1
|
Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, Riillo C, Caridà G, Scionti F, Labanca C, Romeo C, Siciliano MA, D'Apolito M, Napoli C, Montesano M, Farenza V, Uppolo V, Tafuni M, Falcone F, D'Aquino G, Calandruccio ND, Luciano F, Pensabene L, Tagliaferri P, Tassone P. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1191-1224. [PMID: 35282417 PMCID: PMC8891816 DOI: 10.1016/j.omtn.2022.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among deregulated microRNAs (miRs) in human malignancies, miR-221 has been widely investigated for its oncogenic role and as a promising biomarker. Moreover, recent evidence suggests miR-221 as a fine-tuner of chronic liver injury and inflammation-related events. Available information also supports the potential of miR-221 silencing as promising therapeutic intervention. In this systematic review, we selected papers from the principal databases (PubMed, MedLine, Medscape, ASCO, ESMO) between January 2012 and December 2020, using the keywords "miR-221" and the specific keywords related to the most important hematologic and solid malignancies, and some non-malignant diseases, to define and characterize deregulated miR-221 as a valuable therapeutic target in the modern vision of molecular medicine. We found a major role of miR-221 in this view.
Collapse
Affiliation(s)
| | - Mariamena Arbitrio
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Alessia Cordua
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Onofrio Cuomo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria D'Apolito
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Uppolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Michele Tafuni
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Surgical and Medical Sciences, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
2
|
Morishita A, Oura K, Tadokoro T, Fujita K, Tani J, Masaki T. MicroRNAs in the Pathogenesis of Hepatocellular Carcinoma: A Review. Cancers (Basel) 2021; 13:cancers13030514. [PMID: 33572780 PMCID: PMC7866004 DOI: 10.3390/cancers13030514] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the most frequently occurring cancers, and the prognosis for late-stage HCC remains poor. A better understanding of the pathogenesis of HCC is expected to improve outcomes. MicroRNAs (miRNAs) are small, noncoding, single-stranded RNAs that regulate the expression of various target genes, including those in cancer-associated genomic regions or fragile sites in various human cancers. We summarize the central roles of miRNAs in the pathogenesis of HCC and discuss their potential utility as valuable biomarkers and new therapeutic agents for HCC. Abstract Hepatocellular carcinoma (HCC) is the seventh most frequent cancer and the fourth leading cause of cancer mortality worldwide. Despite substantial advances in therapeutic strategies, the prognosis of late-stage HCC remains dismal because of the high recurrence rate. A better understanding of the etiology of HCC is therefore necessary to improve outcomes. MicroRNAs (miRNAs) are small, endogenous, noncoding, single-stranded RNAs that modulate the expression of their target genes at the posttranscriptional and translational levels. Aberrant expression of miRNAs has frequently been detected in cancer-associated genomic regions or fragile sites in various human cancers and has been observed in both HCC cells and tissues. The precise patterns of aberrant miRNA expression differ depending on disease etiology, including various causes of hepatocarcinogenesis, such as viral hepatitis, alcoholic liver disease, or nonalcoholic steatohepatitis. However, little is known about the underlying mechanisms and the association of miRNAs with the pathogenesis of HCC of various etiologies. In the present review, we summarize the key mechanisms of miRNAs in the pathogenesis of HCC and emphasize their potential utility as valuable diagnostic and prognostic biomarkers, as well as innovative therapeutic targets, in HCC diagnosis and treatment.
