1
|
Ko IG, Hwang L, Jin JJ, Kim SH, Kim CJ, Choi YH, Kim HY, Yoo JM, Kim SJ. Pirfenidone improves voiding function by suppressing bladder fibrosis in underactive bladder rats. Eur J Pharmacol 2024; 977:176721. [PMID: 38851561 DOI: 10.1016/j.ejphar.2024.176721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Underactive bladder (UAB), characterized by a complex set of symptoms with few treatment options, can significantly reduce the quality of life of affected people. UAB is characterized by hyperplasia and fibrosis of the bladder wall as well as decreased bladder compliance. Pirfenidone is a powerful anti-fibrotic agent that inhibits the progression of fibrosis in people with idiopathic pulmonary fibrosis. In the current study, we evaluated the efficacy of pirfenidone in the treatment of bladder fibrosis in a UAB rat model. UAB was induced by crushing damage to nerve bundles in the major pelvic ganglion. Forty-two days after surgery, 1 mL distilled water containing pirfenidone (100, 300, or 500 mg/kg) was orally administered once every 2 days for a total of 10 times for 20 days to the rats in the pirfenidone-treated groups. Crushing damage to the nerve bundles caused voiding dysfunction, resulting in increased bladder weight and the level of fibrous related factors in the bladder, leading to UAB symptoms. Pirfenidone treatment improved urinary function, increased bladder weight and suppressed the expression of fibrosis factors. The results of this experiment suggest that pirfenidone can be used to ameliorate difficult-to-treat urological conditions such as bladder fibrosis. Therefore, pirfenidone treatment can be considered an option to improve voiding function in patient with incurable UAB.
Collapse
Affiliation(s)
- Il-Gyu Ko
- Research Support Center, School of Medicine, Keimyung University, Deagu, 42601, South Korea
| | - Lakkyong Hwang
- Team of Efficacy Evaluation, Orient Genia Inc, Seongnam-si, 13201, South Korea; Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Jun-Jang Jin
- Team of Efficacy Evaluation, Orient Genia Inc, Seongnam-si, 13201, South Korea; Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Sang-Hoon Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School Rutgers, The Stat University of New Jersey, Piscataway, NJ, USA
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Young Hyo Choi
- Department of Urology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon-si, South Korea
| | - Hee Youn Kim
- Department of Urology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon-si, South Korea
| | - Je Mo Yoo
- Department of Urology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon-si, South Korea
| | - Su Jin Kim
- Department of Urology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon-si, South Korea.
| |
Collapse
|
2
|
Michel MC, Cardozo L, Chermansky CJ, Cruz F, Igawa Y, Lee KS, Sahai A, Wein AJ, Andersson KE. Current and Emerging Pharmacological Targets and Treatments of Urinary Incontinence and Related Disorders. Pharmacol Rev 2023; 75:554-674. [PMID: 36918261 DOI: 10.1124/pharmrev.121.000523] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
Overactive bladder syndrome with and without urinary incontinence and related conditions, signs, and disorders such as detrusor overactivity, neurogenic lower urinary tract dysfunction, underactive bladder, stress urinary incontinence, and nocturia are common in the general population and have a major impact on the quality of life of the affected patients and their partners. Based on the deliberations of the subcommittee on pharmacological treatments of the 7th International Consultation on Incontinence, we present a comprehensive review of established drug targets in the treatment of overactive bladder syndrome and the aforementioned related conditions and the approved drugs used in its treatment. Investigational drug targets and compounds are also reviewed. We conclude that, despite a range of available medical treatment options, a considerable medical need continues to exist. This is largely because the existing treatments are symptomatic and have limited efficacy and/or tolerability, which leads to poor long-term adherence. SIGNIFICANCE STATEMENT: Urinary incontinence and related disorders are prevalent in the general population. While many treatments have been approved, few patients stay on long-term treatment despite none of them being curative. This paper provides a comprehensive discussion of existing and emerging treatment options for various types of incontinence and related disorders.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Linda Cardozo
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Christopher J Chermansky
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Francisco Cruz
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Yasuhiko Igawa
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Kyu-Sung Lee
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Arun Sahai
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Alan J Wein
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Karl-Erik Andersson
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| |
Collapse
|
3
|
