1
|
Ren M, Bai Y, Wang Y, Su J, Hou C, Zhang Y. Simultaneous removal of nitrate, manganese, zinc, and bisphenol a by manganese redox cycling system: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 407:131106. [PMID: 39004108 DOI: 10.1016/j.biortech.2024.131106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The manganese(Mn) redox cycling system in this work was created by combining Mn(IV)-reducing bacteria MFG10 with Mn(II)-oxidizing bacteria HY129. The biomanganese oxides (BMO) generated by strain HY129 were transformed by strain MFG10 to Mn(II), finishing the Mn redox cycling, in which nitrate (NO3--N) was converted to nitrite, which was further reduced to nitrogen gas. The system could achieve 85.7 % and 98.8 % elimination efficiencies of Mn(ⅠⅠ) and NO3--N, respectively, at Mn(ⅠⅠ) = 20.0 mg/L, C/N = 2.0, pH = 6.5, and NO3--N = 16.0 mg/L. The removal of bisphenol A (BPA) and zinc (Zn(II)) at 36 h reached 91.7 % and 89.7 % under the optimal condition, respectively. Furthermore, the Mn redox cycling system can reinforce the metabolic activity and electron transfer activity of microorganisms. The findings showed that the adsorption by bioprecipitation throughout the Mn cycling was responsible for the elimination of Zn(II) and BPA.
Collapse
Affiliation(s)
- Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ying Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Ajmal M, Shao Y, Huo W, Lu W. Deep-dewatering of sewage sludge using double dielectric barrier discharge (DDBD) plasma technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168887. [PMID: 38016553 DOI: 10.1016/j.scitotenv.2023.168887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Deep dewatering of sewage sludge is essential for optimizing disposal and resource recovery. This study explores the potential of Double Dielectric Barrier Discharge (DDBD) plasma for enhancing waste activated sludge (WAS) dewatering. Key operational parameters (applied voltage, treatment duration, and air feeding rate) were systematically investigated using a two-step approach: Single Factor-at-a-Time (SFAT) and central composite design (CCD) within the response surface methodology (RSM) framework. The aim was to identify influential factors and their optimal settings for maximizing dewatering efficiency while minimizing energy usage. Higher applied voltages (30 kV) and longer treatment durations (40 min) notably improved % moisture reduction (%MR) (92.92 % and 94.35 %, respectively). ANOVA analysis emphasized the equal and substantial impact of applied voltage and treatment duration on %MR and energy efficiency (EE), whereas the air feeding rate exhibited no significant effect. However, it's worth noting that %MR and EE did not display a strictly linear relationship, suggesting complex interactions. Furthermore, two soft sensing models were developed: a quadratic model for %MR and a linear model for energy efficiency (EE). Results showed minimal reductions in TOC content, maintaining values between 13.68 % and 14.28 % compared to untreated sludge 14.37 %. The study also revealed that ROS generated by DDBD plasma played a key role in sludge disintegration, as observed through SEM and FTIR, enhancing dewatering efficiency by the destruction of sludge flocs and the transformation of organic substances. In conclusion, DDBD plasma technology offers a sustainable solution for effective sludge dewatering in WWTPs, preserving organic content.
Collapse
Affiliation(s)
- Muhammad Ajmal
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuchao Shao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Weizhong Huo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Hou J, Hong C, Ling W, Hu J, Feng W, Xing Y, Wang Y, Zhao C, Feng L. Research progress in improving sludge dewaterability: sludge characteristics, chemical conditioning and influencing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119863. [PMID: 38141343 DOI: 10.1016/j.jenvman.2023.119863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Sludge from wastewater treatment processes with high water content and large volume has become an inevitable issue in environmental management. Due to the challenging dewatering properties of sludge, current mechanical dewatering methods are no longer sufficient to meet the escalating water content standards of sludge. This paper summarizes the characteristics of various sludge and raises reasons for the their dewaterability differences. Affected by extracellular polymeric substances, biological sludge is hydrophilic and negatively charged, which limits the dewatering degree. The rheological properties, flocs, ionic composition, and solid phase concentration of the sludge also influence the dewatering to some extent. For these factors, the chemical conditioning measures with simple operation and excellent effect improve its dewaterability, which mainly include flocculation/coagulation, acid/alkali treatment, advanced oxidation, surfactant treatment and combined treatment. There is a growing necessity to explore the development of new chemical conditioning agents, even though traditional agents continue to remain widely used. However, the development of these new agents should prioritize finding a balance between various factors such as efficiency, effectiveness, ease of operation, environmental safety, and cost-effectiveness. Electrochemical dewatering enhances solid-liquid separation, and its coupling with chemical conditioning is also an excellent means to further reduce water content. In addition, the improvement of press filter is an effective way, which is influenced by pressure, processing time, sludge cake thickness and pore structure, filter media etc. In general, it is essential to develop new conditioning agents and enhance mechanical filtration press technology based on a thorough understanding of various sludge properties. Concurrently, an in-depth study of the principles of mechanical pressure filtration will contribute to establishing a theoretical foundation for effective deep sludge dewatering and propel further advancements in this field.
