1
|
Muhseena N K, Mathukkada S, Das SP, Laha S. The repair gene BACH1 - a potential oncogene. Oncol Rev 2021; 15:519. [PMID: 34322202 PMCID: PMC8273628 DOI: 10.4081/oncol.2021.519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACH1 encodes for a protein that belongs to RecQ DEAH helicase family and interacts with the BRCT repeats of BRCA1. The N-terminus of BACH1 functions in DNA metabolism as DNA-dependent ATPase and helicase. The C-terminus consists of BRCT domain, which interacts with BRCA1 and this interaction is one of the major regulator of BACH1 function. BACH1 plays important roles both in phosphorylated as well as dephosphorylated state and functions in coordination with multiple signaling molecules. The active helicase property of BACH1 is maintained by its dephosphorylated state. Imbalance between these two states enhances the development and progression of the diseased condition. Currently BACH1 is known as a tumor suppressor gene based on the presence of its clinically relevant mutations in different cancers. Through this review we have justified it to be named as an oncogene. In this review, we have explained the mechanism of how BACH1 in collaboration with BRCA1 or independently regulates various pathways like cell cycle progression, DNA replication during both normal and stressed situation, recombination and repair of damaged DNA, chromatin remodeling and epigenetic modifications. Mutation and overexpression of BACH1 are significantly found in different cancer types. This review enlists the molecular players which interact with BACH1 to regulate DNA metabolic functions, thereby revealing its potential for cancer therapeutics. We have identified the most mutated functional domain of BACH1, the hot spot for tumorigenesis, justifying it as a target molecule in different cancer types for therapeutics. BACH1 has high potentials of transforming a normal cell into a tumor cell if compromised under certain circumstances. Thus, through this review, we justify BACH1 as an oncogene along with the existing role of being a tumor suppressant.
Collapse
Affiliation(s)
- Katheeja Muhseena N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sooraj Mathukkada
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
2
|
Gao M, He Y, Tang H, Chen X, Liu S, Tao Y. cGAS/STING: novel perspectives of the classic pathway. MOLECULAR BIOMEDICINE 2020; 1:7. [PMID: 35006429 PMCID: PMC8603984 DOI: 10.1186/s43556-020-00006-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023] Open
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor and innate immune response initiator. Binding with exogenous or endogenous nucleic acids, cGAS activates its downstream adaptor, stimulator of interferon genes (STING). STING then triggers protective immune to enable the elimination of the pathogens and the clearance of cancerous cells. Apparently, aberrantly activated by self-DNA, cGAS/STING pathway is threatening to cause autoimmune and inflammatory diseases. The effects of cGAS/STING in defenses against infection and autoimmune diseases have been well studied, still it is worthwhile to discuss the roles of cGAS/STING pathway beyond the “classical” realm of innate immunity. Recent studies have revealed its involvement in non-canonical inflammasome formation, calcium hemostasis regulation, endoplasmic reticulum (ER) stress response, perception of leaking mitochondrial DNA (mtDNA), autophagy induction, cellular senescence and senescence-associated secretory phenotype (SASP) production, providing an exciting area for future exploration. Previous studies generally focused on the function of cGAS/STING pathway in cytoplasm and immune response. In this review, we summarize the latest research of this pathway on the regulation of other physiological process and STING independent reactions to DNA in micronuclei and nuclei. Together, these studies provide a new perspective of cGAS/STING pathway in human diseases.
Collapse
Affiliation(s)
- Menghui Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yuchen He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiangyu Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
3
|
Wnt signaling induces radioresistance through upregulating HMGB1 in esophageal squamous cell carcinoma. Cell Death Dis 2018; 9:433. [PMID: 29567990 PMCID: PMC5864958 DOI: 10.1038/s41419-018-0466-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
Although many articles have uncovered that Wnt signaling is involved in radioresistance, the mechanism is rarely reported. Here we generated two radioresistant cells rECA109 and rKyse150 from parental esophageal cancer cells ECA109 and Kyse150. We then found that Wnt signaling activity was higher in radioresistant cells and was further activated upon ionizing radiation (IR) exposure. In addition, radioresistant cells acquired epithelial-to-mesenchymal transition (EMT) properties and stem quality. Wnt signaling was then found to be involved in radioresistance by promoting DNA damage repair. In our present study, high-mobility group box 1 protein (HMGB1), a chromatin-associated protein, was firstly found to be transactivated by Wnt signaling and mediate Wnt-induced radioresistance. The role of HMGB1 in the regulation of DNA damage repair with the activation of DNA damage checkpoint response in response to IR was the main cause of HMGB1-induced radioresistance.
