1
|
Wang X, Liu K, Meng Y, Chen J, Zhong Z. The degradation of TYR variants derived from Chinese OCA families is mediated by the ERAD and ERLAD pathway. Gene 2025; 932:148907. [PMID: 39218412 DOI: 10.1016/j.gene.2024.148907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Oculocutaneous albinism (OCA) is a genetically heterogeneous group of autosomal recessive disorders, which presents with decreased or absent pigmentation in the hair, skin, and eyes. OCA1, as a subtype of OCA, is caused by mutations in the tyrosinase gene (TYR). In this study, we performed in vitro functional analysis of eight TYR variants (one frameshift variant: c.929dupC (p.Arg311Lysfs*7); seven missense variants: c.896G>A (p.Arg299His), c.1234C>A (p.Pro412Thr), c.1169A>G (p.His390Arg), c.937C>A (p.Pro313Thr), c.636A>T (p.Arg212Ser), c.623 T>G (p.Leu208Arg), c.1325C>A (p.Ser442Tyr)) identified in Chinese OCA families. TYR plasmids were transfected into HEK 293 T cells to explore the effects of TYR variants on their processing, protein expression, activity, and degradation. The results showed that all eight variants caused TYR to be retained in the endoplasmic reticulum (ER), processing was blocked, and TYR activity almost disappeared; the frameshift variant caused the size of the TYR protein to be reduced by about 30KD, and the protein expression of the remaining seven missense variants was reduced; the ER-associated degradation (ERAD) pathway mediates the degradation of TYR variants that occur on the Tyrosinase copper-binding domain, while the degradation of TYR variants that are not located on that domain may be mediated by a new degradation pathway--ER-to-lysosome-associated degradation (ERLAD). In summary, TYR variants affected their protein processing and activity, and may also induce ER stress and trigger degradation through the ERLAD pathway in addition to the ERAD degradation pathway, providing new insights into the potential pathogenic mechanism for OCA1 caused by TYR variants.
Collapse
Affiliation(s)
- Xinyao Wang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kangyu Liu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yunlong Meng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Zilin Zhong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Child, Adolescent and Maternal Health, School of Public Health and General Medicine, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Ali A, Liang P. Transposable elements contribute to tissue-specific gene regulation in humans. Genes Genomics 2024; 46:1327-1343. [PMID: 39088190 PMCID: PMC11602805 DOI: 10.1007/s13258-024-01550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Transposable elements (TEs) contribute to approximately half of the human genome, and along with many other functions, they have been known to play a role in gene regulation in the genome. With TEs' active/repressed states varying across tissue and cell types, they have the potential to regulate gene expression in a tissue-specific manner. OBJECTIVE AND METHODS To provide a systematic analysis of TEs' contribution in tissue-specific gene regulation, we examined the regulatory elements and genes in association with TE-derived regulatory sequences in 14 human cell lines belonging to 10 different tissue types using the functional genomics data from the ENCODE project. Specifically, we separately analyzed regulatory regions identified by three different approaches (DNase hypersensitive sites (DHS), histone active sites (HA), and histone repressive sites (HR)). RESULTS These regulatory regions showed to be distinct from each other by sharing less than 2.5% among all three types and more than 95% showed to be cell line-specific. Despite a lower total TE content overall than the genome average, each regulatory sequence type showed enrichment for one or two specific TE type(s): DHS for long terminal repeats (LTRs) and DNA transposons, HA for short interspersed nucleotide elements (SINEs), and HR for LTRs. In contrast, SINE was shown to be overrepresented in all three types of regulatory sequences located in gene-neighboring regions. TE-regulated genes were mostly shown to have cell line specific pattern, and tissue-specific genes (TSGs) showed higher usage of TE regulatory sequences in the tissue of their expression. While TEs in the regulatory sequences showed to be older than their genome-wide counterparts, younger TEs were shown to be more likely used in cell line specific regulatory sequences. CONCLUSIONS Collectively, our study provided further evidence enforcing an important contribution of TEs to tissue-specific gene regulation in humans.
Collapse
Affiliation(s)
- Arsala Ali
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
- Centre of Biotechnologies, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
3
|
Xie Y, Wu N, Tang S, Zhou Z, Chen J, Li J, Wu F, Xu M, Xu X, Liu Y, Ma X. Endoplasmic Reticulum Dysfunction: An Emerging Mechanism of Vitiligo Pathogenesis. Clin Cosmet Investig Dermatol 2024; 17:1133-1144. [PMID: 38774812 PMCID: PMC11107934 DOI: 10.2147/ccid.s459070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
The endoplasmic reticulum (ER) is the main site of protein synthesis, transport, and modification. Its abnormal status has now emerged as an established cause of many pathological processes, such as tumors and autoimmune diseases. Recent studies also demonstrated that the defective functions of ER may lead to pigmentary diseases. Vitiligo is a depigmenting ailment skin disorder whose pathogenesis is now found to be associated with ER. However, the detailed mechanism is still unclear. In this review, we try to link the association between ER with its inter- and intra-organellar interactions in vitiligo pathogenesis and focus on the function, mechanism, and clinical potential of ER with vitiligo. Expand ER is found in melanocytes of vitiligo and ER stress (ERS) might be a bridge between oxidative stress and innate and adaptive immunity. Meanwhile, the tight association between ER and mitochondria or melanosomes in organelles levels, as well as genes and cytokines, is the new paradigm in the pathogenesis of vitiligo. This undoubtedly adds a new aspect to the understanding of vitiligo, facilitating the design of targeted therapies for vitiligo.
Collapse
Affiliation(s)
- Yongyi Xie
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Nanhui Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Suwei Tang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zhiyu Zhou
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jiashe Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jie Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fei Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Mingyuan Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xiaoxiang Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Du H, Dardas Z, Jolly A, Grochowski CM, Jhangiani SN, Li H, Muzny D, Fatih JM, Yesil G, Elçioglu NH, Gezdirici A, Marafi D, Pehlivan D, Calame DG, Carvalho CMB, Posey JE, Gambin T, Coban-Akdemir Z, Lupski JR. HMZDupFinder: a robust computational approach for detecting intragenic homozygous duplications from exome sequencing data. Nucleic Acids Res 2024; 52:e18. [PMID: 38153174 PMCID: PMC10899794 DOI: 10.1093/nar/gkad1223] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/18/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023] Open
Abstract
Homozygous duplications contribute to genetic disease by altering gene dosage or disrupting gene regulation and can be more deleterious to organismal biology than heterozygous duplications. Intragenic exonic duplications can result in loss-of-function (LoF) or gain-of-function (GoF) alleles that when homozygosed, i.e. brought to homozygous state at a locus by identity by descent or state, could potentially result in autosomal recessive (AR) rare disease traits. However, the detection and functional interpretation of homozygous duplications from exome sequencing data remains a challenge. We developed a framework algorithm, HMZDupFinder, that is designed to detect exonic homozygous duplications from exome sequencing (ES) data. The HMZDupFinder algorithm can efficiently process large datasets and accurately identifies small intragenic duplications, including those associated with rare disease traits. HMZDupFinder called 965 homozygous duplications with three or less exons from 8,707 ES with a recall rate of 70.9% and a precision of 16.1%. We experimentally confirmed 8/10 rare homozygous duplications. Pathogenicity assessment of these copy number variant alleles allowed clinical genomics contextualization for three homozygous duplications alleles, including two affecting known OMIM disease genes EDAR (MIM# 224900), TNNT1(MIM# 605355), and one variant in a novel candidate disease gene: PAAF1.
