1
|
Liang Y, Zhou H, Yao Y, Deng A, Wang Z, Gao B, Zhou M, Cui Y, Wang L, Zhou L, Wang B, Wang L, Liu A, Qiu L, Qian K, Lu Y, Deng W, Zheng X, Han Z, Li Y, Sun J. 12-O-tetradecanoylphorbol-13-acetate (TPA) increases murine intestinal crypt stem cell survival following radiation injury. Oncotarget 2018; 8:45566-45576. [PMID: 28545017 PMCID: PMC5542208 DOI: 10.18632/oncotarget.17269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 03/22/2017] [Indexed: 01/03/2023] Open
Abstract
Radiation enteropathy is a common complication in cancer patients following radiation therapy. Thus, there is a need for agents that can protect the intestinal epithelium against radiation. 12-O-tetradecanoylphorbol-13-acetate (TPA) has been shown to induce differentiation and/or apoptosis in multiple cell lines and primary cells. In the current report, we studied the function of TPA in radiation induced enteropathy in cultured rat intestinal epithelial cell line IEC-6 after ionizing radiation (IR) and in mice after high dose total-body gamma-IR (TBI). In IEC-6 cells, there were reduced apoptosis and cell cycle arrest in TPA treated cells after IR. We detected a four-fold increase in crypt cell survival and a two-fold increase in animal survival post TBI in TPA treated mice. The beneficial effects of TPA were accompanied by upregulation of stem cells markers and higher level of proteins that are involved in PKC signaling pathway. In addition, TPA also decreased the TBI-augmented levels of the DNA damage indicators. The effects were only observed when TPA was given before irradiation. These results suggest that TPA has the ability to modulate intestinal crypt stem cells survival and this may represent a promising countermeasure against radiation induced enteropathy.
Collapse
Affiliation(s)
- Yaojie Liang
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Hongwei Zhou
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Yibing Yao
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Ailing Deng
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihong Wang
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Texas, USA
| | - Minhang Zhou
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Yu Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Lei Zhou
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Bianhong Wang
- Department of Hematology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Li Wang
- Department of Hematology, Laoshan Branch, No.401 Hospital of Chinese PLA, Qingdao, China
| | - Anqi Liu
- Department of Critical Care Medicine, Beijing Electric Power Hospital, Capital Medical University, Beijing, China
| | - Lanlan Qiu
- Department of Hematology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Kun Qian
- Department of Hematology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yejian Lu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Wanping Deng
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Xi Zheng
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Zhengtao Han
- Henan Tumor Research Institute, Zheng Zhou, China
| | - Yonghui Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Junzhong Sun
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Singh N, Singh H, Jagavelu K, Wahajuddin M, Hanif K. Fatty acid synthase modulates proliferation, metabolic functions and angiogenesis in hypoxic pulmonary artery endothelial cells. Eur J Pharmacol 2017; 815:462-469. [DOI: 10.1016/j.ejphar.2017.09.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 01/06/2023]
|
3
|
Yuan Y, Jiang YC, Sun CK, Chen QM. Role of the tumor microenvironment in tumor progression and the clinical applications (Review). Oncol Rep 2016; 35:2499-515. [PMID: 26986034 DOI: 10.3892/or.2016.4660] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/27/2016] [Indexed: 02/05/2023] Open
Abstract
Oncogene activation and tumor-suppressor gene inactivation are considered as the main causes driving the transformation of normal somatic cells into malignant tumor cells. Cancer cells are the driving force of tumor development and progression. Yet, cancer cells are unable to accomplish this alone. The tumor microenvironment is also considered to play an active role rather than simply acting as a by-stander in tumor progression. Through different pathways, tumor cells efficiently recruit stromal cells, which in turn, provide tumor cell growth signals, intermediate metabolites, and provide a suitable environment for tumor progression as well as metastasis. Through reciprocal communication, cancer cells and the microenvironment act in collusion leading to high proliferation and metastatic capability. Understanding the role of the tumor microenvironment in tumor progression provides us with novel approaches through which to target the tumor microenvironment for efficient anticancer treatment. In this review, we summarize the mechanisms involved in the recruitment of stromal cells by tumor cells to the primary tumor site and highlight the role of the tumor microenvironment in the regulation of tumor progression. We further discuss the potential approaches for cancer therapy.
Collapse
Affiliation(s)
- Yao Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu-Chen Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chong-Kui Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
4
|
Farwell SLN, Kanyi D, Hamel M, Slee JB, Miller EA, Cipolle MD, Lowe-Krentz LJ. Heparin Decreases in Tumor Necrosis Factor α (TNFα)-induced Endothelial Stress Responses Require Transmembrane Protein 184A and Induction of Dual Specificity Phosphatase 1. J Biol Chem 2016; 291:5342-54. [PMID: 26769965 DOI: 10.1074/jbc.m115.681288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/06/2022] Open
Abstract
Despite the large number of heparin and heparan sulfate binding proteins, the molecular mechanism(s) by which heparin alters vascular cell physiology is not well understood. Studies with vascular smooth muscle cells (VSMCs) indicate a role for induction of dual specificity phosphatase 1 (DUSP1) that decreases ERK activity and results in decreased cell proliferation, which depends on specific heparin binding. The hypothesis that unfractionated heparin functions to decrease inflammatory signal transduction in endothelial cells (ECs) through heparin-induced expression of DUSP1 was tested. In addition, the expectation that the heparin response includes a decrease in cytokine-induced cytoskeletal changes was examined. Heparin pretreatment of ECs resulted in decreased TNFα-induced JNK and p38 activity and downstream target phosphorylation, as identified through Western blotting and immunofluorescence microscopy. Through knockdown strategies, the importance of heparin-induced DUSP1 expression in these effects was confirmed. Quantitative fluorescence microscopy indicated that heparin treatment of ECs reduced TNFα-induced increases in stress fibers. Monoclonal antibodies that mimic heparin-induced changes in VSMCs were employed to support the hypothesis that heparin was functioning through interactions with a receptor. Knockdown of transmembrane protein 184A (TMEM184A) confirmed its involvement in heparin-induced signaling as seen in VSMCs. Therefore, TMEM184A functions as a heparin receptor and mediates anti-inflammatory responses of ECs involving decreased JNK and p38 activity.
Collapse
Affiliation(s)
- Sara Lynn N Farwell
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Daniela Kanyi
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, the Department of Chemistry, Lehigh University, Allentown, Pennsylvania 18103
| | - Marianne Hamel
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Joshua B Slee
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, the Department of Natural Sciences, DeSales University, Center Valley, Pennsylvania 18034
| | - Elizabeth A Miller
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Mark D Cipolle
- the Department of Surgery, Lehigh Valley Hospital Center, Allentown, Pennsylvania 18103, and
| | - Linda J Lowe-Krentz
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015,
| |
Collapse
|