1
|
Dumbuya S, Chabinga R, Ferede MA, Saber M. Climate change impacts on maternal health and pregnancy outcomes in Africa. JOURNAL OF WATER AND HEALTH 2024; 22:2113-2131. [PMID: 39611672 DOI: 10.2166/wh.2024.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/08/2024] [Indexed: 11/30/2024]
Abstract
The review examines how climate change adversely affects maternal health and pregnancy outcomes in Africa, a region particularly vulnerable to climate-related disasters. It highlights the increased incidence of tropical and waterborne illnesses due to climate change, disproportionately impacting expectant mothers. The study thoroughly evaluates the effects of extreme weather events like heatwaves and floods on maternal health, both directly and indirectly. It underscores significant gaps in policy and research within African health sectors regarding these issues. Key findings reveal that maternal death rates remain alarmingly high, with risks like preterm birth, stillbirth, and maternal hypertension exacerbated by climate change. The review calls for urgent action, including enhanced research, increased funding for climate adaptation, and the integration of maternal health into broader climate resilience strategies. Additionally, it emphasizes the need for greater awareness and international collaboration to strengthen health systems in Africa, particularly addressing the vulnerabilities of pregnant women. This work aims to enhance understanding among policymakers and researchers about the critical health impacts of climate change on pregnant women in Africa.
Collapse
Affiliation(s)
- Salifu Dumbuya
- Pan African University Institute for Water and Energy Sciences (Incl. Climate Change), Tlemcen University, B.P. 119 | Pôle Chetouane, Tlemcen 13000, Algeria
| | - Rhodah Chabinga
- Pan African University Institute for Water and Energy Sciences (Incl. Climate Change), Tlemcen University, B.P. 119 | Pôle Chetouane, Tlemcen 13000, Algeria
| | - Manaye Asefa Ferede
- Pan African University Institute for Water and Energy Sciences (Incl. Climate Change), Tlemcen University, B.P. 119 | Pôle Chetouane, Tlemcen 13000, Algeria
| | - Mohamed Saber
- Water Resources Research Center, Disaster Prevention Research Institute (DPRI), Kyoto University, Goka-sho, Uji City, Kyoto 611-0011, Japan E-mail:
| |
Collapse
|
2
|
Laux M, Ciapina LP, de Carvalho FM, Gerber AL, Guimarães APC, Apolinário M, Paes JES, Jonck CR, de Vasconcelos ATR. Living in mangroves: a syntrophic scenario unveiling a resourceful microbiome. BMC Microbiol 2024; 24:228. [PMID: 38943070 PMCID: PMC11212195 DOI: 10.1186/s12866-024-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Mangroves are complex and dynamic coastal ecosystems under frequent fluctuations in physicochemical conditions related to the tidal regime. The frequent variation in organic matter concentration, nutrients, and oxygen availability, among other factors, drives the microbial community composition, favoring syntrophic populations harboring a rich and diverse, stress-driven metabolism. Mangroves are known for their carbon sequestration capability, and their complex and integrated metabolic activity is essential to global biogeochemical cycling. Here, we present a metabolic reconstruction based on the genomic functional capability and flux profile between sympatric MAGs co-assembled from a tropical restored mangrove. RESULTS Eleven MAGs were assigned to six Bacteria phyla, all distantly related to the available reference genomes. The metabolic reconstruction showed several potential coupling points and shortcuts between complementary routes and predicted syntrophic interactions. Two metabolic scenarios were drawn: a heterotrophic scenario with plenty of carbon sources and an autotrophic scenario with limited carbon sources or under inhibitory conditions. The sulfur cycle was dominant over methane and the major pathways identified were acetate oxidation coupled to sulfate reduction, heterotrophic acetogenesis coupled to carbohydrate catabolism, ethanol production and carbon fixation. Interestingly, several gene sets and metabolic routes similar to those described for wastewater and organic effluent treatment processes were identified. CONCLUSION The mangrove microbial community metabolic reconstruction reflected the flexibility required to survive in fluctuating environments as the microhabitats created by the tidal regime in mangrove sediments. The metabolic components related to wastewater and organic effluent treatment processes identified strongly suggest that mangrove microbial communities could represent a resourceful microbial model for biotechnological applications that occur naturally in the environment.