Collapse
|
4
|
Baicalin hydrate inhibits cancer progression in nasopharyngeal carcinoma by affecting genome instability and splicing. Oncotarget 2017; 9:901-914. [PMID: 29416665 PMCID: PMC5787522 DOI: 10.18632/oncotarget.22868] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/20/2017] [Indexed: 01/08/2023] Open
Abstract
Baicalin hydrate (BH), a natural compound, has been investigated for many years because of its traditional medicinal properties. However, the anti-tumor activities of BH and its epigenetic role in NPC have not been elucidated. In this study, we identified that BH inhibits NPC cell growth in vivo and in vitro by inducing apoptosis and cell cycle arrest. BH epigenetically regulated genome instability by up-regulating the expression of satellite 2 (Sat2), alpha satellite (α-Sat), and major satellite (Major-Sat). BH also increased the level of IKKα, Suv39H1, and H3K9me3 and decreased LSH expression. Interestingly, BH promoted the splicing of Suv39H1 via the enhancement of m6A RNA methylation, rather than DNA methylation. Taken together, our results demonstrated that BH has an anti-tumor role in NPC and revealed a unique role of BH in genome instability and splicing in response to DNA damage.
Collapse
|
5
|
González-Arzola K, Díaz-Quintana A, Rivero-Rodríguez F, Velázquez-Campoy A, De la Rosa MA, Díaz-Moreno I. Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c. Nucleic Acids Res 2017; 45:2150-2165. [PMID: 27924001 PMCID: PMC5389710 DOI: 10.1093/nar/gkw1215] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Higher-order plants and mammals use similar mechanisms to repair and tolerate oxidative DNA damage. Most studies on the DNA repair process have focused on yeast and mammals, in which histone chaperone-mediated nucleosome disassembly/reassembly is essential for DNA to be accessible to repair machinery. However, little is known about the specific role and modulation of histone chaperones in the context of DNA damage in plants. Here, the histone chaperone NRP1, which is closely related to human SET/TAF-Iβ, was found to exhibit nucleosome assembly activity in vitro and to accumulate in the chromatin of Arabidopsis thaliana after DNA breaks. In addition, this work establishes that NRP1 binds to cytochrome c, thereby preventing the former from binding to histones. Since NRP1 interacts with cytochrome c at its earmuff domain, that is, its histone-binding domain, cytochrome c thus competes with core histones and hampers the activity of NRP1 as a histone chaperone. Altogether, the results obtained indicate that the underlying molecular mechanisms in nucleosome disassembly/reassembly are highly conserved throughout evolution, as inferred from the similar inhibition of plant NRP1 and human SET/TAF-Iβ by cytochrome c during DNA damage response.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonio Díaz-Quintana
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Rivero-Rodríguez
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit Institute of Physical Chemistry Rocasolano (IQFR)-BIFI-Spanish National Research Council (CSIC), University of Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, Spain.,Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); and Aragon Agency for Research and Development (ARAID), Regional Government of Aragon, Maria de Luna 11, 50018 Zaragoza, Spain
| | - Miguel A De la Rosa
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
6
|
Jia J, Shi Y, Chen L, Lai W, Yan B, Jiang Y, Xiao D, Xi S, Cao Y, Liu S, Cheng Y, Tao Y. Decrease in Lymphoid Specific Helicase and 5-hydroxymethylcytosine Is Associated with Metastasis and Genome Instability. Am J Cancer Res 2017; 7:3920-3932. [PMID: 29109788 PMCID: PMC5667415 DOI: 10.7150/thno.21389] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022] Open
Abstract
DNA methylation is an important epigenetic modification as a hallmark in cancer. Conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) by ten-eleven translocation (TET) family enzymes plays an important biological role in embryonic stem cells, development, aging and disease. Lymphoid specific helicase (LSH), a chromatin remodeling factor, is regarded as a reader of 5-hmC. Recent reports show that the level of 5-hmC is altered in various types of cancers. However, the change in 5-hmC levels in cancer and associated metastasis is not well defined. We report that the level of 5-hmC was decreased in metastatic tissues of nasopharyngeal carcinoma, breast cancer, and colon cancer relative to that in non-metastasis tumor tissues. Furthermore, our data show that TET2, but not TET3, interacted with LSH, whereas LSH increased TET2 expression through silencing miR-26b-5p and miR-29c-5p. Finally, LSH promoted genome stability by silencing satellite expression by affecting 5-hmC levels in pericentromeric satellite repeats, and LSH was resistant to cisplatin-induced DNA damage. Our data indicate that 5-hmC might serve as a metastasis marker for cancer and that the decreased expression of LSH is likely one of the mechanisms of genome instability underlying 5-hmC loss in cancer.
