1
|
Ravichandran S, Kandaswamy K, Muthu K. Evaluation of lupeol-chitosan nanoparticles infused cellulose acetate membranes for enhanced in-vitro anticancer and antidiabetic activities. CHEMOSPHERE 2024; 351:141149. [PMID: 38218233 DOI: 10.1016/j.chemosphere.2024.141149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
This study utilizes the abundance of pharmacologically active compounds found in natural products and concentrates on the promising anticancer agent lupeol (LUP). The limited water solubility and bioavailability of lupeol have limited its therapeutic utility. To test their potential for treating diabetes and cancer, we synthesized lupeol@chitosan (LUP@CS) nanoparticles encapsulated in cellulose acetate (CA) membranes (LUP@CS/CA). Extensive characterization, including Scanning electron microscopy, Thermogravimetric analysis, X-ray photoelectron spectroscopy, and mechanical strength analysis, confirmed the membrane's structural integrity and drug release capacity. Notably, in vitro experiments utilizing A431 human skin cancer cells revealed remarkable anticancer activity, positioning the membrane as a potential novel therapeutic agent for the treatment of skin cancer. Inhibiting carbohydrate-digesting enzymes effectively, as evidenced by IC50 values as low as 54.56 mg/mL, the membrane also exhibited significant antidiabetic potential. These results demonstrate the multifarious potential of the membrane, which offers promise for both the treatment of skin cancer and the management of diabetes, and has significant implications for nano biological applications.
Collapse
Affiliation(s)
- Siranjeevi Ravichandran
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Kala Kandaswamy
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India.
| | - Kannan Muthu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
2
|
Li L, Guo W, Zhang S, Guo R, Zhang L. Electrospun Nanofiber Membrane: An Efficient and Environmentally Friendly Material for the Removal of Metals and Dyes. Molecules 2023; 28:molecules28083288. [PMID: 37110521 PMCID: PMC10144585 DOI: 10.3390/molecules28083288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
With the rapid development of nanotechnology, electrospun nanofiber membranes (ENM) application and preparation methods have attracted attention. With many advantages such as high specific surface area, obvious interconnected structure, and high porosity, ENM has been widely used in many fields, especially in water treatment, with more advantages. ENM solves the shortcomings of traditional means, such as low efficiency, high energy consumption, and difficulty in recycling, and it is suitable for recycling and treatment of industrial wastewater. This review begins with a description of electrospinning technology, describing the structure, preparation methods, and factors of common ENMs. At the same time, the removal of heavy metal ions and dyes by ENMs is introduced. The mechanism of ENM adsorption on heavy metal ions and dyes is chelation or electrostatic attraction, which has excellent adsorption and filtration ability for heavy metal ions and dyes, and the adsorption capacity of ENMs for heavy metal ions and dyes can be improved by increasing the metal chelation sites. Therefore, this technology and mechanism can be exploited to develop new, better, and more effective separation methods for the removal of harmful pollutants to cope with the gradually increasing water scarcity and pollution. Finally, it is hoped that this review will provide some guidance and direction for research on wastewater treatment and industrial production.
Collapse
Affiliation(s)
- Li Li
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and Polyphosphazenes for Biomedical Applications. Molecules 2022; 27:8117. [PMID: 36500209 PMCID: PMC9736570 DOI: 10.3390/molecules27238117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclic and polyphosphazenes are extremely interesting and versatile substrates characterized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge number of new materials for industrial applications. Their properties can be designed considering the number of repetitive units and the nature of the substituent groups, opening up to a number of peculiar properties, including the ability to give rise to supramolecular arrangements. We focused our attention on the extensive scientific literature concerning their biomedical applications: as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based systems and their characterization, together with some of the most relevant chemical strategies to obtain biomaterials, have been described.