Li J, Li S, Wang Y, Shang A. Functional, morphological and molecular characteristics in a novel rat model of spinal sacral nerve injury-surgical approach, pathological process and clinical relevance. Sci Rep 2022; 12:10026. [PMID: 35705577 PMCID: PMC9200741 DOI: 10.1038/s41598-022-13254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Spinal sacral nerve injury represents one of the most serious conditions associated with many diseases such as sacral fracture, tethered cord syndrome and sacral canal tumor. Spinal sacral nerve injury could cause bladder denervation and detrusor underactivity. There is limited clinical experience resolving spinal sacral nerve injury associated detrusor underactivity patients, and thus the treatment options are also scarce. In this study, we established a spinal sacral nerve injury animal model for deeper understanding and further researching of this disease. Forty 8 w (week) old Sprague Dawley rats were included and equally divided into sham (n = 20) and crush group (n = 20). Bilateral spinal sacral nerves of rats were crushed in crush group, and sham group received same procedure without nerve crush. Comprehensive evaluations at three time points (1 w, 4 w and 6 w) were performed to comprehend the nature process of this disease. According to urodynamic test, ultrasonography and retrograde urography, we could demonstrate severe bladder dysfunction after spinal sacral nerve injury along the observation period compared with sham group. These functional changes were further reflected by histological examination (hematoxylin-eosin and Masson's trichrome staining) of microstructure of nerves and bladders. Immunostaining of nerve/bladder revealed schwann cell death, axon degeneration and collagen remodeling of bladder. Polymerase Chain Reaction results revealed vigorous nerve inflammation and bladder fibrosis 1 week after injury and inflammation/fibrosis returned to normal at 4 w. The CatWalk gait analysis was performed and there was no obvious difference between two groups. In conclusion, we established a reliable and reproducible model for spinal sacral nerve injury, this model provided an approach to evaluate the treatment strategies and to understand the pathological process of spinal sacral nerve injuries. It allowed us to understand how nerve degeneration and bladder fibrosis changed following spinal sacral nerve injury and how recovery could be facilitated by therapeutic options for further research.
Collapse
Affiliation(s)
- Junyang Li
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Neurosurgery, General Hospital of Chinese People Liberty Army, No. 28 Fuxing Road, Beijing, 100853, China
| | - Shiqiang Li
- The 80Th Group Army Hospital of Chinese People Liberty Army, Shandong, 261021, China
| | - Yu Wang
- Institute of Orthopedics, 4th, Chinese People Liberty Army General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, People's Republic of China
| | - Aijia Shang
- The School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of Neurosurgery, General Hospital of Chinese People Liberty Army, No. 28 Fuxing Road, Beijing, 100853, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, People's Republic of China.
| |
Collapse
|
4
|
Bone marrow mesenchymal stem cells therapy on bilateral pelvic nerve crush-induced voiding dysfunction in rats. Int Urogynecol J 2022; 33:2485-2492. [PMID: 35451617 DOI: 10.1007/s00192-022-05099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Neurogenic voiding dysfunction can be induced after radical pelvic surgery and severely affects patients' quality of life. This study aims to investigate the effects of bone marrow mesenchymal stem cells (BMSCs) on neurogenic voiding dysfunction in male rats and explore the underlying mechanisms. METHODS Thirty 4-week-old male Sprague-Dawley rats were randomly divided into three groups: (1) sham-operated (sham, n = 10), (2) intrabladder wall injection of phosphate buffer solution (PBS) after bilateral pelvic nerve crush (BPNC+PBS, n = 10), and (3) intrabladder wall injection of BMSCs after bilateral pelvic nerve crush (BPNC+BMSCs, n = 10). Four weeks postoperatively, functional and morphological examinations were performed. RESULTS Compared to the sham group, BPNC rats manifested significant augmentation in the frequency of non-voiding contractions and postvoid residual and bladder capacity, and they had decreases in intravesical pressure and voiding efficiency. However, they were markedly improved after BMSC injection. Masson's trichrome staining showed that the ratio of collagen area in bladder wall tissue significantly increased in the BPNC+PBS group but was reduced following BMSC injection. BPNC increased the protein expression of TGF-β1, Smad2/3, and collagen I/III but decreased the expression of α-SMA. BMSC injection stimulated higher expression levels of α-SMA and lower expression levels of the other target proteins. The expression levels of vesicular acetylcholine transporters were reduced at 4 weeks post-BPNC, whereas injection of BMSCs boosted the expression quantity. CONCLUSIONS BMSC therapy suppressed detrusor fibrosis, improved intravesical pressure and voiding efficiency, and partially restored voiding function in male rats after BPNC.