Collapse
|
7
|
Cramer D, Serrano L, Schaefer MH. A network of epigenetic modifiers and DNA repair genes controls tissue-specific copy number alteration preference. eLife 2016; 5. [PMID: 27831464 PMCID: PMC5122459 DOI: 10.7554/elife.16519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/02/2016] [Indexed: 01/22/2023] Open
Abstract
Copy number alterations (CNAs) in cancer patients show a large variability in their number, length and position, but the sources of this variability are not known. CNA number and length are linked to patient survival, suggesting clinical relevance. We have identified genes that tend to be mutated in samples that have few or many CNAs, which we term CONIM genes (COpy Number Instability Modulators). CONIM proteins cluster into a densely connected subnetwork of physical interactions and many of them are epigenetic modifiers. Therefore, we investigated how the epigenome of the tissue-of-origin influences the position of CNA breakpoints and the properties of the resulting CNAs. We found that the presence of heterochromatin in the tissue-of-origin contributes to the recurrence and length of CNAs in the respective cancer type. DOI:http://dx.doi.org/10.7554/eLife.16519.001 Cancer is a genetic disease that develops when a cell’s DNA becomes altered. There are several different types of DNA alterations and one that is frequently seen in cancer cells is known as a “copy number alteration” (or CNA for short). These CNAs arise when breaks in the DNA are repaired incorrectly, leading to some pieces of DNA being multiplied while others are lost. Ultimately, CNAs contribute to cancer growth either by providing extra copies of genes that drive tumour development or by deleting genes that normally protect against cancer. However, it is not known why patients with some types of cancer tend to have more CNAs than others and why some DNA regions are particularly susceptible to this type of alteration. Cramer et al. asked whether cancer patients have any other genetic mutations that might be linked with having many or few CNAs. Analysing datasets from almost 6000 patients with 20 different types of cancer showed that mutations in several genes are linked to a higher or lower number of CNAs in patients. Cramer et al. called the proteins encoded by these genes “copy number instability modulators” (or CONIMs for short). Further investigation revealed that several of these CONIM proteins can change the way DNA is packaged inside cells. Furthermore, many of the regions of DNA that are vulnerable to CNAs in cancer cells are tightly packaged within healthy cells. These data suggest that the three-dimensional arrangement of DNA in cells influences where CNAs occur. The next step following on from this work is to find out exactly how the CONIM proteins influence the formation of CNAs. DOI:http://dx.doi.org/10.7554/eLife.16519.002
Collapse
Affiliation(s)
- Dina Cramer
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Martin H Schaefer
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
8
|
Jiang Y, Yan B, Lai W, Shi Y, Xiao D, Jia J, Liu S, Li H, Lu J, Li Z, Chen L, Chen X, Sun L, Muegge K, Cao Y, Tao Y. Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8. Oncogene 2015; 34:6079-91. [PMID: 25745994 PMCID: PMC4564361 DOI: 10.1038/onc.2015.53] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 12/26/2022]
Abstract
Epstein-Barr virus (EBV) causes human lymphoid malignancies, and the EBV product latent membrane protein 1 (LMP1) has been identified as an oncogene in epithelial carcinomas such as nasopharyngeal carcinoma (NPC). EBV can epigenetically reprogram lymphocyte-specific processes and induce cell immortalization. However, the interplay between LMP1 and the NPC host cell remains largely unknown. Here, we report that LMP1 is important to establish the Hox gene expression signature in NPC cell lines and tumor biopsies. LMP1 induces repression of several Hox genes in part via stalling of RNA polymerase II (RNA Pol II). Pol II stalling can be overcome by irradiation involving the epigenetic regulator TET3. Furthermore, we report that HoxC8, one of the genes silenced by LMP1, has a role in tumor growth. Ectopic expression of HoxC8 inhibits NPC cell growth in vitro and in vivo, modulates glycolysis and regulates the expression of tricarboxylic acid (TCA) cycle-related genes. We propose that viral latency products may repress via stalling key mediators that in turn modulate glycolysis.