Collapse
Affiliation(s)
- Girolamo Casella
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Silvia Carlotto
- Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Francesco Lanero
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Hadjianfar M, Semnani D, Varshosaz J. Polycaprolactone/chitosan blend nanofibers loaded by 5-fluorouracil: An approach to anticancer drug delivery system. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4417] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mehdi Hadjianfar
- Department of Textile Engineering; Isfahan University of Technology; Isfahan Iran
| | - Dariush Semnani
- Department of Textile Engineering; Isfahan University of Technology; Isfahan Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center; Isfahan University of Medical Sciences; Isfahan Iran
| |
Collapse
|
5
|
Calamak S, Shahbazi R, Eroglu I, Gultekinoglu M, Ulubayram K. An overview of nanofiber-based antibacterial drug design. Expert Opin Drug Discov 2017; 12:391-406. [DOI: 10.1080/17460441.2017.1290603] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Semih Calamak
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Institute for Graduate Studies in Science Engineering, Ankara, Turkey
| | - Reza Shahbazi
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Institute for Graduate Studies in Science Engineering, Ankara, Turkey
| | - Ipek Eroglu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Institute for Graduate Studies in Science Engineering, Ankara, Turkey
| | - Merve Gultekinoglu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
- Department of Bioengineering, Hacettepe University, Institute for Graduate Studies in Science & Engineering, Ankara, Turkey
| | - Kezban Ulubayram
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Institute for Graduate Studies in Science Engineering, Ankara, Turkey
- Department of Bioengineering, Hacettepe University, Institute for Graduate Studies in Science & Engineering, Ankara, Turkey
- Department of Polymer Sciences and Technology, Hacettepe University, Institute for Graduate Studies in Science & Engineering, Ankara, Turkey
| |
Collapse
|
6
|
Zamani F, Jahanmard F, Ghasemkhah F, Amjad-Iranagh S, Bagherzadeh R, Amani-Tehran M, Latifi M. Nanofibrous and nanoparticle materials as drug-delivery systems. NANOSTRUCTURES FOR DRUG DELIVERY 2017:239-270. [DOI: 10.1016/b978-0-323-46143-6.00007-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Chen C, Zhu XY, Gao QL, Fang F, Wang LW, Huang XJ. Immobilization of lipase onto functional cyclomatrix polyphosphazene microspheres. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Eş I, Vieira JDG, Amaral AC. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 2015; 99:2065-82. [DOI: 10.1007/s00253-015-6390-y] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 11/28/2022]
|
9
|
|
10
|
Qian W, Yu DG, Li Y, Liao YZ, Wang X, Wang L. Dual drug release electrospun core-shell nanofibers with tunable dose in the second phase. Int J Mol Sci 2014; 15:774-86. [PMID: 24406731 PMCID: PMC3907837 DOI: 10.3390/ijms15010774] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/26/2013] [Accepted: 12/27/2013] [Indexed: 11/16/2022] Open
Abstract
This study reports a new type of drug-loaded core-shell nanofibers capable of providing dual controlled release with tunable dose in the second phase. The core-shell nanofibers were fabricated through a modified coaxial electrospinning using a Teflon-coated concentric spinneret. Poly(vinyl pyrrolidone) and ethyl cellulose were used as the shell and core polymer matrices respectively, and the content of active ingredient acetaminophen (APAP) in the core was programmed. The Teflon-coated concentric spinneret may facilitate the efficacious and stable preparation of core-shell nanofibers through the modified coaxial electrospinning, where the core fluids were electrospinnable and the shell fluid had no electrospinnability. The resultant nanofibers had linear morphologies and clear core-shell structures, as observed by the scanning and transmission electron microscopic images. APAP was amorphously distributed in the shell and core polymer matrices due to the favorite second-order interactions, as indicated by the X-ray diffraction and FTIR spectroscopic tests. The results from the in vitro dissolution tests demonstrated that the core-shell nanofibers were able to furnish the desired dual drug controlled-release profiles with a tunable drug release amount in the second phase. The modified coaxial electrospinning is a useful tool to generate nanostructures with a tailored components and compositions in their different parts, and thus to realize the desired functional performances.
Collapse
Affiliation(s)
- Wei Qian
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ying Li
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yao-Zu Liao
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xia Wang
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Lu Wang
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
11
|
Matlock-Colangelo L, Baeumner AJ. Biologically inspired nanofibers for use in translational bioanalytical systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:23-42. [PMID: 25014340 DOI: 10.1146/annurev-anchem-071213-020035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electrospun nanofiber mats are characterized by large surface-area-to-volume ratios, high porosities, and a diverse range of chemical functionalities. Although electrospun nanofibers have been used successfully to increase the immobilization efficiency of biorecognition elements and improve the sensitivity of biosensors, the full potential of nanofiber-based biosensing has not yet been realized. Therefore, this review presents novel electrospun nanofiber chemistries developed in fields such as tissue engineering and drug delivery that have direct application within the field of biosensing. Specifically, this review focuses on fibers that directly encapsulate biological additives that serve as immobilization matrices for biological species and that are used to create biomimetic scaffolds. Biosensors that incorporate these nanofibers are presented, along with potential future biosensing applications such as the development of cell culture and in vivo sensors.