Collapse
Affiliation(s)
- Marcele Laux
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Luciane Prioli Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil.
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Ana Paula C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Moacir Apolinário
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Jorge Eduardo Santos Paes
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Célio Roberto Jonck
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brasil
| | - Ana Tereza R de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| |
Collapse
|
3
|
Zhou N, Xiao Z, Chen D. Formation/characterization of humin-mediated anaerobic granular sludge and enhanced methanogenic performance. BIORESOURCE TECHNOLOGY 2024; 399:130603. [PMID: 38499204 DOI: 10.1016/j.biortech.2024.130603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
This study presents a novel method for accelerating the granulation of methanogenic anaerobic granular sludge (AnGS) in an upflow anaerobic sludge blanket (UASB) reactor using solid-phase humin (HM). The results demonstrated that HM-mediated AnGS (HM-AnGS) formed rapidly within 50 days. The increase in particle size, settling velocity and mechanical strength was attributed to the rapid granulation of the HM-AnGS. The maximum methane yield of the HM-AnGS was 5-fold higher than that of the control group. This is consistent with the findings, which showed that HM-AnGS had 3.2-3.4 times more methyl-coenzyme M reductase (Mcr) activity and 2.4-2.9 times more adenosine triphosphate (ATP) than control groups. Molecular analyses indicate that HM most likely accelerated interspecies electron transfer (IET) in HM-AnGS (e.g., from Enterococcus to Methanosaeta). Furthermore, the HM-AnGS was effective in recovering energy from actual slaughterhouse wastewater.
Collapse
Affiliation(s)
- Ningli Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China
| | - Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
4
|
Olivier A, Desgagnés A, Mercier E, Iliuta MC. New Insights on Catalytic Valorization of Carbon Dioxide by Conventional and Intensified Processes. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Antoine Olivier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Alex Desgagnés
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Etienne Mercier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Maria C. Iliuta
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| |
Collapse
|
5
|
Jiang H, Chen D, Zheng D, Xiao Z. Anaerobic mineralization of toluene by enriched soil-free consortia with solid-phase humin as a terminal electron acceptor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120794. [PMID: 36460188 DOI: 10.1016/j.envpol.2022.120794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The anaerobic biodegradation of toluene proceeds very slowly owing to limited electron acceptors in contaminated aquifer. The liquid reagents traditionally used to enhance this process readily migrate away from the contaminated site, and continuous addition would cause secondary pollution. In our previous study, the reduced solid-phase humic substances (humin), which are redox active, were found to act as electron donors to promote the microbial reactions. Here, we provide new evidence that humin can promote the anaerobic biodegradation of toluene as a terminal electron acceptor. When inoculating nitrate-reducing (NR) and iron-reducing (IR) consortia with toluene degradation activities, the average toluene degradation rates reached 21.20 ± 1.18 μmol/(L·d) and 15.43 ± 0.41 μmol/(L·d) in the presence of a sediment humin (HMcj), and 94.69% ± 4.26% and 93.20% ± 3.73% of the electrons released from toluene oxidation to CO2 could be recovered by the reduction of HMcj, respectively. Spectroscopy analyses revealed that quinone moieties and nitrogen-containing moieties may be the electron-accepting groups of HMcj. Based on 16S rRNA sequencing, Cellulomonas spp. were the possible functional bacteria in the culture with NR consortium as the inoculum, while Azospira spp., Cellulomonas spp. and Bacillus spp. were the possible functional bacteria in the culture with IR consortium as the inoculum. Further Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses indicated that toluene oxidation and extracellular electron transfer functions were more abundant in HMcj amended cultures, suggesting a possible enhancement mechanism by HMcj. Additionally, experiments using natural groundwater illustrated that toluene degradation was highly dependent on its concentration, HMcj dosage, pH, and salinity. The study of a column filled with HMcj-coated quartz sand demonstrated a desirable level of toluene degradation in a continuous-flow mode without the presence of other electron acceptors. This study provided an effective and green approach for the remediation of the toluene-contaminated groundwater.
Collapse
Affiliation(s)
- Hongxia Jiang
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dan Zheng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|