Collapse
|
5
|
Liang CC, Shaw SWS, Chou HH, Huang YH, Lee TH. Amniotic Fluid Stem Cells Improve Rat Bladder Dysfunction After Pelvic Nerve Transection. Cell Transplant 2021; 29:963689720909387. [PMID: 32452747 PMCID: PMC7444231 DOI: 10.1177/0963689720909387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The effects of human amniotic fluid stem cells (hAFSCs) transplantation on bladder dysfunction after pelvic nerve transection (PNT) remain to be clarified. Five groups of female Sprague-Dawley rats were studied including sham operation, unilateral PNT alone or plus hAFSCs transplantation, and bilateral PNT alone or plus hAFSCs transplantation. hAFSCs were injected at the site of PNT. Cystometries, neurofilament density within bladder nerves, and the expressions of bladder protein gene-product 9.5 (PGP9.5), growth-associated protein 43 (GAP-43), nerve growth factor (NGF), p75 (NGF receptor), CXCL12, CCL7, and enkephalin were studied. Compared to sham-operation group, bladder weight increased and neurofilament density decreased at 10 and 28 days after unilateral and bilateral PNT, but all improved after hAFSCs transplantation. Unilateral PNT could increase bladder capacity, residual volume, and number of nonvoiding contractions but decrease peak voiding pressure and leak point pressure. Bilateral PNT caused overflow incontinence and increased the number of nonvoiding contractions. These cystometric parameters improved after hAFSCs transplantation. After PNT, bladder PGP9.5 mRNA and immunoreactivities decreased at 10 and 28 days, GAP-43 mRNA and immunoreactivities increased at 10 days and decreased at 28 days, both NGF and p75 mRNAs and immunoreactivities increased at 10 and/or 28 days, and enkephalin immunoreactivities decreased at 10 and 28 days, but these were all improved after hAFSCs transplantation. Our results showed that bladder dysfunction induced by PNT could be improved by hAFSCs transplantation, and PGP9.5, GAP-43, and neurotrophins could be involved in the mechanisms of nerve regeneration after hAFSCs transplantation.
Collapse
Affiliation(s)
- Ching-Chung Liang
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan.,College of Medicine, Chang Gung University, Taoyuan
| | - Sheng-Wen Steven Shaw
- College of Medicine, Chang Gung University, Taoyuan.,Division of Obstetrics, Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei.,Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK
| | - Hung-Hsueh Chou
- College of Medicine, Chang Gung University, Taoyuan.,Gynecologic Oncology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan
| | - Yung-Hsin Huang
- Female Urology Section, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan.,Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan
| |
Collapse
|
6
|
Zhu GQ, Jeon SH, Lee KW, Cho HJ, Ha US, Hong SH, Lee JY, Kwon EB, Kim HJ, Lee SM, Kim HY, Kim SW, Bae WJ. Engineered Stem Cells Improve Neurogenic Bladder by Overexpressing SDF-1 in a Pelvic Nerve Injury Rat Model. Cell Transplant 2021; 29:963689720902466. [PMID: 32067480 PMCID: PMC7444235 DOI: 10.1177/0963689720902466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is still a lack of sufficient research on the mechanism behind neurogenic
bladder (NB) treatment. The aim of this study was to explore the effect of
overexpressed stromal cell-derived factor-1 (SDF-1) secreted by engineered
immortalized mesenchymal stem cells (imMSCs) on the NB. In this study, primary
bone marrow mesenchymal stem cells (BM-MSCs) were transfected into immortalized
upregulated SDF-1-engineered BM-MSCs (imMSCs/eSDF-1+) or immortalized normal SDF-1-engineered BM-MSCs
(imMSCs/eSDF-1−). NB rats induced by bilateral pelvic nerve (PN)
transection were treated with imMSCs/eSDF-1+, imMSCs/eSDF-1−, or sham. After a 4-week treatment, the bladder function was assessed by
cystometry and voiding pattern analysis. The PN and bladder tissues were
evaluated via immunostaining and western blotting analysis. We found that imMSCs/eSDF-1+ expressed higher levels of SDF-1 in vitro and in vivo. The treatment of imMSCs/eSDF-1+ improved NB and evidently stimulated the recovery of bladder wall in NB
rats. The recovery of injured nerve was more effective in the NB+imMSCs/eSDF-1+ group than in other groups. High SDF-1 expression improved the levels of
vascular endothelial growth factor and basic fibroblast growth factor. Apoptosis
was decreased after imMSCs injection, and was detected rarely in the NB+imMSCs/eSDF-1+ group. Injection of imMSCs boosted the expression of neuronal nitric
oxide synthase, p-AKT, and p-ERK in the NB+imMSCs/eSDF-1+ group than in other groups. Our findings demonstrated that overexpression
of SDF-1 induced additional MSC homing to the injured tissue, which improved the
NB by accelerating the restoration of injured nerve in a rat model.