Collapse
Affiliation(s)
- Lauren Matlock-Colangelo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853; ,
| | | |
Collapse
|
12
|
Son YJ, Kim WJ, Yoo HS. Therapeutic applications of electrospun nanofibers for drug delivery systems. Arch Pharm Res 2013; 37:69-78. [DOI: 10.1007/s12272-013-0284-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/29/2013] [Indexed: 01/01/2023]
|
13
|
Fast disintegrating quercetin-loaded drug delivery systems fabricated using coaxial electrospinning. Int J Mol Sci 2013; 14:21647-59. [PMID: 24185912 PMCID: PMC3856026 DOI: 10.3390/ijms141121647] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 10/26/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022] Open
Abstract
The objective of this study is to develop a structural nanocomposite of multiple components in the form of core-sheath nanofibres using coaxial electrospinning for the fast dissolving of a poorly water-soluble drug quercetin. Under the selected conditions, core-sheath nanofibres with quercetin and sodium dodecyl sulphate (SDS) distributed in the core and sheath part of nanofibres, respectively, were successfully generated, and the drug content in the nanofibres was able to be controlled simply through manipulating the core fluid flow rates. Field emission scanning electron microscope (FESEM) images demonstrated that the nanofibres prepared from the single sheath fluid and double core/sheath fluids (with core-to-sheath flow rate ratios of 0.4 and 0.7) have linear morphology with a uniform structure and smooth surface. The TEM images clearly demonstrated the core-sheath structures of the produced nanocomposites. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results verified that quercetin and SDS were well distributed in the polyvinylpyrrolidone (PVP) matrix in an amorphous state, due to the favourite second-order interactions. In vitro dissolution studies showed that the core-sheath composite nanofibre mats could disintegrate rapidly to release quercetin within 1 min. The study reported here provides an example of the systematic design, preparation, characterization and application of a new type of structural nanocomposite as a fast-disintegrating drug delivery system.
Collapse
|
14
|
Zhao W, Yang RJ, Qian TT, Hua X, Zhang WB, Katiyo W. Preparation of novel poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted core-shell magnetic chitosan microspheres and immobilization of lactase. Int J Mol Sci 2013; 14:12073-89. [PMID: 23743822 PMCID: PMC3709774 DOI: 10.3390/ijms140612073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/19/2013] [Accepted: 05/31/2013] [Indexed: 11/16/2022] Open
Abstract
Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted magnetic chitosan microspheres (HG-MCM) were prepared using reversed-phase suspension polymerization method. The HG-MCM presented a core-shell structure and regular spherical shape with poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) grafted onto the chitosan layer coating the Fe3O4 cores. The average diameter of the magnetic microspheres was 10.67 μm, within a narrow size distribution of 6.6–17.4 μm. The saturation magnetization and retentivity of the magnetic microspheres were 7.0033 emu/g and 0.6273 emu/g, respectively. The application of HG-MCM in immobilization of lactase showed that the immobilized enzyme presented higher storage, pH and thermal stability compared to the free enzyme. This indicates that HG-MCM have potential applications in bio-macromolecule immobilization.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, China; E-Mails: (W.Z.); (X.H.); (W.-B.Z.); (W.K.)
| | - Rui-Jin Yang
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-510-8591-9150
| | - Ting-Ting Qian
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, China; E-Mail:
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, China; E-Mails: (W.Z.); (X.H.); (W.-B.Z.); (W.K.)
| | - Wen-Bin Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, China; E-Mails: (W.Z.); (X.H.); (W.-B.Z.); (W.K.)
| | - Wendy Katiyo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Wuxi 214122, China; E-Mails: (W.Z.); (X.H.); (W.-B.Z.); (W.K.)
| |
Collapse
|