1
|
Lucarelli V, Amodeo D, de Palma I, Nante N, Cevenini G, Messina G. The potential role of violet-blue light to preventing hospital acquired infections: a systematic review. Front Public Health 2024; 12:1474295. [PMID: 39512717 PMCID: PMC11540779 DOI: 10.3389/fpubh.2024.1474295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Healthcare-associated infections (HAIs) are a major challenge in modern healthcare, leading to increased mortality, financial burden and negative societal impact. The World Health Organization (WHO) and others have highlighted the alarming rise in HAIs, exacerbated by antimicrobial resistance (AMR), which further complicates treatment. The efficacy of violet-blue light (VBL) technology (approximately 405–420 nm) in inactivating various pathogens and its safety for human exposure have been extensively studied. This study analyses the scientific literature on the use of VBL as a disinfection method in health care settings, with cost and safety implications. It discusses VBL in comparison to other disinfection methods, the implications of its use, and its potential in reducing HAIs due to its ability to be used in occupied environments. While UV technology is more effective at bacterial inactivation, the continuous application of VBL compensates for this difference. UV and VBL technologies have a positive environmental impact, eliminating the need for consumables and reducing waste. Safety concerns are very limited for VBL compared to UV when properly used. The literature highlights that implementing VBL can be a significant step in continuous environmental disinfection in both healthcare and domestic settings. VBL is safe for occupants and offers a feasible, green method for combating environmental contamination and potentially reducing HAIs.
Collapse
Affiliation(s)
- Valentina Lucarelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Davide Amodeo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Isa de Palma
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Nicola Nante
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gabriele Cevenini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Gabriele Messina
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Kudryashova O, Sokolov S, Vorozhtsov A. Mathematical Model of Propagation of an Aerosol Created by an Impulse Method in Space. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5701. [PMID: 37629992 PMCID: PMC10456400 DOI: 10.3390/ma16165701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
When developing neutralization systems for harmful agents, it is necessary to understand the mechanisms of the formation and evolution of an aerosol cloud in a closed or open space. Effective decontamination with aerosol clouds is provided by a rather high particle concentration and dispersion in an open space or on contaminated surfaces. This paper considers neutralization systems based on pulsed powder aerosol generators. It is shown that an aerosol cloud consisting of micron- and submicron-sized particles appears for several seconds after spraying. A further evolution of the aerosol cloud in a room is associated with the gravitational settling, diffusion, and coagulation of particles and their settling on the walls and ceiling. In the case of an open space or a ventilation system in a room, the evolution of the aerosol cloud is affected by the airflow. The main purpose of this paper is to determine the most important parameters and critical conditions of pulsed aerosol generation. A mathematical model is, thus, proposed for pulsed aerosol generation, and its parametric study is conducted in the most typical conditions. The purpose performance predicted by the model is the mass concentration of aerosol particles in the air and on surfaces, depending on the time of particle spraying and dispersion.
Collapse
Affiliation(s)
- Olga Kudryashova
- Institute for Problems of Chemical and Energy Technologies, Siberian Branch of the Russian Academy of Sciences, St. Socialist, 1, 659322 Biysk, Russia;
| | - Sergei Sokolov
- Laboratory of Metallurgy Nanotechnologies, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia
| | - Alexander Vorozhtsov
- Laboratory for High Energy and Special Materials, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia;
| |
Collapse
|
3
|
Kudryashova O, Sokolov S, Zhukov I, Vorozhtsov A. Mathematical Model of the Pulse Generation of Decontaminating Aerosols. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8215. [PMID: 36431701 PMCID: PMC9697556 DOI: 10.3390/ma15228215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
A mathematical model of the pulse generation of decontaminating aerosols utilizing the energy of high-energy materials (HEM) is proposed with account for the physical and chemical properties of the atomized substance, HEM characteristics, and gas generator parameters. Such a model is needed to counter the environmental hazards, process emissions, and terrorist attacks with hazardous and dangerous aerosols. Another aspect of the problem is the danger of biological aerosols carrying viral or microbial particles that are spread naturally or induced using biological weapons. In many cases, the mission is not only to neutralize aerosol particles in indoor air and on surfaces but also to do it quickly. In this regard, an attractive option is the pulse method for generating special aerosols aimed at quickly, within a few seconds, creating a cloud of particles that will interact with hazardous aerosol particles and decontaminate them. HEM energy is proposed to be used for the pulse generation of such aerosols. It is important not only to atomize the decontaminating aerosol quickly and evenly in space but also to preserve the useful physical and chemical properties of the particles. To test the regimes and methods of pulse generation, an adequate mathematical model of the process is required, which is proposed in this manuscript.
