1
|
Liao X, Li B, Wang L, Chen Y. Boric acid functionalized Fe 3O 4@CeO 2/Tb-MOF as a luminescent nanozyme for fluorescence detection and degradation of caffeic acid. Biosens Bioelectron 2024; 264:116637. [PMID: 39146768 DOI: 10.1016/j.bios.2024.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Caffeic acid (CA) is a natural polyphenol that can have various positive effects on human health. However, its extraction and processing can cause significant ecological issues. Therefore, it is crucial to detect and degrade CA effectively in the environment. In this study, we have developed a multifunctional magnetic luminescent nanozyme, Fe3O4@CeO2/Tb-MOF, which combines peroxidase activity to detect and degrade CA. The fluorescence of the nanozyme was significantly attenuated due to the specific nucleophilic reaction between its boronic acid moiety and the o-diphenol hydroxyl group of CA, energy competition absorption and photo-induced electron transfer (PET) effect. This nanozyme demonstrates a linear detection range from 50 nM to 500 μM and an exceptionally low detection limit of 18.9 nM, along with remarkable selectivity and stability. Moreover, the synergistic catalysis of Fe3O4 and CeO2 within Fe3O4@CeO2/Tb-MOF fosters peroxidase activity, leading to the generation of substantial free radicals catalyzed by H2O2, which ensures the efficient degradation of CA (∼95%). The superparamagnetic property of Fe3O4 further enables the efficient reuse and recycling of the nanozyme. This research provides a novel approach for the concurrent detection and remediation of environmental contaminants.
Collapse
Affiliation(s)
- Xiaochen Liao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Bai Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Li Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| | - Yang Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
2
|
Teixeira AR, Jorge N, Lucas MS, Peres JA. Winery and olive mill wastewaters treatment using nitrilotriacetic acid/UV-C/Fenton process: Batch and semi-continuous mode. ENVIRONMENTAL RESEARCH 2024; 240:117545. [PMID: 37914014 DOI: 10.1016/j.envres.2023.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
In this work, both red and white winery wastewaters (WW) and olive mill wastewater (OMW) were submitted to a treatment by Fenton-based processes (FBPs). The main aim was to evaluate the most efficient and economic process. Initial tests, resorting to a batch reactor, demonstrated that UV-C/Fenton (λ = 254 nm) was the most effective process. Operational conditions such as pH, H2O2 and Fe2+ concentrations revealed to have a superior influence within dissolved organic carbon (DOC) removal as well as regarding the reactor's energy consumption. As a means to prevent iron precipitation, the addition of nitrilotriacetic acid (NTA) was tested. With experimental conditions pH = 3.0, [H2O2] = 194 mM, [Fe2+] = 1.0 mM, [NTA] = 1.0 mM, radiation UV-C (254 nm), time = 240 min, the kinetic rate related with DOC removal showed a kredWW = 0.0128 min-1 > kOMW = 0.0124 min-1 > kwhiteWW = 0.0104 min-1 and both the WW and OMW achieved the Portuguese legal limit values for wastewater discharge. Furthermore, comparative experiments were performed in a semi-continuous reactor, being that the results put in evidence that the concentration of H2O2 added and the flow rate of reagents' addition (F) had a significant effect on the efficiency of the reactor. Under an optimum experimental procedure pH = 3.0, [H2O2] = 97 mM, [Fe2+] = 1.0 mM, [NTA] = 1.0 mM, radiation UV-C (254 nm), F = 1 mL min-1, time = 240 min, there were observed higher DOC removal kinetic rates (kOMW = 15.20 × 10-3 min-1 > kredWW = 11.64 × 10-3 min-1 > kwhiteWW = 11.57 × 10-3 min-1) and a cost ranging between 0.0402 and 0.0419 €/g.DOC. These results showed that semi-continuous reactors have the potential to be applied to large scale treatments, with low reagents consumption and reduced energy requirements.