Collapse
Affiliation(s)
- Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zain Dardas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - He Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gozde Yesil
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul 34093, Turkey
| | - Nursel H Elçioglu
- Department of Pediatric Genetics, Marmara University Medical Faculty, Istanbul and Eastern Mediterranean University Faculty of Medicine, Mersin 10, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, 34480 Istanbul, Turkey
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Pham TN, Cazier EA, Gormally E, Lawrence P. Valorization of biomass polyphenols as potential tyrosinase inhibitors. Drug Discov Today 2024; 29:103843. [PMID: 38000718 DOI: 10.1016/j.drudis.2023.103843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Tyrosinases (TYRs; EC 1.14.18.1) catalyze two sequential oxidative reactions of the melanin biosynthesis pathway and play an important role in mammalian pigmentation and enzymatic browning of fruit and vegetables. Inhibition of TYR activity is therefore an attractive target for new drugs and/or food ingredients. In addition, increasing evidence suggests that TYR regulation could be a novel target for treatments of cancer and Parkinson's disease. Biomasses, notably industrial byproducts and biowaste, are good sustainable sources of phytochemicals that may be valorized into bioactive compounds including TYR inhibitors. This review presents potential applications of biomass-derived polyphenols targeting TYR inhibition. Insights into structure-activity relationships of several polyphenols and their glycosides are highlighted. Finally, some remarks and perspectives on research into new TYR inhibitors from biomass waste are provided.
Collapse
Affiliation(s)
- Thanh-Nhat Pham
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France.
| | - Elisabeth A Cazier
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France; Nantes Université, Oniris, GEPEA, UMR 6144, F-44600 Saint-Nazaire, France
| | - Emmanuelle Gormally
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France
| | - Philip Lawrence
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE: Sciences et Humanités (EA 1598), Lyon, France
| |
Collapse
|
6
|
Boateng ST, Roy T, Torrey K, Owunna U, Banang-Mbeumi S, Basnet D, Niedda E, Alexander AD, Hage DE, Atchimnaidu S, Nagalo BM, Aryal D, Findley A, Seeram NP, Efimova T, Sechi M, Hill RA, Ma H, Chamcheu JC, Murru S. Synthesis, in silico modelling, and in vitro biological evaluation of substituted pyrazole derivatives as potential anti-skin cancer, anti-tyrosinase, and antioxidant agents. J Enzyme Inhib Med Chem 2023; 38:2205042. [PMID: 37184042 PMCID: PMC10187093 DOI: 10.1080/14756366.2023.2205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 μM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.
Collapse
Affiliation(s)
- Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kara Torrey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Uchechi Owunna
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, USA
| | - David Basnet
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Eleonora Niedda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alexis D. Alexander
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Denzel El Hage
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siriki Atchimnaidu
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - Ann Findley
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Mario Sechi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Ronald A. Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
7
|
Li X, Qian K, Zhang Y, Zhang Y, Liu Y, Sun C, Jiao Y, Yu D, Geng F, Cao J, Zhang S. Ubiquitin-specific peptidase 47 (USP47) regulates cutaneous oxidative injury through nicotinamide nucleotide transhydrogenase (NNT). Toxicol Appl Pharmacol 2023; 480:116734. [PMID: 37924851 DOI: 10.1016/j.taap.2023.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Human skin is daily exposed to oxidative stresses in the environment such as physical stimulation, chemical pollutants and pathogenic microorganisms, which are likely to cause skin diseases. As important post-translational modifications, protein ubiquitination and deubiquitination play crucial roles in maintaining cellular homeostasis by the proteolytic removal of oxidized proteins. We have previously reported that the expression of ubiquitin-specific protease 47 (USP47), a kind of deubiquitinating enzymes (DUBs), was significantly elevated in response to oxidative stress. However, the role of USP47 in cutaneous oxidative injury remains unclear. Usp47 wild-type (Usp47+/+) mice and Usp47 knockout (Usp47-/-) mice were used to establish two animal models of oxidative skin damage: (1) radiation- and (2) imiquimod (IMQ)-induced skin injury. Loss of Usp47 consistently aggravated mouse skin damage in vivo. Subsequently, we screened 63 upregulated and 170 downregulated proteins between the skin tissues of wild-type and Usp47-/- mice after 35 Gy electron beam radiation using proteomic analysis. Among the dysregulated proteins, nicotinamide nucleotide transhydrogenase (NNT), which has been reported as a significant regulator of oxidative stress and redox homeostasis, was further investigated in detail. Results showed that NNT was regulated by USP47 through direct ubiquitination mediated degradation and involved in the pathogenesis of cutaneous oxidative injury. Knockdown of NNT expression dramatically limited the energy production ability, with elevated mitochondrial reactive oxygen species (ROS) accumulation and increased mitochondrial membrane potential in irradiated HaCaT cells. Taken together, our present findings illustrate the critical role of USP47 in oxidative skin damage by modulating NNT degradation and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Xiaoqian Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kun Qian
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou 215123, China
| | - Yuehua Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yulan Liu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Chuntang Sun
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Jiao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou 215123, China
| | - Daojiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Fenghao Geng
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Jianping Cao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou 215123, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China.
| |
Collapse
|
8
|
Hu S, Wang L. The potential role of ubiquitination and deubiquitination in melanogenesis. Exp Dermatol 2023; 32:2062-2071. [PMID: 37846904 DOI: 10.1111/exd.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Melanogenesis is a critical biochemical process in which melanocytes produce melanin, a crucial element involved in the formation of coat colour in mammals. According to several earlier studies, melanocytes' post-translational modifications of proteins primarily control melanogenesis. Among the many post-translational changes that can affect melanin production, ubiquitination and deubiquitination can keep melanin production going by changing how proteins that are related to melanin are broken down or kept stable. Ubiquitination and deubiquitination maintain ubiquitin homeostasis, which is a highly dynamic process in balance under the action of E3 ubiquitin ligase and deubiquitinating enzymes. However, the regulatory mechanisms underlying ubiquitination and deubiquitination in melanogenesis are yet to be thoroughly investigated. As a result, there has been a growing focus on exploring the potential correlation between melanogenesis, ubiquitination and deubiquitination. This study discusses the mechanisms of ubiquitination and deubiquitination in the context of melanogenesis, a crucial process for enhancing mammalian coat coloration and addressing pigment-related diseases.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Lu Wang
- College of Life Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
9
|
Li R, Wang Y, Liu Y, Li D, Tian Y, Liu X, Kang X, Li Z. Effects of SLC45A2 and GPNMB on Melanin Deposition Based on Transcriptome Sequencing in Chicken Feather Follicles. Animals (Basel) 2023; 13:2608. [PMID: 37627399 PMCID: PMC10451703 DOI: 10.3390/ani13162608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
As an essential genetic and economic trait, chicken feather color has long been an important research topic. To further understand the mechanism of melanin deposition associated with coloration in chicken feathers, we selected feather follicle tissues from the neck and wings of chickens with differently colored feathers (yellow, sub-Columbian, and silver) for transcriptome analysis. We focused on genes that were expressed in both the wings and neck and were expressed with the same trends in breeds with two different plumage colors, specifically, SLC45A2, GPNMB, MLPH, TYR, KIT, WNT11, and FZD1. GO and KEGG enrichment analyses showed the DEGs were enriched in melanin-related pathways, such as tyrosine metabolic pathway and melanogenesis, and PPI analysis highlighted the genes SLC45A2 and GPNMB as associated with melanin deposition. Verification experiments in chicken melanocytes demonstrated that these two genes promote melanocyte melanin deposition. These data enrich our knowledge of the mechanisms that regulate chicken feather color.
