1
|
Elfiky M, Abdo M, Darwesh M, Salahuddin N. Ultra-sensitive detection of 4-chloro-2-methylphenoxyacetic acid herbicide using a porous Co-1,4-benzenedicarboxylate /montmorillonite nanocomposite sensor. Mikrochim Acta 2024; 192:30. [PMID: 39718606 PMCID: PMC11668838 DOI: 10.1007/s00604-024-06765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/10/2024] [Indexed: 12/25/2024]
Abstract
The detection of 4-chloro-2-methylphenoxyacetic acid (CMPA) herbicide is crucial due to the potential health risks linked to exposure through drinking water, air, and food, which may adversely affect liver and kidney functions. To address this environmental concern and promote sustainable agriculture, a sensitive carbon paste sensor incorporating a composite material was developed. The composite sensor is based on porous cobalt-1,4-benzenedicarboxylate metal-organic framework and exfoliated montmorillonite nanolayers (Co-OF/MMt). This sensor enables the voltammetric detection of CMPA in real soil samples using linear sweep adsorptive anodic stripping voltammetry (LS-AdASV), facilitating early and accurate monitoring of herbicide levels. The Co-OF/MMt nanocomposite was synthesized via a hydrothermal method involving the precipitation of Co-OF in the presence of MMt. Comprehensive characterization of the synthesized materials was carried out using Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), SEM-Energy dispersive X-ray spectroscopy (SEM-EDX) and surface area analysis (BET). The resulting modified carbon paste sensor, utilizing 1.0% Co-OF/MMt nanocomposite, exhibited superior electrochemical properties compared with the bare carbon paste sensor, possessing an electroactive surface area of 1004.1 m2/g with a minimal resistivity (Rct) of 330 Ω. Under standard operating conditions, the developed sensor demonstrated detection limits of 0.03 nM and 0.1 nM across two broad linear ranges (0.03 to 0.10 nM - 0.10 to 1.0 nM) and (0.1 to 1.0 nM - 1.0 to 7.0 nM), respectively, for CMPA determination in both bulk and soil samples. These results pointed out the promising electrochemical modified sensor for the direct and simple detection of certain herbicides in environmental matrices, without the need for sample pretreatment steps. This capability supports sustainable development goals by enhancing effective environmental monitoring.
Collapse
Affiliation(s)
- Mona Elfiky
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Moa'mena Abdo
- Basic Sciences Department, the Higher Institute of Engineering, Kafr El-Sheikh, Egypt
| | - Mona Darwesh
- Physics Mathematical Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt
| | - Nehal Salahuddin
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
2
|
Wang H, Xu Y, Bai Q, Ma S, Bo C, Ou J. Detection and adsorption of 2-methyl-4-chlorophenoxyacetic acid in vegetables via dual-functional molecularly imprinted polymer doping with carbon dot. Talanta 2024; 273:125874. [PMID: 38458084 DOI: 10.1016/j.talanta.2024.125874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
2-Methyl-4-chlorophenoxyacetic acid (MCPA) is one of the most widely used herbicides, so adsorption and detection of MCPA in the environment is critical. Blue fluorescent carbon dot (CD) was synthesized from citric acid and urea, which could be quenched by MCPA. Herein, bifunctional molecularly imprinted polymer (CD@MIP) was prepared on monodisperse poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres, with 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate as the cross-linking agent, and doped with CD. The enrichment ability of CD@MIP for MCPA and fluorescence detection performance were determined. The maximum adsorption amount of MCPA was 93.9 mg g-1 as determined by isothermal adsorption experiments and was in accordance with the Langmuir adsorption model. The results of the kinetic experiments showed that the adsorption equilibrium reached within 30 min, which possessed a relatively fast adsorption rate and was in accordance with the pseudo-second-order adsorption model. Both MIP without CD and non-imprinted polymers were also fabricated and tested as references. Fluorescence experiments showed good linearity of CD@MIP in the range of 0-80 μmol. The cabbage samples were analyzed by high performance liquid chromatography with a linear range of 0.02-15 μg mL-1, recoveries of 90.5%-98% and low relative standard deviations (RSD, n = 3) of 1.5%-5.9%. CD@MIP with excellent performance provides a feasible practical application in the detection and enrichment of MCPA.
Collapse
Affiliation(s)
- Haiping Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Yi Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Qingyan Bai
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| | - Junjie Ou
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
3
|
Giancarla A, Zanoni C, Merli D, Magnaghi LR, Biesuz R. A new cysteamine-copper chemically modified screen-printed gold electrode for glyphosate determination. Talanta 2024; 269:125436. [PMID: 38008026 DOI: 10.1016/j.talanta.2023.125436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
A chemically modified screen-printed gold electrode has been prepared by covering the electrode surface with a cysteamine-copper self-assembled monolayer (SAM). The sensor was effective for the voltammetric sensing of glyphosate. The method exploits the interaction of glyphosate with copper ions complexed by cysteamine, which results in a decrease in the intensity of copper redox current. Cyclic voltammetry was employed as a measuring technique. When dealing with voltammograms with numerous peaks changing in shape and size, it is difficult to define which signal is the most significant for the analyte determination; in these cases, a helpful approach is chemometrics. In this work, PLS (Partial Least Square regression) has been applied to build models to correlate the signal with the glyphosate concentration in standard aqueous solutions and tap water samples (matrix-matched calibration). The method's figures of merits were evaluated, obtaining a limit of quantification of about 5 μM. The reliability of the proposed sensor was verified by analyzing tap water spiked with glyphosate; recoveries higher than 90 % were achieved.