Collapse
|
3
|
Exogenous Therapeutics of Microrna-29a Attenuates Development of Hepatic Fibrosis in Cholestatic Animal Model through Regulation of Phosphoinositide 3-Kinase p85 Alpha. Int J Mol Sci 2020; 21:ijms21103636. [PMID: 32455716 PMCID: PMC7279217 DOI: 10.3390/ijms21103636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have found that microRNA-29a (miR-29a) levels are significantly lower in fibrotic livers, as shown with human liver cirrhosis. Such downregulation influences the activation of hepatic stellate cells (HSC). Phosphoinositide 3-kinase p85 alpha (PI3KP85α) is implicated in the regulation of proteostasis mitochondrial integrity and unfolded protein response (UPR) and apoptosis in hepatocytes. This study aimed to investigate the potential therapeutic role of miR-29a in a murine bile duct ligation (BDL)-cholestatic injury and liver fibrosis model. Mice were assigned to four groups: sham, BDL, BDL + scramble miRs, and BDL + miR-29a-mimic. Liver fibrosis and inflammation were assessed by histological staining and mRNA/protein expression of representative markers. Exogenous therapeutics of miR-29a in BDL-stressed mice significantly attenuated glutamic oxaloacetic transaminase (GOT)/glutamic-pyruvic transaminase (GPT) and liver fibrosis, and caused a significant downregulation in markers related to inflammation (IL-1β), fibrogenesis (TGF-β1, α-SMA, and COL1α1), autophagy (p62 and LC3B II), mitochondrial unfolded protein response (UPRmt; C/EBP homologous protein (CHOP), heat shock protein 60 (HSP60), and Lon protease-1 (LONP1, a mitochondrial protease), and PI3KP85α within the liver tissue. An in vitro luciferase reporter assay further confirmed that miR-29a mimic directly targets mRNA 3′ untranslated region (UTR) of PI3KP85α to suppress its expression in HepG2 cell line. Our data provide new insights that therapeutic miR-29a improves cholestasis-induced hepatic inflammation and fibrosis and proteotstasis via blocking PI3KP85α, highlighting the potential of miR-29a targeted therapy for liver injury.
Collapse
|
4
|
Wang Y, Yang J, Chen P, Song Y, An W, Zhang H, Butegeleqi B, Yan J. MicroRNA-320a inhibits invasion and metastasis in osteosarcoma by targeting cytoplasmic polyadenylation element-binding protein 1. Cancer Med 2020; 9:2833-2845. [PMID: 32064777 PMCID: PMC7163091 DOI: 10.1002/cam4.2919] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/07/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is a primary malignant bone tumor, which affects children, adolescents, and young adults commonly. MicroRNAs (miRNAs) have been proved to be dysregulated in different cancers, including osteosarcoma. Although miR‐320a has been implicated in many types of malignancies, little is known about the role of miR‐320a in osteosarcoma. In this study, we show that the overexpression of miR‐320a or knockdown of cytoplasmic polyadenylation element‐binding protein 1 (CPEB1) inhibited osteosarcoma cell migration and invasion. miR‐320a downregulates CPEB1 expression by directly targeting the CPEB1 3′‐UTR. Furthermore, CPEB1 reintroduction reversed the antiproliferation, antimigration, and antiinvasion roles of miR‐320a, indicating that miR‐320a might function as a tumor suppressor in osteosarcoma through CPEB1. In conclusion, our study demonstrates that miR‐320a plays a critical role in osteosarcoma progression and may provide a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yanlong Wang
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jiyu Yang
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Pangtao Chen
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yu Song
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Weizheng An
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Haoran Zhang
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Butegeleqi Butegeleqi
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jinglong Yan
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
5
|
El-Araby RE, Khalifa MA, Zoheiry MM, Zahran MY, Rady MI, Ibrahim RA, El-Talkawy MD, Essawy FM. The interaction between microRNA-152 and DNA methyltransferase-1 as an epigenetic prognostic biomarker in HCV-induced liver cirrhosis and HCC patients. Cancer Gene Ther 2019; 27:486-497. [PMID: 31316135 DOI: 10.1038/s41417-019-0123-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/22/2019] [Accepted: 06/29/2019] [Indexed: 12/19/2022]
Abstract