Collapse
Affiliation(s)
- Ruiting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yihan Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
- The Shennong Laboratory, Zhengzhou 450000, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
10
|
Rus AA, Militaru IV, Popa I, Munteanu CVA, Sima LE, Platt N, Platt FM, Petrescu ȘM. NPC1 plays a role in the trafficking of specific cargo to melanosomes. J Biol Chem 2023; 299:105024. [PMID: 37423302 PMCID: PMC10407747 DOI: 10.1016/j.jbc.2023.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) protein is a multimembrane spanning protein of the lysosome limiting membrane that facilitates intracellular cholesterol and sphingolipid transport. Loss-of-function mutations in the NPC1 protein cause Niemann-Pick disease type C1, a lysosomal storage disorder characterized by the accumulation of cholesterol and sphingolipids within lysosomes. To investigate whether the NPC1 protein could also play a role in the maturation of the endolysosomal pathway, here, we have investigated its role in a lysosome-related organelle, the melanosome. Using a NPC1-KO melanoma cell model, we found that the cellular phenotype of Niemann-Pick disease type C1 is associated with a decreased pigmentation accompanied by low expression of the melanogenic enzyme tyrosinase. We propose that the defective processing and localization of tyrosinase, occurring in the absence of NPC1, is a major determinant of the pigmentation impairment in NPC1-KO cells. Along with tyrosinase, two other pigmentation genes, tyrosinase-related protein 1 and Dopachrome-tautomerase have lower protein levels in NPC1 deficient cells. In contrast with the decrease in pigmentation-related protein expression, we also found a significant intracellular accumulation of mature PMEL17, the structural protein of melanosomes. As opposed to the normal dendritic localization of melanosomes, the disruption of melanosome matrix generation in NPC1 deficient cells causes an accumulation of immature melanosomes adjacent to the plasma membrane. Together with the melanosomal localization of NPC1 in WT cells, these findings suggest that NPC1 is directly involved in tyrosinase transport from the trans-Golgi network to melanosomes and melanosome maturation, indicating a novel function for NPC1.
Collapse
Affiliation(s)
- Alina Adriana Rus
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Ioana V Militaru
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Ioana Popa
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Bucharest, Romania
| | - Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ștefana M Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania.
| |
Collapse
|
11
|
Niki Y, Adachi N, Fukata M, Fukata Y, Oku S, Makino-Okamura C, Takeuchi S, Wakamatsu K, Ito S, Declercq L, Yarosh DB, Mammone T, Nishigori C, Saito N, Ueyama T. S-Palmitoylation of Tyrosinase at Cysteine 500 Regulates Melanogenesis. J Invest Dermatol 2023; 143:317-327.e6. [PMID: 36063887 DOI: 10.1016/j.jid.2022.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Palmitoylation is a lipid modification involving the attachment of palmitic acid to a cysteine residue, thereby affecting protein function. We investigated the effect of palmitoylation of tyrosinase, the rate-limiting enzyme in melanin synthesis, using a human three-dimensional skin model system and melanocyte culture. The palmitoylation inhibitor, 2-bromopalmitate, increased melanin content and tyrosinase protein levels in melanogenic cells by suppressing tyrosinase degradation. The palmitoylation site was Cysteine500 in the C-terminal cytoplasmic tail of tyrosinase. The nonpalmitoylatable mutant, tyrosinase (C500A), was slowly degraded and less ubiquitinated than wild-type tyrosinase. Screening for the Asp-His-His-Cys (DHHC) family of proteins for tyrosinase palmitoylation suggested that DHHC2, 3, 7, and 15 are involved in tyrosinase palmitoylation. Knockdown of DHHC2, 3, or 15 increased tyrosinase protein levels and melanin content. Determination of their subcellular localization in primary melanocytes revealed that DHHC2, 3, and 15 were localized in the endoplasmic reticulum, Golgi apparatus, and/or melanosomes, whereas only DHHC2 was localized in the melanosomes. Immunoprecipitation showed that DHHC2 and DHHC3 predominantly bind to mature and immature tyrosinase, respectively. Taken together, tyrosinase palmitoylation at Cysteine500 by DHHC2, 3, and/or 15, especially DHHC2 in trans-Golgi apparatus and melanosomes and DHHC3 in the endoplasmic reticulum and cis-Golgi apparatus, regulate melanogenesis by modulating tyrosinase protein levels.
Collapse
Affiliation(s)
- Yoko Niki
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Shinichiro Oku
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Chieko Makino-Okamura
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Seiji Takeuchi
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Aichi, Japan
| | - Lieve Declercq
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Daniel B Yarosh
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Tomas Mammone
- Research & Development, Estee Lauder Companies, Melville, New York, USA
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Naoaki Saito
- Kobe Skin Research Department, Biosignal Research Center, Kobe University, Kobe, Japan; Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
12
|
A systematic exploration reveals the potential of spermidine for hypopigmentation treatment through the stabilization of melanogenesis-associated proteins. Sci Rep 2022; 12:14478. [PMID: 36008447 PMCID: PMC9411574 DOI: 10.1038/s41598-022-18629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Spermidine (SPD), a polyamine naturally present in living organisms, is known to prolong the lifespan of animals. In this study, the role of SPD in melanogenesis was investigated, showing potential as a pigmenting agent. SPD treatment increased melanin production in melanocytes in a dose dependent manner. Computational analysis with RNA-sequencing data revealed the alteration of protein degradation by SPD treatment without changes in the expressions of melanogenesis-related genes. Indeed, SPD treatment significantly increased the stabilities of tyrosinase-related protein (TRP)-1 and -2 while inhibiting ubiquitination, which was confirmed by treatment of proteasome inhibitor MG132. Inhibition of protein synthesis by cycloheximide (CHX) showed that SPD treatment increased the resistance of TRP-1 and TRP-2 to protein degradation. To identify the proteins involved in SPD transportation in melanocytes, the expression of several solute carrier (SLC) membrane transporters was assessed and, among 27 transporter genes, SLC3A2, SLC7A1, SLC18B1, and SLC22A18 were highly expressed, implying they are putative SPD transporters in melanocytes. Furthermore, SLC7A1 and SLC22A18 were downregulated by SPD treatment, indicating their active involvement in polyamine homeostasis. Finally, we applied SPD to a human skin equivalent and observed elevated melanin production. Our results identify SPD as a potential natural product to alleviate hypopigmentation.