Collapse
Affiliation(s)
- Jiachen Hou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chen Hong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Wei Ling
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiashuo Hu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Weibo Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yijie Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengwang Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lihui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
4
|
Mukherjee J, Lodh BK, Sharma R, Mahata N, Shah MP, Mandal S, Ghanta S, Bhunia B. Advanced oxidation process for the treatment of industrial wastewater: A review on strategies, mechanisms, bottlenecks and prospects. CHEMOSPHERE 2023; 345:140473. [PMID: 37866496 DOI: 10.1016/j.chemosphere.2023.140473] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Due to its complex and, often, highly contaminated nature, treating industrial wastewater poses a significant environmental problem. Many of the persistent pollutants found in industrial effluents cannot be effectively removed by conventional treatment procedures. Advanced Oxidation Processes (AOPs) have emerged as a promising solution, offering versatile and effective means of pollutant removal and mineralization. This comprehensive review explores the application of various AOP strategies in industrial wastewater treatment, focusing on their mechanisms and effectiveness. Ozonation (O3): Ozonation, leveraging ozone (O3), represents a well-established AOP for industrial waste water treatment. Ozone's formidable oxidative potential enables the breakdown of a broad spectrum of organic and inorganic contaminants. This paper provides an in-depth examination of ozone reactions, practical applications, and considerations involved in implementing ozonation. UV/Hydrogen Peroxide (UV/H2O2): The combination of ultraviolet (UV) light and hydrogen peroxide (H2O2) has gained prominence as an AOP due to its ability to generate hydroxyl radicals (ȮH), highly efficient in pollutant degradation. The review explores factors influencing the efficiency of UV/H2O2 processes, including H2O2 dosage and UV radiation intensity. Fenton and Photo-Fenton Processes: Fenton's reagent and Photo-Fenton processes employ iron ions and hydrogen peroxide to generate hydroxyl radicals for pollutant oxidation. The paper delves into the mechanisms, catalyst selection, and the role of photoactivation in enhancing degradation rates within the context of industrial wastewater treatment. Electrochemical Advanced Oxidation Processes (EAOPs): EAOPs encompass a range of techniques, such as electro-Fenton and anodic oxidation, which employ electrode reactions to produce ȮH radicals. This review explores the electrochemical principles, electrode materials, and operational parameters critical for optimizing EAOPs in industrial wastewater treatment. TiO2 Photocatalysis (UV/TiO2): Titanium dioxide (TiO2) photocatalysis, driven by UV light, is examined for its potential in industrial wastewater treatment. The review investigates TiO2 catalyst properties, reaction mechanisms, and the influence of parameters like catalyst loading and UV intensity on pollutant removal. Sonolysis (Ultrasonic Irradiation): High-frequency ultrasound-induced sonolysis represents a unique AOP, generating ȮH radicals during the formation and collapse of cavitation bubbles. This paper delves into the physics of cavitation, sonolytic reactions, and optimization strategies for industrial wastewater treatment. This review offers a critical assessment of the applicability, advantages, and limitations of these AOP strategies in addressing the diverse challenges posed by industrial wastewater. It emphasizes the importance of selecting AOPs tailored to the specific characteristics of industrial effluents and outlines potential directions for future research and practical implementation. The integrated use of these AOPs, when appropriately adapted, holds the potential to achieve sustainable and efficient treatment of industrial wastewater, contributing significantly to environmental preservation and regulatory compliance.