Collapse
Affiliation(s)
- Guan Qun Zhu
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Hwan Jeon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyu Won Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuk Jin Cho
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - U-Syn Ha
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Bi Kwon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyo-Jin Kim
- Department of Stem Cell Therapy, SL BIGEN, Seongnam, Republic of Korea
| | - Soon Min Lee
- Department of Stem Cell Therapy, SL BIGEN, Seongnam, Republic of Korea
| | - Hey-Yon Kim
- Department of Stem Cell Therapy, SL BIGEN, Seongnam, Republic of Korea
| | - Sea Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Kuo HC, Jhang JF, Jiang YH, Hsu YH, Ho HC. Pathogenesis evidence from human and animal models of detrusor underactivity. Tzu Chi Med J 2021; 34:287-296. [PMID: 35912048 PMCID: PMC9333099 DOI: 10.4103/tcmj.tcmj_284_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 01/02/2021] [Indexed: 11/06/2022] Open
Abstract
Detrusor underactivity (DU) is a common urodynamic diagnosis in patients with lower urinary tract symptoms and large post-voiding residual volume. Animal and human studies showed the possible etiologies of DU include central or peripheral nerve injury, bladder outlet obstruction, chronic ischemia, aging, diabetes mellitus, and sympathetic inhibition of micturition reflex. Evidence from animal and human DU studies with various etiologies revealed highly similar gross and histological characteristics in the bladders, including increased bladder weight, bladder wall thickening, inflammation, collagen deposition, and fibrosis. In electron microscopy, smooth muscle destruction, swollen mitochondria, decreased nerve innervation, caveolae, and umbrella cell fusiform vesicles were noted in the DU bladders. Most animal DU models demonstrate detrusor contractility changes from compensatory to the decompensatory stage, and the change was compatible with human DU observation. The cystometry in the DU animal studies is characterized by impaired contractility, prolong intercontraction interval, and hyposensation, while in vitro bladder muscle strips experiment may exhibit normal detrusor contractility. Decreased bladder blood flow and increased oxidative stress in bladders had been proved in different animal DU models, suggesting they should be important in the DU pathogenesis pathway. Sensory receptors mRNA and protein expression changes in DU bladders had been observed in both animal and human studies, including muscarinic receptors M2, M3, adrenergic receptor β3, purinergic receptor P2X1, P2X3, and transient receptor potential vanilloid (TRPV) 1 and TRPV4. Although some of the sensory receptors changes remain controversial, it might be the target for further pharmacologic treatments.
Collapse
|
8
|
Sinen O, Bülbül M. The role of autonomic pathways in peripheral apelin-induced gastrointestinal dysmotility: involvement of the circumventricular organs. Exp Physiol 2020; 106:475-485. [PMID: 33347671 DOI: 10.1113/ep089182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are central autonomic pathways and circumventricular organs involved in apelin-induced inhibition of gut motility? What is the main finding and its importance? Peripherally administered apelin-13 inhibits gastric and colonic motor functions through sympathetic and parasympathetic autonomic pathways, which seems to be partly mediated by the apelin receptor in circumventricular organs. ABSTRACT Peripheral administration of apelin-13 has been shown to inhibit gastrointestinal (GI) motility, but the relevant mechanisms are incompletely understood. This study aimed to investigate (i) whether the apelin receptor (APJ) is expressed in circumventricular structures involved in autonomic functions, (ii) whether they are activated by peripherally administered apelin, (iii) the role of autonomic pathways in peripheral exogenous apelin-induced GI dysmotility, and (iv) the changes in apelin levels in the extracellular environment of the brain following its peripheral application. Ninety minutes after apelin-13 administration (300 μg kg-1 , i.p.), gastric emptying (GE) and colon transit (CT) were measured in rats that underwent parasympathectomy and/or sympathectomy. Plasma and cerebrospinal fluid (CSF) samples were also collected from another group of rats that received apelin-13 or vehicle injection. The immunoreactivities for APJ and c-Fos in circumventricular organs (CVOs) were evaluated by immunohistochemistry. Compared with vehicle-treated rats, GE and CT were inhibited significantly by apelin-13 treatment, and were completely restored in animals that underwent the combination of parasympathectomy and sympathectomy and sympathectomy alone, respectively. Apelin concentrations were elevated in both plasma and CSF following peripheral administration of apelin-13. APJ expression was detected in area postrema (AP), subfornical organ and organum vasculosum of lamina terminalis, and c-Fos expression was observed in response to apelin injection. Apelin-induced c-Fos expression in AP was partially attenuated by pretreatment with the cholecystokinin-1 receptor antagonist lorglumide, whereas it was completely abolished in vagotomized rats. The present data suggest that APJ in CVOs could indirectly contribute to the inhibitory action of peripheral apelin on GI motor functions.