Collapse
|
13
|
Lee HJ, An S, Bae S, Lee JH. Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmia-associated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:113-123. [PMID: 35203061 PMCID: PMC8890945 DOI: 10.4196/kjpp.2022.26.2.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via down-regulation of PKA/CREB/MITF signaling pathway.
Collapse
Affiliation(s)
- Hyun Jeong Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Sungkwan An
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
14
|
Hinokitiol-induced decreases of tyrosinase and microphthalmia-associated transcription factor are mediated by the endoplasmic reticulum-associated degradation pathway in human melanoma cells. Biochimie 2021; 192:13-21. [PMID: 34536557 DOI: 10.1016/j.biochi.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023]
Abstract
Tyrosinase (TYR) is a key enzyme for melanin production. We previously showed that hinokitiol, a naturally occurring seven-membered ring terpenoid, potently inhibits human TYR activity. Interestingly, hinokitiol was recently reported to decrease expression of TYR and microphthalmia-associated transcription factor (MITF), which is a main transcription factor of the TYR gene, in murine melanoma cells. However, the mechanisms by which hinokitiol decreases the intracellular levels of TYR and MITF have not been fully elucidated. Here, we investigated the underlying mechanisms of the decreases using cultured human melanoma cells. As a result, hinokitiol treatment decreased TYR protein level in a time- and dose-dependent manner in G361 human melanoma cells, while MITF protein level was decreased only at higher concentrations after 3 days treatment. Notably, the mRNA levels of TYR and MITF were slightly increased by hinokitiol treatment. Therefore, we focused on the degradation of TYR and MITF in endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Importantly, co-treatment of ERAD inhibitor with hinokitiol restored the protein levels of TYR and MITF to approximately 30% and 20% of total those in untreated control cells, respectively. Hinokitiol affected the ER homeostasis as well as degradation of TYR and MITF in two human melanoma cell lines, G361 and HT-144, but the changes of ER-stress markers under the hinokitiol treatment were different in the two human melanoma cell lines. Taken together, these observations indicate that hinokitiol may induce ER stress and trigger the degradation of unfolded newly synthesizing TYR and MITF via the ERAD pathway.
Collapse
|
15
|
Fan YF, Zhu SX, Hou FB, Zhao DF, Pan QS, Xiang YW, Qian XK, Ge GB, Wang P. Spectrophotometric Assays for Sensing Tyrosinase Activity and Their Applications. BIOSENSORS 2021; 11:290. [PMID: 34436092 PMCID: PMC8393227 DOI: 10.3390/bios11080290] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
Tyrosinase (TYR, E.C. 1.14.18.1), a critical enzyme participating in melanogenesis, catalyzes the first two steps in melanin biosynthesis including the ortho-hydroxylation of L-tyrosine and the oxidation of L-DOPA. Previous pharmacological investigations have revealed that an abnormal level of TYR is tightly associated with various dermatoses, including albinism, age spots, and malignant melanoma. TYR inhibitors can partially block the formation of pigment, which are always used for improving skin tone and treating dermatoses. The practical and reliable assays for monitoring TYR activity levels are very useful for both disease diagnosis and drug discovery. This review comprehensively summarizes structural and enzymatic characteristics, catalytic mechanism and substrate preference of TYR, as well as the recent advances in biochemical assays for sensing TYR activity and their biomedical applications. The design strategies of various TYR substrates, alongside with several lists of all reported biochemical assays for sensing TYR including analytical conditions and kinetic parameters, are presented for the first time. Additionally, the biomedical applications and future perspectives of these optical assays are also highlighted. The information and knowledge presented in this review offer a group of practical and reliable assays and imaging tools for sensing TYR activities in complex biological systems, which strongly facilitates high-throughput screening TYR inhibitors and further investigations on the relevance of TYR to human diseases.
Collapse
Affiliation(s)
- Yu-Fan Fan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Si-Xing Zhu
- Institute of Science, Technology and Humanities, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Fan-Bin Hou
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Dong-Fang Zhao
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Qiu-Sha Pan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Yan-Wei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Xing-Kai Qian
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| | - Ping Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.-F.F.); (F.-B.H.); (D.-F.Z.); (Q.-S.P.); (X.-K.Q.); (G.-B.G.)
| |
Collapse
|
16
|
Lee AY. Skin Pigmentation Abnormalities and Their Possible Relationship with Skin Aging. Int J Mol Sci 2021; 22:ijms22073727. [PMID: 33918445 PMCID: PMC8038212 DOI: 10.3390/ijms22073727] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Skin disorders showing abnormal pigmentation are often difficult to manage because of their uncertain etiology or pathogenesis. Abnormal pigmentation is a common symptom accompanying aging skin. The association between skin aging and skin pigmentation abnormalities can be attributed to certain inherited disorders characterized by premature aging and abnormal pigmentation in the skin and some therapeutic modalities effective for both. Several molecular mechanisms, including oxidative stress, mitochondrial DNA mutations, DNA damage, telomere shortening, hormonal changes, and autophagy impairment, have been identified as involved in skin aging. Although each of these skin aging-related mechanisms are interconnected, this review examined the role of each mechanism in skin hyperpigmentation or hypopigmentation to propose the possible association between skin aging and pigmentation abnormalities.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, College of Medicine, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 410-773, Gyeonggi-do, Korea
| |
Collapse
|
17
|
Anti-Melanogenesis Activity of 6- O-Isobutyrylbritannilactone from Inula britannica on B16F10 Melanocytes and In Vivo Zebrafish Models. Molecules 2020; 25:molecules25173887. [PMID: 32858952 PMCID: PMC7504228 DOI: 10.3390/molecules25173887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
A potential natural melanogenesis inhibitor was discovered in the form of a sesquiterpene isolated from the flowers of Inula britannica, specifically 6-O-isobutyrylbritannilactone (IBL). We evaluated the antimelanogenesis effects of IBL on B16F10 melanocytes and zebrafish embryos. As a result, we found that 3-isobutyl-1-methylxanthine (IBMX)-induced melanin production was reduced in a dose-dependent manner in B16F10 cells by IBL. We also analyzed B16F10 cells that were and were not treated with IBMX, investigating the melanin concentration, tyrosinase activity, mRNA levels. We also studied the protein expressions of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related proteins (TRP1, and TRP2). Furthermore, we found that melanin synthesis and tyrosinase expression were also inhibited by IBL through the modulation of the following signaling pathways: ERK, phosphoinositide 3-kinase (PI3K)/AKT, and CREB. In addition, we studied antimelanogenic activity using zebrafish embryos and found that the embryos had significantly reduced pigmentation in the IBL-treated specimens compared to the untreated controls.