The necessity for early detection and hence improving the outcome of treatment of hepatocellular carcinoma (HCC) is critical especially in Hepatitis C virus (HCV)-Genotype 4 induced cases. In our current work, we examined the miRNA-152 and DNMT-1 expression in chronic liver disease (CLD) due to HCV genotype 4 infection with/without cirrhosis and HCC patients as an attempt to evaluate the potential benefits of these new circulating, noninvasive, prognostic, epigenetic markers for liver cirrhosis and carcinogenesis of Egyptian patients. Eighty subjects were included in this study, divided into two groups; group I (40 patients) were classified into subgroup Ia (CLD without cirrhosis, n = 18) and subgroup Ib (CLD with cirrhosis, n = 22), group II (CLD patients with HCC, n = 20), and control (Healthy volunteer, n = 20). The expression of miRNA-152 and DNMT-1 genes were analyzed using Real-Time PCR. MiRNA-152 showed a persistent and significant downregulation in all diseased groups, which was in consistence with the progression of the disease toward the HCC stage. DNMT-1 showed upregulation in all diseased groups when compared to control and subgroup Ia. The miRNA-152 was shown to correlate inversely with DNMT-1 in subgroup Ia, Ib and group II (r = -0.557, p < 0.01), (r = -0.850, p < 0.001) and (r = -0.544, p < 0.02) respectively. In addition, miRNA-152 and DNMT-1 showed a diagnostic ability to discriminate between cases of cirrhosis and HCC against CLD without cirrhosis (p < 0.01), while DNMT-1 did not, except between HCC and cirrhotic cases. Furthermore, both genes can be considered as predictor and prognostic parameters for cirrhosis (OR = 1.041, p = 0.043) and (OR = 1.039, p = 0.04) respectively, while miRNA-152 alone is proved as a prognostic marker for HCC (OR = 1.003, p = 0.044). Finally, the persistent reverse correlation between miRNA-152 with DNMT-1 prompts their use as noninvasive prognostic biomarkers for HCV induced liver cirrhosis and HCC in HCV Genotype 4 patients.
Collapse
Affiliation(s)
- Rady E El-Araby
- Assistant Researcher of Molecular Biology, Central Lab, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Gizah, Egypt.
| | - Mahmoud A Khalifa
- Assistant Prof. of Molecular Biology, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mona M Zoheiry
- Prof. of Clinical pathology (Immunology), Immunology Research Department, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Gizah, Egypt
| | - Manal Y Zahran
- Prof. of Hematology, Clinical Laboratory, Research Department, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Gizah, Egypt
| | - Mohamed I Rady
- Prof. of Cytochemistry and Histochemistry, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Raafat A Ibrahim
- Prof. of Hepatoastroenterology, Hepatoastroenterology Department, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Gizah, Egypt
| | - Mohamed D El-Talkawy
- Prof. of Hepatoastroenterology, Hepatoastroenterology Department, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Gizah, Egypt
| | - Faiza M Essawy
- Prof. of Hematology, Clinical Laboratory, Research Department, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Gizah, Egypt
| |
Collapse
|
6
|
Fang CY, Yu CC, Liao YW, Hsieh PL, Lu MY, Lin KC, Wu CZ, Tsai LL. LncRNA LINC00974 activates TGF-β/Smad signaling to promote oral fibrogenesis. J Oral Pathol Med 2018; 48:151-158. [PMID: 30447113 DOI: 10.1111/jop.12805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Oral submucous fibrosis (OSF) is a progressive scarring disease and has been considered as a premalignant condition of the oral cavity. However, the detailed molecular mechanisms underlying the pathogenesis of OSF are still unclear. METHOD Here, we examined the expression of a novel long non-coding RNA LINC00974 in OSF and investigated its function role in myofibroblast transdifferentiation. Phenotypic analyses, including collagen gel contraction, migration, invasion and wound healing assays, were used to assess the myofibroblast activities following overexpression or inhibition of LINC00974. RESULTS We found that the expression of LINC00974 in OSF tissues or myofibroblasts was aberrantly upregulated, and there was a positive correlation between LINC00974 and myofibroblast markers. Our results showed that inhibition of LINC00974 suppressed the myofibroblast activities, while overexpression of LINC00974 increased the activation. We demonstrated that the expression levels of α-SMA, α-1 type I collagen, fibronectin were downregulated in the LINC00974-inhibited myofibroblasts. Additionally, the TGF-β secretion and phosphorylated Smad2 expression were also repressed in the LINC00974-inhibited myofibroblasts. We further demonstrated that silence of LINC00974 prevented the arecoline-induced myofibroblast activation, and LINC00974-increased myofibroblast activities were via TGF-β pathway. CONCLUSION Altogether, these findings suggested that arecoline-increased myofibroblast transdifferentiation was via LINC00974-mediated activation of TGF-β signaling.