Collapse
Affiliation(s)
- Osman Sinen
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Mehmet Bülbül
- Faculty of Medicine, Department of Physiology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
9
|
Aizawa N, Igawa Y. Pathophysiology of the underactive bladder. Investig Clin Urol 2017; 58:S82-S89. [PMID: 29279880 PMCID: PMC5740034 DOI: 10.4111/icu.2017.58.s2.s82] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023] Open
Abstract
Underactive bladder (UAB), which has been described as a symptom complex suggestive of detrusor underactivity, is usually characterized by prolonged urination time with or without a sensation of incomplete bladder emptying, usually with hesitancy, reduced sensation on filling, and slow stream often with storage symptoms. Several causes such as aging, bladder outlet obstruction, diabetes mellitus, neurologic disorders, and nervous injury to the spinal cord, cauda equine, and peripheral pelvic nerve have been assumed to be responsible for the development of UAB. Several contributing factors have been suggested in the pathophysiology of UAB, including myogenic failure, efferent and/or afferent dysfunctions, and central nervous system dysfunction. In this review article, we have described relationships between individual contributing factors and the pathophysiology of UAB based on previous reports. However, many pathophysiological uncertainties still remain, which require more investigations using appropriate animal models.
Collapse
Affiliation(s)
- Naoki Aizawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yasuhiko Igawa
- Department of Continence Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Hannan JL, Powers SA, Wang VM, Castiglione F, Hedlund P, Bivalacqua TJ. Impaired contraction and decreased detrusor innervation in a female rat model of pelvic neuropraxia. Int Urogynecol J 2016; 28:1049-1056. [PMID: 27987021 DOI: 10.1007/s00192-016-3223-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/21/2016] [Indexed: 01/23/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Bilateral pelvic nerve injury (BPNI) is a model of post-radical hysterectomy neuropraxia, a common sequela. This study assessed the time course of changes to detrusor autonomic innervation, smooth muscle (SM) content and cholinergic-mediated contraction post-BPNI. METHODS Female Sprague-Dawley rats underwent BPNI or sham surgery and were evaluated 3, 7, 14, and 30 days post-BPNI (n = 8/group). Electrical field-stimulated (EFS) and carbachol-induced contractions were measured. Gene expression was assessed by qPCR for muscarinic receptor types 2 (M2) and 3 (M3), collagen type 1α1 and 3α1, and SM actin. Western blots measured M2 and M3 protein expression. Bladder sections were stained with Masson's trichrome for SM content and immunofluorescence staining for nerve terminals expressing vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), and neuronal nitric oxide synthase (nNOS). RESULTS Bilateral pelvic nerve injury caused larger bladders with less SM content and increased collagen type 1α1 and 3α1 gene expression. At early time points, cholinergic-mediated contraction increased, whereas EFS-mediated contraction decreased and returned to baseline by 30 days. Protein and gene expression of M3 was decreased 3 and 7 days post-BPNI, whereas M2 was unchanged. TH nerve terminals surrounding the detrusor decreased in all BPNI groups, whereas VAChT and nNOS terminals decreased 14 and 30 days post-BPNI. CONCLUSIONS Bilateral pelvic nerve injury increased bladder size, impaired contractility, and decreased SM and autonomic innervation. Therapeutic strategies preventing nerve injury-mediated decline in neuronal input and SM content may prevent the development of a neurogenic bladder and improve quality of life after invasive pelvic surgery.
Collapse
Affiliation(s)
- Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Mail Stop 634, Greenville, NC, 27834-4354, USA. .,The James Buchanan Brady Urological Institute, and Department of Urology, The Johns Hopkins School of Medicine, 600 North Wolfe Street, Marburg 420, Baltimore, MD, 21287, USA.
| | - Shelby A Powers
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Mail Stop 634, Greenville, NC, 27834-4354, USA
| | - Vinson M Wang
- The James Buchanan Brady Urological Institute, and Department of Urology, The Johns Hopkins School of Medicine, 600 North Wolfe Street, Marburg 420, Baltimore, MD, 21287, USA
| | - Fabio Castiglione
- Unit of Urology, Division of Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.,Laboratory for Experimental Urology, Organ Systems, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Petter Hedlund
- Unit of Urology, Division of Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.,Department of Clinical and Experimental Pharmacology, Lund University, Lund, Sweden
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute, and Department of Urology, The Johns Hopkins School of Medicine, 600 North Wolfe Street, Marburg 420, Baltimore, MD, 21287, USA
| |
Collapse
|