Collapse
|
18
|
Retinal biomarkers and pharmacological targets for Hermansky-Pudlak syndrome 7. Sci Rep 2020; 10:3972. [PMID: 32132582 PMCID: PMC7055265 DOI: 10.1038/s41598-020-60931-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/19/2020] [Indexed: 01/24/2023] Open
Abstract
Deletion of dystrobrevin binding protein 1 has been linked to Hermansky-Pudlak syndrome type 7 (HPS-7), a rare disease characterized by oculocutaneous albinism and retinal dysfunction. We studied dysbindin-1 null mutant mice (Dys−/−) to shed light on retinal neurodevelopment defects in HPS-7. We analyzed the expression of a focused set of miRNAs in retina of wild type (WT), Dys+/− and Dys−/− mice. We also investigated the retinal function of these mice through electroretinography (ERG). We found that miR-101-3p, miR-137, miR-186-5p, miR-326, miR-382-5p and miR-876-5p were up-regulated in Dys−/−mice retina. Dys−/− mice showed significant increased b-wave in ERG, compared to WT mice. Bioinformatic analysis highlighted that dysregulated miRNAs target synaptic plasticity and dopaminergic signaling pathways, affecting retinal functions of Dys−/− mice. Overall, the data indicate potential mechanisms in retinal neurodevelopment of Dys−/− mice, which may have translational significance in HSP-7 patients, both in terms of diagnostic/prognostic biomarkers and novel pharmacological targets.
Collapse
|
19
|
Introgression drives repeated evolution of winter coat color polymorphism in hares. Proc Natl Acad Sci U S A 2019; 116:24150-24156. [PMID: 31712446 DOI: 10.1073/pnas.1910471116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changing from summer-brown to winter-white pelage or plumage is a crucial adaptation to seasonal snow in more than 20 mammal and bird species. Many of these species maintain nonwhite winter morphs, locally adapted to less snowy conditions, which may have evolved independently. Mountain hares (Lepus timidus) from Fennoscandia were introduced into the Faroe Islands in 1855. While they were initially winter-white, within ∼65 y all Faroese hares became winter-gray, a morph that occurs in the source population at low frequency. The documented population history makes this a valuable model for understanding the genetic basis and evolution of the seasonal trait polymorphism. Through whole-genome scans of differentiation and single-nucleotide polymorphism (SNP) genotyping, we associated winter coat color polymorphism to the genomic region of the pigmentation gene Agouti, previously linked to introgression-driven winter coat color variation in the snowshoe hare (Lepus americanus). Lower Agouti expression in the skin of winter-gray individuals during the autumn molt suggests that regulatory changes may underlie the color polymorphism. Variation in the associated genomic region shows signatures of a selective sweep in the Faroese population, suggesting that positive selection drove the fixation of the variant after the introduction. Whole-genome analyses of several hare species revealed that the winter-gray variant originated through introgression from a noncolor changing species, in keeping with the history of ancient hybridization between the species. Our findings show the recurrent role of introgression in generating winter coat color variation by repeatedly recruiting the regulatory region of Agouti to modulate seasonal coat color change.
Collapse
|
20
|
Liu X, Wang J, Gao L, Jiao Y, Liu C. Maternal Protein Restriction Induces Alterations in Hepatic Unfolded Protein Response-Related Molecules in Adult Rat Offspring. Front Endocrinol (Lausanne) 2018; 9:676. [PMID: 30524373 PMCID: PMC6262354 DOI: 10.3389/fendo.2018.00676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Intrauterine growth restriction (IUGR) leads to the development of metabolic syndrome in adulthood. To explore the potential mechanisms of metabolic imprinting, we investigated the effect of malnutrition in utero on hepatic unfolded protein response (UPR)-related genes in IUGR offspring. An IUGR rat model was developed by feeding a low-protein diet to pregnant rats. The expression levels and activity of hepatic UPR genes were analysed by quantitative PCR (qPCR) arrays and western blotting. The hepatic UPR molecules heat-shock 70-kDa protein 4l (Hspa4l), mitogen-activated protein kinase 10 (Mapk10), and endoplasmic reticulum to nucleus signalling 2 (Ern2) were markedly downregulated in IUGR foetuses, but the expression of Mapk10 and Ern2 returned to normal levels at 3 weeks postnatal. In contrast, cAMP responsive element binding protein 3-like 3 (Creb3l3) was upregulated in hepatic tissues at embryo 20(E20), then restored to normal in adulthood (12 weeks). The protein levels of activating transcription factor 2 (Atf2) and Atf6, two key factors of the UPR pathway, were upregulated in the livers of IUGR foetuses, and the latter remained upregulated until 12 weeks. Combined with our previous findings showing an increase in hepatic gluconeogenesis enzymes in IUGR offspring, we speculated that aberrant intrauterine milieu impaired UPR signalling in hepatic tissues; these alterations early in life might contribute to the predisposition of IUGR foetuses to adult metabolic disorders.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Maternal-fetal Medicine of Liaoning Province, Shengjing Hospital, China Medical University, Shenyang, China
- *Correspondence: Xiaomei Liu
| | - Jun Wang
- Key Laboratory of Maternal-fetal Medicine of Liaoning Province, Shengjing Hospital, China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Benxi Central Hospital of China Medical University, Benxi, China
| | - Linlin Gao
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yisheng Jiao
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Caixia Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Safety and Efficacy of Dextran-Rosmarinic Acid Conjugates as Innovative Polymeric Antioxidants in Skin Whitening: What Is the Evidence? COSMETICS 2017. [DOI: 10.3390/cosmetics4030028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Seo EY, Jin SP, Sohn KC, Park CH, Lee DH, Chung JH. UCHL1 Regulates Melanogenesis through Controlling MITF Stability in Human Melanocytes. J Invest Dermatol 2017; 137:1757-1765. [PMID: 28392346 DOI: 10.1016/j.jid.2017.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 02/26/2017] [Accepted: 03/11/2017] [Indexed: 12/19/2022]
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is involved in many signaling pathways via the ubiquitin-proteasome system. UCHL1 is expressed in the human skin and serves as a neuronal marker; however, its functions in melanogenesis remain unknown. Here, we investigated the role of UCHL1 in melanogenesis and elucidated the underlying mechanism using human melanocytes. UCHL1 downregulation by small interfering RNA resulted in upregulation of microphthalmia-associated transcription factor (MITF), tyrosinase, dopachrome tautomerase, tyrosinase-related protein-1, and melanin. In contrast, overexpression of UCHL1 in melanocytes via adenovirus transfection led to downregulation of tyrosinase, dopachrome tautomerase, and tyrosinase-related protein-1 and decreased melanin contents. Furthermore, UCHL1 reduced the protein, but not mRNA, levels of MITF, the upstream regulator of tyrosinase, dopachrome tautomerase, and tyrosinase-related protein-1. Inhibition of de novo protein synthesis and treatment of normal human primary epidermal melanocytes with proteasome inhibitor MG132 revealed that UCHL1 negatively regulates the stability of MITF by binding to the ubiquitinated protein. Finally, overexpression of MITF via an adenovirus restored the level of melanogenesis reduced by UCHL1. Collectively, our findings indicate a role of UCHL1 in regulating skin pigmentation. Suppression of MITF activity by UCHL1 via protein degradation might aid in the development of new therapeutic approaches for melanoma or dyspigmentation disorders.
