University, Dalian, China
| | - Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Li S, Guo R, Wang J, Zheng X, Zhao S, Zhang Z, Yu W, Li S, Zheng P. The effect of blood flow restriction exercise on N-lactoylphenylalanine and appetite regulation in obese adults: a cross-design study. Front Endocrinol (Lausanne) 2023; 14:1289574. [PMID: 38116312 PMCID: PMC10728722 DOI: 10.3389/fendo.2023.1289574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Background N-lactoylphenylalanine (Lac-Phe) is a new form of "exerkines" closely related to lactate (La), which may be able to inhibit appetite. Blood flow restriction (BFR) can lead to local tissue hypoxia and increase lactate accumulation. Therefore, this study investigated the effects of combining Moderate-intensity Continuous Exercise (MICE) with BFR on Lac-Phe and appetite regulation in obese adults. Methods This study employed the cross-design study and recruited 14 obese adults aged 18-24 years. The participants were randomly divided into three groups and performed several tests with specific experimental conditions: (1) M group (MICE without BFR, 60%VO2max, 200 kJ); (2) B group (MICE with BFR, 60%VO2max, 200 kJ); and (3) C group (control session without exercise). Participants were given a standardized meal 60 min before exercise and a ad libitum 60 min after exercise. In addition, blood and Visual Analogue Scale (VAS) were collected before, immediately after, and 1 hour after performing the exercise. Results No significant difference in each index was detected before exercise. After exercise, the primary differential metabolites detected in the M and B groups were xanthine, La, succinate, Lac-Phe, citrate, urocanic acid, and myristic acid. Apart from that, the major enrichment pathways include the citrate cycle, alanine, aspartate, and glutamate metabolism. The enhanced Lac-Phe and La level in the B group was higher than M and C groups. Hunger of the B group immediately after exercise substantially differed from M group. The total ghrelin, glucagon-like peptide-1 and hunger in the B group 1 hour after exercise differed substantially from M group. The results of calorie intake showed no significant difference among the indexes in each group. Conclusions In conclusion, this cross-design study demonstrated that the combined MICE and BFR exercise reduced the appetite of obese adults by promoting the secretion of Lac-Phe and ghrelin. However, the exercise did not considerably affect the subsequent ad libitum intake.
Collapse
Affiliation(s)
- Shuoqi Li
- School of Sports Science, Nantong University, Nantong, China
| | - Rong Guo
- School of Foreign Languages, Ludong University, Yantai, China
| | - Juncheng Wang
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Xinyu Zheng
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Shuo Zhao
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Zhiru Zhang
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Wenbing Yu
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Shiming Li
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Peng Zheng
- Department of Physical Education, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Sun L. Effects of blood flow restriction training on anthropometric and blood lipids in overweight/obese adults: Meta-analysis. Front Physiol 2022; 13:1039591. [DOI: 10.3389/fphys.2022.1039591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract: Purpose: To systematically evaluate the effects of blood flow restriction training (BFRT) on anthropometric indicators and blood lipids in overweight/obese adults.Methods: A literature search was conducted on PubMed, Web of Science, Embase, Scopus, SPORTDiscus and Cochrane Library databases to determine the final literature based on inclusion and exclusion criteria. Review Manager 5.4.1 was used to evaluate the quality of the literature based on the Cochrane bias risk assessment tool, and Stata 17.0 software was used for Meta-analysis.Results: A total of 3,985 articles were screened, and five of the studies were included in the Meta-analysis, with a total 66 participants. In each study, subjects were measured before and after BFRT. Meta-results showed that BFRT significantly reduced BMI, lowered body weight, body fat % and waist circumference, significantly reduced total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) level, lowered triglycerides, and increased high-density lipoprotein cholesterol (HDL-C) level in overweight/obese adults.Conclusion: BFRT can be used as a safe and effective exercise prescription for personalized weight/fat loss. BFRT significantly reduces BMI by reducing body weight, body fat %, and waist circumference and has the effect of improving body composition. It also significantly reduced TC and LDL-C and tends to decrease TG and increase HDL-C in overweight/obese adults, potentially reducing the incidence of cardiovascular disease.