Collapse
Affiliation(s)
- Chih-Yuan Fang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Kuan-Chou Lin
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lo-Lin Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Huang YH, Yang YL, Wang FS. The Role of miR-29a in the Regulation, Function, and Signaling of Liver Fibrosis. Int J Mol Sci 2018; 19:ijms19071889. [PMID: 29954104 PMCID: PMC6073598 DOI: 10.3390/ijms19071889] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
Both fibrosis and cirrhosis of the liver are the end results of most kinds of chronic liver damage and represent a common but difficult clinical challenge throughout the world. The inhibition of the fibrogenic, proliferative, and migratory effects of hepatic stellate cells (HSCs) has become an experimental therapy for preventing and even reversing hepatic fibrosis. Furthermore, a complete understanding of the function of non-coding RNA-mediated epigenetic mechanisms in HSC activation may improve our perception of liver fibrosis pathogenesis. This review focuses on the evolving view of the molecular mechanisms by which HSC activation by miR-29a signaling may moderate the profibrogenic phenotype of these cells, thus supporting the use of miR-29a agonists as a potential therapy for treating liver fibrosis in the future.
Collapse
Affiliation(s)
- Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi County, Puzi City 613, Taiwan.
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Feng-Sheng Wang
- Core Facility for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
8
|
El Taghdouini A, van Grunsven LA. Epigenetic regulation of hepatic stellate cell activation and liver fibrosis. Expert Rev Gastroenterol Hepatol 2016; 10:1397-1408. [PMID: 27762150 DOI: 10.1080/17474124.2016.1251309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic liver injury to hepatocytes or cholangiocytes, when left unmanaged, leads to the development of liver fibrosis, a condition characterized by the excessive intrahepatic deposition of extracellular matrix proteins. Activated hepatic stellate cells constitute the predominant source of extracellular matrix in fibrotic livers and their transition from a quiescent state during fibrogenesis is associated with important alterations in their transcriptional and epigenetic landscape. Areas covered: We briefly describe the processes involved in hepatic stellate cell activation and discuss our current understanding of alterations in the epigenetic landscape, i.e DNA methylation, histone modifications and the functional role of non-coding RNAs that accompany this key event in the development of chronic liver disease. Expert commentary: Although great progress has been made, our understanding of the epigenetic regulation of hepatic stellate cell activation is limited and, thus far, insufficient to allow the development of epigenetic drugs that can selectively interrupt liver fibrosis.
Collapse
Affiliation(s)
- Adil El Taghdouini
- a Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy , Université Catholique de Louvain , Brussels , Belgium.,b Liver Cell Biology Laboratory , Vrije Universiteit Brussel (VUB) , Brussels , Belgium
| | - Leo A van Grunsven
- b Liver Cell Biology Laboratory , Vrije Universiteit Brussel (VUB) , Brussels , Belgium
| |
Collapse
|
9
|
Gjymishka A, Pi L, Oh SH, Jorgensen M, Liu C, Protopapadakis Y, Patel A, Petersen BE. miR-133b Regulation of Connective Tissue Growth Factor: A Novel Mechanism in Liver Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1092-1102. [PMID: 26945106 PMCID: PMC4861761 DOI: 10.1016/j.ajpath.2015.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/30/2015] [Accepted: 12/28/2015] [Indexed: 02/07/2023]
Abstract
miRNAs are involved in liver regeneration, and their expression is dysregulated in hepatocellular carcinoma (HCC). Connective tissue growth factor (CTGF), a direct target of miR-133b, is crucial in the ductular reaction (DR)/oval cell (OC) response for generating new hepatocyte lineages during liver injury in the context of hepatotoxin-inhibited hepatocyte proliferation. Herein, we investigate whether miR-133b regulation of CTGF influences HCC cell proliferation and migration, and DR/OC response. We analyzed miR-133b expression and found it to be down-regulated in HCC patient samples and induced in the rat DR/OC activation model of 2-acetylaminofluorene with partial hepatectomy. Furthermore, overexpression of miR-133b via adenoviral system in vitro led to decreased CTGF expression and reduced proliferation and Transwell migration of both HepG2 HCC cells and WBF-344 rat OCs. In vivo, overexpression of miR-133b in DR/OC activation models of 2-acetylaminofluorene with partial hepatectomy in rats, and 3,5-diethoxycarbonyl-1,4-dihydrocollidine in mice, led to down-regulation of CTGF expression and OC proliferation. Collectively, these results show that miR-133b regulation of CTGF is a novel mechanism critical for the proliferation and migration of HCC cells and OC response.