Collapse
Affiliation(s)
- Eun Young Seo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Deparment of Biomedical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chi-Hyun Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Deparment of Biomedical Science, Seoul National University Graduate School, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Hwang JA, Park NH, Na YJ, Lee HK, Lee JH, Kim YJ, Lee CS. Coumestrol Down-Regulates Melanin Production in Melan-a Murine Melanocytes through Degradation of Tyrosinase. Biol Pharm Bull 2017; 40:535-539. [PMID: 28381809 DOI: 10.1248/bpb.b16-00834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pigmentation reflects skin darkening caused by melanin production, but excessive melanin synthesis may cause problems, such as melasma, solar lentigo, dark spots, and freckles. Considerable effort has been devoted to alleviating these undesired symptoms through the development of safe and effective depigmenting agents. Coumestrol, a plant-derived natural isoflavone with an estrogen-like structure and actions, is known to have anti-aging ability, but its potential depigmenting efficacy has not been evaluated. In the present study, we investigated the effects of coumestrol on melanin synthesis in normal melan-a murine melanocytes. Coumestrol significantly reduced melanin synthesis in a concentration-dependent manner up to a concentration of 25 µM without causing cytotoxicity. It also brightened tissue in an artificial skin model (MelanoDerm) that incorporates both human keratinocytes and melanocytes. Interestingly, although coumestrol did not inhibit tyrosinase activity or transcript level in melan-a cells, it clearly decreased the expression level of tyrosinase protein at a concentration of 25 µM. This coumestrol-induced reduction in tyrosinase protein levels was prevented by pretreatment with the proteasome inhibitor MG-132 or the lysosomal proteolysis inhibitor chloroquine. Collectively, our findings indicate that coumestrol exerts an inhibitory effect on melanin synthesis in melan-a cells, at least in part, through degradation of tyrosinase. These findings suggest that coumestrol is a good candidate for use in depigmentary reagents from a cosmetic and clinical perspective.
Collapse
|
24
|
Anti-Melanogenic Activity of Gagunin D, a Highly Oxygenated Diterpenoid from the Marine Sponge Phorbas sp., via Modulating Tyrosinase Expression and Degradation. Mar Drugs 2016; 14:md14110212. [PMID: 27869664 PMCID: PMC5128755 DOI: 10.3390/md14110212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022] Open
Abstract
Tyrosinase is the rate-limiting enzyme critical for melanin synthesis and controls pigmentation in the skin. The inhibition of tyrosinase is currently the most common approach for the development of skin-whitening cosmetics. Gagunin D (GD), a highly oxygenated diterpenoid isolated from the marine sponge Phorbas sp., has exhibited cytotoxicity toward human leukemia cells. However, the effect of GD on normal cells and the molecular mechanisms remain to be elucidated. In the present study, we identified for the first time the anti-melanogenic activity of GD and its precise underlying mechanisms in mouse melan-a cells. GD significantly inhibited melanin synthesis in the melan-a cells and a reconstructed human skin model. Further analysis revealed that GD suppressed the expression of tyrosinase and increased the rate of tyrosinase degradation. GD also inhibited tyrosinase enzymatic activity. In addition, GD effectively suppressed the expression of proteins associated with melanosome transfer. These findings suggest that GD is a potential candidate for cosmetic formulations due to its multi-functional properties.
Collapse
|
25
|
Hong SD, Yoon DY, Lee S, Han SB, Kim Y. Antimelanogenic chemicals with in vivo efficacy against skin pigmentation in guinea pigs. Arch Pharm Res 2014; 37:1241-51. [PMID: 25066073 DOI: 10.1007/s12272-014-0447-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/05/2014] [Indexed: 01/11/2023]
Abstract
Ultraviolet (UV) radiation under sunlight stimulates skin pigmentation through immediately affecting the oxidative modification of existing melanin pigments and the spatial redistribution of pigmented melanosomes followed by the up-regulation of melanogenic genes in delayed kinetics. However, abnormal accumulation and synthesis of melanin biopolymers are responsible for skin disorders with more pigmented patches. Chemical-based regulation of the hyperpigmented disorders has been a long-standing goal for cosmetic and pharmaceutical applications. A large number of the chemicals with antimelanogenic activity have met with limited or no success in the treatment of skin patients, since they may not overcome the challenge of penetrating the skin barrier. Guinea pig skin displays similar kinetic parameters to human skin in the transdermal absorption of numerous chemicals, thus can serve as the surrogate for human skin. Here, we provide a concise review of our current understanding of the chemical-based therapy against skin hyperpigmentation in UV-irradiated guinea pig models, suggest molecular mechanisms of the action and emphasize the translation from preclinical outcomes to skin patients.
Collapse
Affiliation(s)
- Seung Deok Hong
- College of Pharmacy, Chungbuk National University, Cheongju, 361-763, Korea
| | | | | | | | | |
Collapse
|
26
|
Liakath-Ali K, Vancollie VE, Heath E, Smedley DP, Estabel J, Sunter D, Ditommaso T, White JK, Ramirez-Solis R, Smyth I, Steel KP, Watt FM. Novel skin phenotypes revealed by a genome-wide mouse reverse genetic screen. Nat Commun 2014; 5:3540. [PMID: 24721909 PMCID: PMC3996542 DOI: 10.1038/ncomms4540] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/04/2014] [Indexed: 12/19/2022] Open
Abstract
Permanent stop-and-shop large-scale mouse mutant resources provide an excellent platform to decipher tissue phenogenomics. Here we analyse skin from 538 knockout mouse mutants generated by the Sanger Institute Mouse Genetics Project. We optimize immunolabelling of tail epidermal wholemounts to allow systematic annotation of hair follicle, sebaceous gland and interfollicular epidermal abnormalities using ontology terms from the Mammalian Phenotype Ontology. Of the 50 mutants with an epidermal phenotype, 9 map to human genetic conditions with skin abnormalities. Some mutant genes are expressed in the skin, whereas others are not, indicating systemic effects. One phenotype is affected by diet and several are incompletely penetrant. In-depth analysis of three mutants, Krt76, Myo5a (a model of human Griscelli syndrome) and Mysm1, provides validation of the screen. Our study is the first large-scale genome-wide tissue phenotype screen from the International Knockout Mouse Consortium and provides an open access resource for the scientific community. Large-scale efforts are put into the generation of knockout mutant mice for many individual genes. Here, the authors systematically screen skin from 538 mutant mice and identify 50 mutants with epidermal phenotypes, of which 9 are also associated with human skin defects.