Collapse
|
6
|
Li S, Guo R, Yu T, Li S, Han T, Yu W. Effect of High-Intensity Interval Training Combined with Blood Flow Restriction at Different Phases on Abdominal Visceral Fat among Obese Adults: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11936. [PMID: 36231251 PMCID: PMC9565218 DOI: 10.3390/ijerph191911936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND High-intensity interval training (HIIT) and blood flow restriction (BFR) represent a critical nonpharmacological strategy to reduce the excess deposition of visceral fat, as well as relevant complications, among obese populations. Applying BFR at diverse phases may have different effects. Therefore, the exercise program of this study combined HIIT with BFR, so as to explore the effect of BFR on abdominal visceral fat area and its mechanism in different periods of HIIT. The aim is to provide a more effective exercise prescription for obese people who want to reduce visceral fat quickly. METHODS This study was a randomized controlled trial involving 72 obese adults. One week before intervention, both regional and whole-body fat masses, abdominal subcutaneous and visceral fat areas, variables of blood metabolism, and VO2max were recorded. Additionally, subjects with a matched fat percentage were randomized as a no-training control (C), HIIT (H), HIIT with BFR during interval (I), and HIIT with BFR during exercise (E) groups for 24 sessions within a 12-week period, using a cycle ergometer. During session one, this study recorded blood lactate, specific serum lipolytic hormones, rating of perceived exertion (RPE), and exercise heart rate (HR) and compared them among three groups. The baseline tests were repeated at 1 week after intervention. RESULTS There was no significant statistical difference in the indicators of each group at baseline (p > 0.05). The improvement of trunk fat mass and fat percentage of the I and E groups markedly increased relative to the H group (p < 0.05). Meanwhile, the I group had improved android fat mass and whole-body fat mass relative to group H (p < 0.05). Those exercise groups had markedly improved indices compared with the C group (p < 0.05). Additionally, the reduction in the I group had remarkably superior abdominal visceral fat areas (AVFA) to the H and E groups (p < 0.05). Immediately and 30 min following exercise, the E and I groups had remarkably increased growth hormone (GH) compared with the H group (p < 0.05). After exercise, the I group showed markedly increased epinephrine (EPI) compared with the H group (p < 0.05). The LA level in the I group evidently increased relative to the E group (p < 0.05), while that in the E group evidently increased compared with the H group (p < 0.05). CONCLUSION Compared with HIIT alone, HIIT with BFR can better improve the body-fat level and glucose metabolism. HIIT with BFR in the interval phase better reduces the abdominal visceral-fat level than in the exercise phase, which may be due to the increase in lipolytic hormone level caused by the higher physiological load.
Collapse
Affiliation(s)
- Shuoqi Li
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
| | - Rong Guo
- School of Foreign Languages, Ludong University, Yantai 264025, China
| | - Tao Yu
- Department of Physical Education, Shandong Weihai Sports Training Center, Weihai 264400, China
| | - Shiming Li
- Department of Physical Education, Ocean University of China, Qingdao 266100, China
| | - Tenghai Han
- Department of Physical Education, Weifang Medical University, Weifang 261053, China
| | - Wenbing Yu
- Department of Physical Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
7
|
Pfisterer J, Rausch C, Wohlfarth D, Bachert P, Jekauc D, Wunsch K. Effectiveness of Physical-Activity-Based Interventions Targeting Overweight and Obesity among University Students—A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159427. [PMID: 35954789 PMCID: PMC9368556 DOI: 10.3390/ijerph19159427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023]
Abstract
Overweight and obesity, including their prevalence and consequences, reflect a leading public health problem. Studies have already shown that physical activity leads to a reduction in body weight in children and adults. However, the university setting has rarely been investigated. The aim of this review is, therefore, to examine and summarize the effectiveness of physical-activity-based interventions to reduce obesity and overweight in university students. Three databases (PubMed, Scopus, and Web of Science) were searched for relevant studies published in English between January 2010 and February 2022. Quantitative studies conducting a physical-activity-based intervention with overweight or obese university students and reporting changes in BMI were included. Data were described in a narrative synthesis. Out of 16 included studies, 11 reported a significant reduction in BMI. However, all studies except one were able to demonstrate some BMI improvements, whereas all studies reported significant changes in at least one health-related indicator. Aerobic exercises were able to demonstrate the greatest reductions in BMI. This review is the first systematic presentation on the effectiveness of physical-activity-based interventions in overweight and obese university students. Future work should reconsider BMI as the primary outcome if appropriate within the respective study design (i.e., to measure long-term effects). More interventions are needed to improve strategies.
Collapse
|