Collapse
Affiliation(s)
- Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Affiliated to Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana, 501401, India.
| | - Bibhab Kumar Lodh
- Department of Chemical Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Ramesh Sharma
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| | - Maulin P Shah
- Industrial Wastewater Research Lab, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India.
| | - Subhasis Mandal
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, 673 601, India.
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, 799046, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| |
Collapse
|
5
|
Xia T, Zhang X, Chen D, Gao Z, Ji Y, Xia J, Wang L. Effects of ceramsite derived from sewage sludge combined with the O 3-FeCl 3/PAM process on the dewatering of waste-activated sludge and investigation of dewatering mechanisms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:367-380. [PMID: 37522439 PMCID: wst_2023_224 DOI: 10.2166/wst.2023.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The high water content of waste-activated sludge restricts the subsequent disposal of sludge. The dehydration properties of O3, ferric chloride (FeCl3)/polyacrylamide, and sludge ceramsite sand (SCS) were studied. Simultaneously, the effect of combining the three was investigated to support the deep dehydration of waste-activated sludge. Experimental results showed that with13.42 mg/(g dry solids (DS)) of O3, 109.89 mg/(g DS) of FeCl3, and 100 mesh dosage of 70% DS of sludge ceramsite on weight, the highest sludge net yield was 7.13 kg/(m2·h) and the minimum specific resistance to filtration of sludge cake was 1.02 × 1012 (m/kg). Compared with the compressibility of the raw sludge, the compressibility of the sludge cake decreased by 37.48%. Moreover, the YN (net yield) increased by 73.55%. The results demonstrate that the structure of cracking, flocculation, and hydrophobic framework is the mechanism of sludge dewatering in this combined process. This combined treatment process provides a new perspective for the realization of deep dewatering of sludge and is anticipated to be a successful sludge dehydration method.
Collapse
Affiliation(s)
- Ting Xia
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, China E-mail:
| | - Xu Zhang
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, China
| | - Dongjie Chen
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, China
| | - Zaizhuang Gao
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, China
| | - Yuxiao Ji
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, China
| | - Jianjun Xia
- College of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, China
| | - Lei Wang
- Anhui Academy of Environmental Science Research, Hefei 230071, China
| |
Collapse
|
6
|
Li J, Ru S, Yuan C, Wu B, Ji Y, Dai Z, Lei Z, Zhang Z, Yuan T, Li F, Liu M. An all-organic conditioning method to achieve deep dewatering of waste activated sludge and the underlying mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116923. [PMID: 36470188 DOI: 10.1016/j.jenvman.2022.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Among the common treatment/disposal routes of excessive activated sludge from municipal wastewater treatment plant, dewatering process functions as an essential pre-/post-treatment for volume minimization and transportation facilitation. Since inorganic coagulants have long been criticized for their high dosage and solid residue in sludge cake, there is an urgent need for investigations regarding the potential of applying organic chemicals as the conditioner. In this study, combined use of poly dimethyldiallylammonium chloride (PDMD) and tannic acid (TA) were investigated as an all-organic co-conditioning method for sewage sludge pre-treatment. Results showed that this all-organic conditioning strategy can effectively improve the dewaterability of sewage sludge. The capillary suction time reduced from 128.8 s to 23.1 s, and the filtration resistance reduced from 1.24 × 1012 cm/g to 7.38 × 1010 cm/g. The moisture content of dewatered sludge cake decreased to as low as 55.83%, showing the highest dewatering efficiency reported so far. In addition, the combination of PDMD and TA maximized the treating efficiency with very limited consumption of conditioners (added up to 4% of total solid). Based on the physic-chemical and rheological property investigation, it was proposed that the intermediate molecular weight polymer-based flocculation process and the TA agent-based protein precipitation process, could remarkably strengthen the compactness and structure robustness of sludge. In all, this PDMD-TA-based conditioning method suggested practical significance in consideration of its cost-effectiveness and disposal convenience of sludge cake.
Collapse
Affiliation(s)
- Jie Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| | - Shaoqin Ru
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Chenwei Yuan
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Bo Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Yiwen Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Zijun Dai
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Zhongfang Lei
- Faculty of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Tian Yuan
- Faculty of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Fengting Li
- College of Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse Study, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Misha Liu
- National Engineering Research Center of Dredging Technology and Equipment, 10 Gucui Road, Shanghai, 201314, China; Faculty of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|