Collapse
Affiliation(s)
- Kifayathullah Liakath-Ali
- 1] Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK [2] Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK [3] Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Valerie E Vancollie
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Emma Heath
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Damian P Smedley
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jeanne Estabel
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Sunter
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Tia Ditommaso
- 1] Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia [2] Present address: Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Jacqueline K White
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - Ian Smyth
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Karen P Steel
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
27
|
Hakozaki T, Laughlin T, Zhao S, Wang J, Deng D, Jewell-Motz E, Elstun L. A regulator of ubiquitin-proteasome activity, 2-hexyldecanol, suppresses melanin synthesis and the appearance of facial hyperpigmented spots. Br J Dermatol 2013; 169 Suppl 2:39-44. [DOI: 10.1111/bjd.12364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/30/2022]
Affiliation(s)
- T. Hakozaki
- The Procter & Gamble Company; 8700 Mason Montgomery Road; Mason; OH; U.S.A
| | - T. Laughlin
- The Procter & Gamble Company; 8700 Mason Montgomery Road; Mason; OH; U.S.A
| | - S. Zhao
- The Procter & Gamble Company; 8700 Mason Montgomery Road; Mason; OH; U.S.A
| | - J. Wang
- The Procter & Gamble Company; 8700 Mason Montgomery Road; Mason; OH; U.S.A
| | - D. Deng
- P&G Technology Beijing Co., Ltd; No. 35 Yu'an Road B Zone; Shunyi District; Beijing; China
| | - E. Jewell-Motz
- The Procter & Gamble Company; 8700 Mason Montgomery Road; Mason; OH; U.S.A
| | - L. Elstun
- The Procter & Gamble Company; 8700 Mason Montgomery Road; Mason; OH; U.S.A
| |
Collapse
|
28
|
Peñagaricano F, Zorrilla P, Naya H, Robello C, Urioste JI. Gene expression analysis identifies new candidate genes associated with the development of black skin spots in Corriedale sheep. J Appl Genet 2011; 53:99-106. [PMID: 21952730 DOI: 10.1007/s13353-011-0066-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/25/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
The white coat colour of sheep is an important economic trait. For unknown reasons, some animals are born with, and others develop with time, black skin spots that can also produce pigmented fibres. The presence of pigmented fibres in the white wool significantly decreases the fibre quality. The aim of this work was to study gene expression in black spots (with and without pigmented fibres) and white skin by microarray techniques, in order to identify the possible genes involved in the development of this trait. Five unrelated Corriedale sheep were used and, for each animal, the three possible comparisons (three different hybridisations) between the three samples of interest were performed. Differential gene expression patterns were analysed using different t-test approaches. Most of the major genes with well-known roles in skin pigmentation, e.g. ASIP, MC1R and C-KIT, showed no significant difference in the gene expression between white skin and black spots. On the other hand, many of the differentially expressed genes (raw P-value < 0.005) detected in this study, e.g. C-FOS, KLF4 and UFC1, fulfil biological functions that are plausible to be involved in the formation of black spots. The gene expression of C-FOS and KLF4, transcription factors involved in the cellular response to external factors such as ultraviolet light, was validated by quantitative polymerase chain reaction (PCR). This exploratory study provides a list of candidate genes that could be associated with the development of black skin spots that should be studied in more detail. Characterisation of these genes will enable us to discern the molecular mechanisms involved in the development of this feature and, hence, increase our understanding of melanocyte biology and skin pigmentation. In sheep, understanding this phenomenon is a first step towards developing molecular tools to assist in the selection against the presence of pigmented fibres in white wool.
Collapse
Affiliation(s)
- Francisco Peñagaricano
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la Republica, Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|
29
|
Expression of endoplasmic reticulum stress-related factors in the retinas of diabetic rats. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:743780. [PMID: 21904541 PMCID: PMC3166715 DOI: 10.1155/2012/743780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/18/2011] [Accepted: 06/20/2011] [Indexed: 11/17/2022]
Abstract
Recent reports show that ER stress plays an important role in diabetic retinopathy (DR), but ER stress is a complicated process involving a network of signaling pathways and hundreds of factors, What factors involved in DR are not yet understood. We selected 89 ER stress factors from more than 200, A rat diabetes model was established by intraperitoneal injection of streptozotocin (STZ). The expression of 89 ER stress-related factors was found in the retinas of diabetic rats, at both 1- and 3-months after development of diabetes, by quantitative real-time polymerase chain reaction arrays. There were significant changes in expression levels of 13 and 12 ER stress-related factors in the diabetic rat retinas in the first and third month after the development of diabetes, Based on the array results, homocysteine- inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1(HERP), and synoviolin(HRD1) were studied further by immunofluorescence and Western blot. Immunofluorescence and Western blot analyses showed that the expression of HERP was reduced in the retinas of diabetic rats in first and third month. The expression of Hrd1 did not change significantly in the retinas of diabetic rats in the first month but was reduced in the third month.
Collapse
|
30
|
1-(2,4-Dihydroxyphenyl)-3-(2,4-dimethoxy-3-methylpheny)propane inhibits melanin synthesis by dual mechanisms. J Dermatol Sci 2011; 63:115-21. [PMID: 21680155 DOI: 10.1016/j.jdermsci.2011.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND 1-(2,4-Dihydroxyphenyl)-3-(2,4-dimethoxy-3-methylpheny)propane (DP) was reported as a novel tyrosinase inhibitor by Nesterov et al. In previous study, we showed that DP is an antioxidant and accelerates the fading of UVB-induced tan in human skin but details of inhibiting mechanism of DP in melanogenesis remain incomplete. OBJECTIVE To clarify additional mechanisms of DP inhibition of melanogenesis, we studied the effect of DP on tyrosinase processing and degradation. METHODS Tyrosinase inhibition was assessed using mushroom and human tyrosinase. The effect of DP on mRNA and protein levels as well as glycosylation and degradation of tyrosinase was examined using normal human epidermal melanocytes (NHEM). RESULTS DP was 200 times more potent than that of kojic acid in inhibiting mushroom tyrosinase activity. In contrast, DP (IC(50)=200μM) was significantly less effective at inhibiting tyrosinase from NHEM. DP decreased melanin content in cultured NHEM after 7th day (IC(50)=10μM). The IC(50) for DP against human tyrosinase activity was found to be at least 20 times higher than that of melanin synthesis. At a non-cytotoxic concentration DP did not decrease tyrosinase mRNA however protein level decreased by 46% after 48h treatment. DP did not alter the ratio of mature and immature tyrosinase assayed by endo H cleavage. Tyrosinase degradation assays revealed that DP accelerated tyrosinase degradation in NHEM. CONCLUSIONS We found that DP acts through dual mechanisms to reduce melanin synthesis; by inhibition of tyrosinase activity via an anti-oxidant effect, and, more importantly, by the acceleration of tyrosinase degradation.
Collapse
|
31
|
Clark LA, Tsai KL, Starr AN, Nowend KL, Murphy KE. A missense mutation in the 20S proteasome β2 subunit of Great Danes having harlequin coat patterning. Genomics 2011; 97:244-8. [PMID: 21256207 DOI: 10.1016/j.ygeno.2011.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/05/2011] [Accepted: 01/13/2011] [Indexed: 01/27/2023]
Abstract
Harlequin is a pigmentary trait of the domestic dog that is controlled by two autosomal loci: the melanosomal gene, SILV, and a modifier gene, harlequin (H), previously localized to chromosome 9. Heterozygosity for a retrotransposon insertion in SILV and a mutation in H causes a pattern of black patches on a white background. Homozygosity for H is embryonic lethal. Fine mapping of the harlequin locus revealed a 25 kb interval wherein all harlequin Great Danes are heterozygous for a common haplotype. This region contains one gene, PSMB7, which encodes the β2 catalytic subunit of the proteasome. Sequence analysis identified a coding variant in exon 2 that segregates with harlequin patterning. The substitution predicts the replacement of a highly conserved valine with a glycine. Described herein is the identification of a naturally-occurring mutation of the ubiquitin proteasome system that is associated with a discernable phenotype of dogs.