Collapse
Affiliation(s)
- Alberti Giancarla
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy.
| | - Camilla Zanoni
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Daniele Merli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Lisa Rita Magnaghi
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy; Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121, Firenze, Italy
| | - Raffaela Biesuz
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy; Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121, Firenze, Italy
| |
Collapse
|
4
|
Merli D, Lio E, Protti S, Coccia R, Profumo A, Alberti G. Molecularly Imprinted Polymer-based voltammetric sensor for amino acids/indazole derivatives synthetic cannabinoids detection. Anal Chim Acta 2024; 1288:342151. [PMID: 38220285 DOI: 10.1016/j.aca.2023.342151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Synthetic cannabinoids (SCs) are a broad class of illicit drugs that are classified according to the chemical structure of the aromatic core that they present (i.e., indole, imidazole, pyrrole) and their detection is still a challenge, despite their widespread diffusion. The identification of a specific class of SC in complex matrices, such as real samples with a rapid, economic analytical device useable directly in the field, is highly desirable, as it can provide immediate and reliable information that eventually addresses more targeted analyses. RESULTS The present paper proposes a Molecularly Imprinted Polymer (MIP)-based voltammetric sensor for the rapid and selective detection of indazole-type SCs. In this context, a polyacrylate-based MIP was used to functionalize a Pt electrode. The MIP composition was optimized through a Design of Experiments approach, and for the sake of safety, a non-psychotropic compound structurally related to the selected SCs was employed as the template in the MIP formulation. A complete characterization of the electrochemical behavior of the selected SCs was performed, and differential pulse voltammetry (DPV) in acetonitrile/lithium perchlorate 0.1 M was the technique applied for their quantification. LOD around 0.01 mM and linearity up to 0.8 mM were found. Comparison with the non-imprinted (NIP) modified and bare electrodes showed better selectivity and reproducibility of the MIP-based sensor. Recovery tests (in the 70-115 % range) were performed on simulated pills and smoking mixtures to test the reliability of the proposed method. SIGNIFICANCE The method proposed allows the identification and quantification of indazole-based SCs as a class in complex matrices. Due to the selectivity of the obtained device, no clean-up of the sample before analyses is needed. For the same reason, the interference of cutting substances and natural cannabinoids was negligible.
Collapse
Affiliation(s)
- Daniele Merli
- Dipartimento di Chimica, Università di Pavia, via Taramelli 12, 27100, Pavia, Italy
| | - Erika Lio
- Dipartimento di Chimica, Università di Pavia, via Taramelli 12, 27100, Pavia, Italy
| | - Stefano Protti
- Dipartimento di Chimica, Università di Pavia, via Taramelli 12, 27100, Pavia, Italy
| | - Roberta Coccia
- Dipartimento di Chimica, Università di Pavia, via Taramelli 12, 27100, Pavia, Italy; Dipartimento di Scienze Biomolecolari, Università di Urbino "Carlo Bo", via Maggetti 26, 61029, Urbino, PU, Italy
| | - Antonella Profumo
- Dipartimento di Chimica, Università di Pavia, via Taramelli 12, 27100, Pavia, Italy
| | - Giancarla Alberti
- Dipartimento di Chimica, Università di Pavia, via Taramelli 12, 27100, Pavia, Italy.
| |
Collapse
|
5
|
Teng T, Huang WE, Li G, Wang X, Song Y, Tang X, Dawa D, Jiang B, Zhang D. Application of magnetic-nanoparticle functionalized whole-cell biosensor array for bioavailability and ecotoxicity estimation at urban contaminated sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165292. [PMID: 37414179 DOI: 10.1016/j.scitotenv.2023.165292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
The bioavailability and ecotoxicity of pollutants are important for urban ecological systems and human health, particularly at contaminated urban sites. Therefore, whole-cell bioreporters are used in many studies to assess the risks of priority chemicals; however, their application is restricted by low throughput for specific compounds and complicated operations for field tests. In this study, an assembly technology for manufacturing Acinetobacter-based biosensor arrays using magnetic nanoparticle functionalization was developed to solve this problem. The bioreporter cells maintained high viability, sensitivity, and specificity in sensing 28 priority chemicals, seven heavy metals, and seven inorganic compounds in a high-throughput manner, and their performance remained acceptable for at least 20 d. We also tested the performance by assessing 22 real environmental soil samples from urban areas in China, and our results showed positive correlations between the biosensor estimation and chemical analysis. Our findings prove the feasibility of the magnetic nanoparticle-functionalized biosensor array to recognize the types and toxicities of multiple contaminants for online environmental monitoring at contaminated sites.
Collapse
Affiliation(s)
- Tingting Teng
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China; Suzhou Yiqing Environmental Technology Co. Ltd., Suzhou 215163, PR China
| | - Yizhi Song
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China
| | - Xiaoyi Tang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 2YQ, UK
| | - Dunzhu Dawa
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|