Collapse
Affiliation(s)
- Yiqun Jiang
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Bin Yan
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Weiwei Lai
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Ying Shi
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 China
| | - Jiantao Jia
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008 China
| | - Shuang Liu
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008 China
| | - Hongde Li
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Jinchen Lu
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Ling Chen
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Xue Chen
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Lunqun Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, National Cancer Institute, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Ya Cao
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Yongguang Tao
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| |
Collapse
|
9
|
Li DQ, Yang Y, Kumar R. MTA family of proteins in DNA damage response: mechanistic insights and potential applications. Cancer Metastasis Rev 2014; 33:993-1000. [PMID: 25332144 PMCID: PMC4302735 DOI: 10.1007/s10555-014-9524-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The DNA damage, most notably DNA double-strand breaks, poses a serious threat to the stability of mammalian genome. Maintenance of genomic integrity is largely dependent on an efficient, accurate, and timely DNA damage response in the context of chromatin. Consequently, dysregulation of the DNA damage response machinery is fundamentally linked to the genomic instability and a likely predisposition to cancer. In turn, aberrant activation of DNA damage response pathways in human cancers enables tumor cells to survive DNA damages, thus, leading to the development of resistance of tumor cells to DNA damaging radio- and chemotherapies. A substantial body of experimental evidence has established that ATP-dependent chromatin remodeling and histone modifications play a central role in the DNA damage response. As a component of the nucleosome remodeling and histone deacetylase (NuRD) complex that couples both ATP-dependent chromatin remodeling and histone deacetylase activities, the metastasis-associated protein (MTA) family proteins have been recently shown to participate in the DNA damage response beyond its well-established roles in gene transcription. In this thematic review, we will focus on our current understandings of the role of the MTA family proteins in the DNA damage response and their potential implications in DNA damaging anticancer therapy.
Collapse
Affiliation(s)
- Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China,
| | | | | |
Collapse
|
10
|
Sonzogni SV, Ogara MF, Castillo DS, Sirkin PF, Radicella JP, Cánepa ET. Nuclear translocation of p19INK4d in response to oxidative DNA damage promotes chromatin relaxation. Mol Cell Biochem 2014; 398:63-72. [DOI: 10.1007/s11010-014-2205-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/30/2014] [Indexed: 12/23/2022]
|
11
|
Bariar B, Vestal CG, Richardson C. Long-term effects of chromatin remodeling and DNA damage in stem cells induced by environmental and dietary agents. J Environ Pathol Toxicol Oncol 2014; 32:307-27. [PMID: 24579784 DOI: 10.1615/jenvironpatholtoxicoloncol.2013007980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The presence of histones acts as a barrier to protein access; thus chromatin remodeling must occur for essential processes such as transcription and replication. In conjunction with histone modifications, DNA methylation plays critical roles in gene silencing through chromatin remodeling. Chromatin remodeling is also interconnected with the DNA damage response, maintenance of stem cell properties, and cell differentiation programs. Chromatin modifications have increasingly been shown to produce long-lasting alterations in chromatin structure and transcription. Recent studies have shown environmental exposures in utero have the potential to alter normal developmental signaling networks, physiologic responses, and disease susceptibility later in life during a process known as developmental reprogramming. In this review we discuss the long-term impact of exposure to environmental compounds, the chromatin modifications that they induce, and the differentiation and developmental programs of multiple stem and progenitor cell types altered by exposure. The main focus is to highlight agents present in the human lifestyle that have the potential to promote epigenetic changes that impact developmental programs of specific cell types, may promote tumorigenesis through altering epigenetic marks, and may be transgenerational, for example, those able to be transmitted through multiple cell divisions.
Collapse
Affiliation(s)
- Bhawana Bariar
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC
| | - C Greer Vestal
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC
| | | |
Collapse
|