Collapse
Affiliation(s)
- Altin Gjymishka
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Liya Pi
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Seh-Hoon Oh
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Marda Jorgensen
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Chen Liu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | | | - Ashnee Patel
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Bryon E Petersen
- Department of Pediatrics, University of Florida, Gainesville, Florida.
| |
Collapse
|
10
|
El-Ahwany E, Nagy F, Zoheiry M, Shemis M, Nosseir M, Taleb HA, El Ghannam M, Atta R, Zada S. Circulating miRNAs as Predictor Markers for Activation of Hepatic Stellate Cells and Progression of HCV-Induced Liver Fibrosis. Electron Physician 2016; 8:1804-10. [PMID: 26955452 PMCID: PMC4768932 DOI: 10.19082/1804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022] Open
Abstract
Introduction Liver fibrosis is the excessive accumulation of extracellular matrix that occurs by activation of hepatic stellate cells (HSCs), which has been identified as the major driver of liver fibrosis. Several studies confirmed that miRNAs have regulatory effects on the activation of HSCs by affecting the signaling pathways. The aim of this study was to develop non-invasive diagnostic markers by measuring different circulating miRNAs in serum as predictor markers for early diagnosis of liver fibrosis and its progression. Methods In this case-control study, we enrolled 66 subjects with chronic hepatitis C (CHC) with early stage of fibrosis and 65 subjects with CHC with late-stage fibrosis. Also, 40 subjects were included as normal controls. The six main miRNAs, i.e., miR-138, miR-140, miR-143, miR-325, miR-328, and miR-349, were measured using the reverse transcription-polymerase chain reaction. Results In the cases of CHC both with early and late stage of fibrosis, the circulating levels of the six main miRNAs were significantly higher than the levels in the control group. ROC analysis indicated that the sensitivity and specificity of miR-138 were 89.3% and 71.43%, respectively, in the early stage of fibrosis. In the late stage, the sensitivity and specificity of miR-138 were 89.3 and 93.02%, respectively, whereas, for miR-143, they were 75.0 and 88.4%, respectively. Conclusions Circulating miR-138 could serve as a non-invasive biomarker for the detection of early fibrosis. Also, miR-138 and miR-143 could be specific biomarkers for indicating the late stage of liver fibrosis.
Collapse
Affiliation(s)
- Eman El-Ahwany
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Faten Nagy
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mona Zoheiry
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Shemis
- Biochemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mona Nosseir
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hoda Abu Taleb
- Environmental Research Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Maged El Ghannam
- Gastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Rafaat Atta
- Gastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Suher Zada
- Biology Department, American University in Cairo, Cairo, Egypt
| |
Collapse
|
11
|
Lambrecht J, Mannaerts I, van Grunsven LA. The role of miRNAs in stress-responsive hepatic stellate cells during liver fibrosis. Front Physiol 2015; 6:209. [PMID: 26283969 PMCID: PMC4516870 DOI: 10.3389/fphys.2015.00209] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/13/2015] [Indexed: 12/12/2022] Open
Abstract
The progression of liver fibrosis and cirrhosis is associated with the persistence of an injury causing agent, leading to changes in the extracellular environment and a disruption of the cellular homeostasis of liver resident cells. Recruitment of inflammatory cells, apoptosis of hepatocytes, and changes in liver microvasculature are some examples of changing cellular environment that lead to the induction of stress responses in nearby cells. During liver fibrosis, the major stresses include hypoxia, oxidative stress, and endoplasmic reticulum stress. When hepatic stellate cells (HSCs) are subjected to such stress, they modulate fibrosis progression by induction of their activation toward a myofibroblastic phenotype, or by undergoing apoptosis, and thus helping fibrosis resolution. It is widely accepted that microRNAs are import regulators of gene expression, both during normal cellular homeostasis, as well as in pathologic conditions. MicroRNAs are short RNA sequences that regulate the gene expression by mRNA destabilization and inhibition of mRNA translation. Specific microRNAs have been identified to play a role in the activation process of HSCs on the one hand and in stress-responsive pathways on the other hand in other cell types (Table 2). However, so far there are no reports for the involvement of miRNAs in the different stress responses linked to HSC activation. Here, we review briefly the major stress response pathways and propose several miRNAs to be regulated by these stress responsive pathways in activating HSCs, and discuss their potential specific pro-or anti-fibrotic characteristics.