Collapse
Affiliation(s)
- Olga Kudryashova
- Laboratory for High Energy and Special Materials, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia
- Institute for Problems of Chemical and Energy Technologies Siberian Branch of the Russian Academy of Sciences, St. Socialist, 1, 659322 Biysk, Russia
| | - Sergei Sokolov
- Laboratory for High Energy and Special Materials, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia
- Laboratory of Metallurgy Nanotechnologies, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia
| | - Ilya Zhukov
- Laboratory for High Energy and Special Materials, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia
- Laboratory of Metallurgy Nanotechnologies, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia
| | - Alexander Vorozhtsov
- Laboratory for High Energy and Special Materials, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia
- Laboratory of Metallurgy Nanotechnologies, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia
| |
Collapse
|
4
|
Purwar T, Dey S, Al-Kayyali OZA, Zalar AF, Doosttalab A, Castillo L, Castano VM. Electrostatic Spray Disinfection Using Nano-Engineered Solution on Frequently Touched Surfaces in Indoor and Outdoor Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7241. [PMID: 35742489 PMCID: PMC9223583 DOI: 10.3390/ijerph19127241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023]
Abstract
The COVID-19 pandemic has resulted in high demand for disinfection technologies. However, the corresponding spray technologies are still not completely optimized for disinfection purposes. There are important problems, like the irregular coverage and dripping of disinfectant solutions on hard and vertical surfaces. In this study, we highlight two major points. Firstly, we discuss the effectiveness of the electrostatic spray deposition (ESD) of nanoparticle-based disinfectant solutions for systematic and long-lasting disinfection. Secondly, we show that, based on the type of material of the substrate, the effectiveness of ESD varies. Accordingly, 12 frequently touched surface materials were sprayed using a range of electrostatic spray system parameters, including ion generator voltage, nozzle spray size and distance of spray. It was observed that for most cases, the surfaces become completely covered with the nanoparticles within 10 s. Acrylic, Teflon, PVC, and polypropylene surfaces show a distinct effect of ESD and non-ESD sprays. The nanoparticles form a uniform layer with better surface coverage in case of electrostatic deposition. Quantitative variations and correlations show that 1.5 feet of working distance, an 80 μm spray nozzle diameter and an ion generator voltage of 3-7 kV ensures a DEF (differential electric field) that corresponds to an optimized charge-to-mass ratio, ensuring efficient coverage of nanoparticles.
Collapse
Affiliation(s)
- Tanya Purwar
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.D.); (O.Z.A.A.-K.); (A.F.Z.); (A.D.); (L.C.)
| | - Shamya Dey
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.D.); (O.Z.A.A.-K.); (A.F.Z.); (A.D.); (L.C.)
| | - Osama Zaid Ali Al-Kayyali
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.D.); (O.Z.A.A.-K.); (A.F.Z.); (A.D.); (L.C.)
| | - Aaron Floyd Zalar
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.D.); (O.Z.A.A.-K.); (A.F.Z.); (A.D.); (L.C.)
| | - Ali Doosttalab
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.D.); (O.Z.A.A.-K.); (A.F.Z.); (A.D.); (L.C.)
| | - Luciano Castillo
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; (S.D.); (O.Z.A.A.-K.); (A.F.Z.); (A.D.); (L.C.)
| | - Victor M. Castano
- Centro de Física Aplicada Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico;
| |
Collapse
|