Collapse
Affiliation(s)
- Leigh Anne Clark
- Department of Genetics and Biochemistry, College of Agriculture, Forestry, and Life Sciences, Clemson University, Clemson, SC 29634-0318, USA.
| | | | | | | | | |
Collapse
|
32
|
Tamura K, Ohbayashi N, Ishibashi K, Fukuda M. Structure-function analysis of VPS9-ankyrin-repeat protein (Varp) in the trafficking of tyrosinase-related protein 1 in melanocytes. J Biol Chem 2010; 286:7507-21. [PMID: 21187289 DOI: 10.1074/jbc.m110.191205] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because Varp (VPS9-ankyrin-repeat protein)/Ankrd27 specifically binds two small GTPases, Rab32 and Rab38, which redundantly regulate the trafficking of melanogenic enzymes in mammalian epidermal melanocytes, it has recently been implicated in the regulation of trafficking of a melanogenic enzyme tyrosinase-related protein 1 (Tyrp1) to melanosomes. However, the functional interaction between Rab32/38 and Varp and the involvement of the VPS9 domain (i.e. Rab21-GEF domain) in Tyrp1 trafficking have never been elucidated. In this study, we succeeded in identifying critical residues of Rab32/38 and Varp that are critical for the formation of the Rab32/38·Varp complex by performing Ala-based site-directed mutagenesis, and we discovered that a conserved Val residue in the switch II region of Rab32(Val-92) and Rab38(Val-78) is required for Varp binding activity and that its point mutant, Rab38(V78A), does not support Tyrp1 trafficking in Rab32/38-deficient melanocytes. We also identified two critical residues for Rab32/38 binding in the Varp ANKR1 domain and demonstrated that their point mutants, Varp(Q509A) and Varp(Y550A), do not support peripheral melanosomal distribution of Tyrp1 in Varp-deficient cells. Interestingly, the VPS9 domain point mutants, Varp(D310A) and Varp(Y350A), did support Tyrp1 trafficking in Varp-deficient cells, and knockdown of Rab21 had no effect on Tyrp1 distribution. We also found evidence for the functional interaction between a vesicle SNARE VAMP7/TI-VAMP and Varp in Tyrp1 trafficking. These results collectively indicated that both the Rab32/38 binding activity and VAMP7 binding activity of Varp are essential for trafficking of Tyrp1 in melanocytes but that activation of Rab21 by the VPS9 domain is not necessary for Tyrp1 trafficking.
Collapse
Affiliation(s)
- Kanako Tamura
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | |
Collapse
|
33
|
Yang CH, Chen YS, Lai JS, Hong WWL, Lin CC. Determination of the thermodegradation of deoxyArbutin in aqueous solution by high performance liquid chromatography. Int J Mol Sci 2010; 11:3977-87. [PMID: 21152314 PMCID: PMC2996804 DOI: 10.3390/ijms11103977] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/30/2010] [Accepted: 10/13/2010] [Indexed: 11/16/2022] Open
Abstract
Tyrosinase is the key and rate-limiting enzyme responsible for the conversion of tyrosine into melanin. Competitive inhibition of tyrosinase enzymatic activity results in decreased or absent melanin synthesis by melanocytes in human skin. DeoxyArbutin (4-[(tetrahydro-2H-pyran-2-yl)oxy]phenol), a novel skin whitening agent, was synthesized through the removal of hydroxyl groups from the glucose side-chain of arbutin. DeoxyArbutin not only shows greater inhibition of tyrosinase activity but is also safer than hydroquinone and arbutin. Hence, deoxyArbutin is a potential skin whitening agent for cosmetics and depigmenting drugs; however, stability of this compound under some conditions remains a problem. The lack of stability poses developmental and practical difficulties for the use of deoxyArbutin in cosmetics and medicines. Improving the thermostability of deoxyArbutin is an important issue for its development. In this research, we established an analytical procedure to verify the amount of deoxyArbutin in solutions using a high performance liquid chromatographic (HPLC) method. The results indicate that this novel skin whitening agent is a thermolabile compound in aqueous solutions. Additionally, the rate constant for thermodegradation (k) and the half-life (t(1/2)) of deoxyArbutin were determined and can be used to understand the thermodegradation kinetics of deoxyArbutin. This information can aid in the application of deoxyArbutin for many future uses.
Collapse
Affiliation(s)
- Chao-Hsun Yang
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung, 43301, Taiwan; E-Mails: (C.-H.Y.); (Y.-S.C.); (J.-S.L.)
| | - Yi-Shyan Chen
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung, 43301, Taiwan; E-Mails: (C.-H.Y.); (Y.-S.C.); (J.-S.L.)
| | - Jeng-Shiow Lai
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung, 43301, Taiwan; E-Mails: (C.-H.Y.); (Y.-S.C.); (J.-S.L.)
| | - Willy W. L. Hong
- R&D Department, Denjelly Co., Ltd., 60 Jiabei 2nd St., Jhunan, Miaoli, 35058, Taiwan; E-Mail: (W.W.L.H.)
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung, 43301, Taiwan; E-Mails: (C.-H.Y.); (Y.-S.C.); (J.-S.L.)
- * Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-26328001 ext. 15409; Fax: +886-4-26311167
| |
Collapse
|
34
|
Anti-ageing and rejuvenating effects of quercetin. Exp Gerontol 2010; 45:763-71. [PMID: 20619334 DOI: 10.1016/j.exger.2010.07.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/31/2010] [Accepted: 07/01/2010] [Indexed: 12/22/2022]
Abstract
Homeostasis is a key feature of the cellular lifespan. Its maintenance influences the rate of ageing and it is determined by several factors, including efficient proteolysis. The proteasome is the major cellular proteolytic machinery responsible for the degradation of both normal and damaged proteins. Alterations of proteasome function have been recorded in various biological phenomena including ageing and replicative senescence. Proteasome activities and function are decreased upon replicative senescence, whereas proteasome activation confers enhanced survival against oxidative stress, lifespan extension and maintenance of the young morphology longer in human primary fibroblasts. Several natural compounds possess anti-ageing/anti-oxidant properties. In this study, we have identified quercetin (QUER) and its derivative, namely quercetin caprylate (QU-CAP) as a proteasome activator with anti-oxidant properties that consequently influence cellular lifespan, survival and viability of HFL-1 primary human fibroblasts. Moreover, when these compounds are supplemented to already senescent fibroblasts, a rejuvenating effect is observed. Finally, we show that these compounds promote physiological alterations when applied to cells (i.e. whitening effect). In summary, these data demonstrate the existence of naturally occurring anti-ageing products that can be effectively used through topical application.
Collapse
|