Collapse
Affiliation(s)
- Joeri Lambrecht
- Liver Cell Biology Lab, Department of Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Inge Mannaerts
- Liver Cell Biology Lab, Department of Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Lab, Department of Biomedical Sciences, Vrije Universiteit Brussel Brussels, Belgium
| |
Collapse
|
12
|
Povero D, Panera N, Eguchi A, Johnson CD, Papouchado BG, de Araujo Horcel L, Pinatel EM, Alisi A, Nobili V, Feldstein AE. Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-γ. Cell Mol Gastroenterol Hepatol 2015; 1:646-663.e4. [PMID: 26783552 PMCID: PMC4714359 DOI: 10.1016/j.jcmgh.2015.07.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND&AIMS Hepatic stellate cells (HSCs) play a key role in liver fibrosis in various chronic liver disorders including nonalcoholic fatty liver disease (NAFLD). The development of liver fibrosis requires a phenotypic switch from quiescent to activated HSCs. The triggers for HSCs activation in NAFLD remain poorly understood. We investigated the role and molecular mechanism of extracellular vesicles (EVs) released by hepatocytes during lipotoxicity in modulation of HSC phenotype. METHODS EVs were isolated from fat-laden hepatocytes by differential centrifugation and incubated with HSCs. EV internalization and HSCs activation, migration and proliferation were assessed. Loss- and gain-of-functions studies were performed to explore the potential role of PPAR-γ-targeting miRNAs carried by EVs into HSC. RESULTS Hepatocyte-derived EVs released during lipotoxicity are efficiently internalized by HSCs resulting in their activation, as shown by marked up-regulation of pro-fibrogenic genes (Collagen-I, α-SMA and TIMP-2), proliferation, chemotaxis and wound healing responses. These changes were associated with miRNAs shuttled by EVs and suppression of PPAR-γ expression in HSC. Hepatocyte-derived EVs miRNA content included various miRNAs that are known inhibitors of PPAR-γ expression with miR-128-3p being the most effectively transferred. Furthermore loss- and gain-of-function studies identified miR-128-3p as a central modulator of the effects of EVs on PPAR-γ inhibition and HSC activation. CONCLUSION Our findings demonstrate a link between fat-laden hepatocyte-derived EVs and liver fibrosis and have potential implications for the development of novel anti-fibrotic targets for NAFLD and other fibrotic diseases.
Collapse
Affiliation(s)
- Davide Povero
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Nadia Panera
- Hepato-Metabolic Disease Unit and Liver Research Unit, Bambino-Gesu’ Children’s Hospital, Rome, Italy
| | - Akiko Eguchi
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Casey D. Johnson
- Department of Pediatrics, University of California San Diego, La Jolla, California
| | | | - Lucas de Araujo Horcel
- Department of Pediatrics, University of California San Diego, La Jolla, California
- Centro Universitário Lusiada, Santos, Brazil
| | - Eva M. Pinatel
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Anna Alisi
- Hepato-Metabolic Disease Unit and Liver Research Unit, Bambino-Gesu’ Children’s Hospital, Rome, Italy
| | - Valerio Nobili
- Hepato-Metabolic Disease Unit and Liver Research Unit, Bambino-Gesu’ Children’s Hospital, Rome, Italy
| | - Ariel E. Feldstein
- Department of Pediatrics, University of California San Diego, La Jolla, California
- Correspondence Address correspondence to: Ariel E. Feldstein, MD, Division of Pediatric Gastroenterology, Hepatology, and Nutrition UCSD, 3020 Children’s Way, MC 5030, San Diego, California 92103–8450.
| |
Collapse
|
13
|
Integrated Computational Model of Intracellular Signaling and microRNA Regulation Predicts the Network Balances and Timing Constraints Critical to the Hepatic Stellate Cell Activation Process. Processes (Basel) 2014. [DOI: 10.3390/pr2040773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|