Collapse
Affiliation(s)
- Ana R Teixeira
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Nuno Jorge
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Marco S Lucas
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Peres
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| |
Collapse
|
3
|
Rather MA, Bhuyan S, Chowdhury R, Sarma R, Roy S, Neog PR. Nanoremediation strategies to address environmental problems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163998. [PMID: 37172832 DOI: 10.1016/j.scitotenv.2023.163998] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
A rapid rise in population, extensive anthropogenic activities including agricultural practices, up-scaled industrialization, massive deforestation, etc. are the leading causes of environmental degradation. Such uncontrolled and unabated practices have affected the quality of environment (water, soil, and air) synergistically by accumulating huge quantities of organic and inorganic pollutants in it. Environmental contamination is posing a threat to the existing life on the Earth, therefore, demands the development of sustainable environmental remediation approaches. The conventional physiochemical remediation approaches are laborious, expensive, and time-consuming. In this regard, nanoremediation has emerged as an innovative, rapid, economical, sustainable, and reliable approach to remediate various environmental pollutants and minimize or attenuate the risks associated with them. Owing to their unique properties such as high surface area to volume ratio, enhanced reactivity, tunable physical parameters, versatility, etc. nanoscale objects have gained attention in environmental clean-up practices. The current review highlights the role of nanoscale objects in the remediation of environmental contaminants to minimize their impact on human, plant, and animal health; and air, water, and soil quality. The aim of the review is to provide information about the applications of nanoscale objects in dye degradation, wastewater management, heavy metal and crude oil remediation, and mitigation of gaseous pollutants including greenhouse gases.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Ratan Chowdhury
- Department of Botany, Rangapara College, Rangapara 784505, Assam, India
| | - Rahul Sarma
- Department of Energy, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Subham Roy
- Department of Botany, Rangapara College, Rangapara 784505, Assam, India
| | - Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
4
|
Jorge N, Teixeira AR, Fernandes L, Afonso S, Oliveira I, Gonçalves B, Lucas MS, Peres JA. Treatment of Winery Wastewater by Combined Almond Skin Coagulant and Sulfate Radicals: Assessment of HSO5- Activators. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032486. [PMID: 36767852 PMCID: PMC9916210 DOI: 10.3390/ijerph20032486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 05/16/2023]
Abstract
The large production of wine and almonds leads to the generation of sub-products, such as winery wastewater (WW) and almond skin. WW is characterized by its high content of recalcitrant organic matter (biodegradability index < 0.30). Therefore, the aim of this work was to (1) apply the coagulation-flocculation-decantation (CFD) process with an organic coagulant based on almond skin extract (ASE), (2) treat the organic recalcitrant matter through sulfate radical advanced oxidation processes (SR-AOPs) and (3) evaluate the efficiency of combined CFD with UV-A, UV-C and ultrasound (US) reactors. The CFD process was applied with variation in the ASE concentration vs. pH, with results showing a chemical oxygen demand (COD) removal of 61.2% (0.5 g/L ASE, pH = 3.0). After CFD, the germination index (GI) of cucumber and corn seeds was ≥80%; thus, the sludge can be recycled as fertilizer. The SR-AOP initial conditions were achieved by the application of a Box-Behnken response surface methodology, which described the relationship between three independent variables (peroxymonosulfate (PMS) concentration, cobalt (Co2+) concentration and UV-A radiation intensity). Afterwards, the SR-AOPs were optimized by varying the pH, temperature, catalyst type and reagent addition manner. With the application of CFD as a pre-treatment followed by SR-AOP under optimal conditions (pH = 6.0, [PMS] = 5.88 mM, [Co2+] = 5 mM, T = 343 K, reaction time 240 min), the COD removal increased to 85.9, 82.6 and 80.2%, respectively, for UV-A, UV-C and US reactors. All treated wastewater met the Portuguese legislation for discharge in a municipal sewage network (COD ≤ 1000 mg O2/L). As a final remark, the combination of CFD with SR-AOPs is a sustainable, safe and clean strategy for WW treatment and subproduct valorization.
Collapse
Affiliation(s)
- Nuno Jorge
- Escuela Internacional de Doctorado (EIDO), Campus da Auga, Campus Universitário de Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana R. Teixeira
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Lisete Fernandes
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Marco S. Lucas
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - José A. Peres
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|