1
|
Xu W, Xiang X, Chen D, Song L, Tang R, Zhou X, Qin Y, Xiao Y, Li Y, Li Q, Zhou Y, Jiang CZ, Huang Z. MfWRKY7.2 of woody resurrection plant Myrothamnus flabellifolia is involved in tolerance to drought and salt stress. Gene 2025; 961:149548. [PMID: 40324567 DOI: 10.1016/j.gene.2025.149548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Myrothamnus flabellifolia, the only known woody resurrection plant, can survive in extremely long-term drought environments, representing a valuable resource for exploring drought tolerance genes. However, few genes functioning in drought tolerance have been identified from M. flabellifolia. WRKY7, belonging to subgroup IId of the WRKY transcription factor family, is known to regulate plant responses to pathogens. However, its involvement in response to plant abiotic stress has been rarely reported. Here we reported cloning and functional characterization of a dehydration-induced gene MfWRKY7.2 of M. flabellifolia. MfWRKY7.2 is localized in the nucleus, but no transactivation ability of the complete or partial MfWRKY7.2 was detected by yeast two hybrid. Arabidopsis plants overexpressing MfWRKY7.2 exhibited longer root length and better growth performance under drought and salt stress compared to the wild type. Measurements of physiological indicators related to stress response showed that overexpression of MfWRKY7.2 significantly increased contents of leaf water and chlorophyll, osmolyte accumulation, as well as reactive oxygen species (ROS) scavenging ability under both drought and salt stress. Interestingly, the enhanced sensitivity of stomatal closure to abscisic acid (ABA) and expression levels of ABA-responsive marker genes in transgenic lines suggested that MfWRKY7.2 may contribute to drought tolerance through promoting ABA biosynthesis or (and) signaling.
Collapse
Affiliation(s)
- Wenxin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Xiangying Xiang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Duoer Chen
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Li Song
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Rong Tang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Xinyi Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Yujiao Qin
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Yao Xiao
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Yuan Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Qiao Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Yujue Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA; Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
| | - Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| |
Collapse
|
2
|
Wei S, Zhong Y, Wen W, Yu C, Lu R, Luo S. Transcriptome Analysis Identifies Key Genes Involved in Response and Recovery to High Heat Stress Induced by Fire in Schima superba. Genes (Basel) 2024; 15:1108. [PMID: 39202467 PMCID: PMC11353729 DOI: 10.3390/genes15081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Fire-resistant tree species play a crucial role in forest fire prevention, utilizing several physiological and molecular mechanisms to respond to extreme heat stress. Many transcription factors (TFs) and genes are known to be involved in the regulatory network of heat stress response in plants. However, their roles in response to high temperatures induced by fire remain less understood. In this study, we investigated Schima superba, a fire-resistant tree, to elucidate these mechanisms. Leaves of S. superba seedlings were exposed to fire stimulation for 10 s, 30 s, and 1 min, followed by a 24-h recovery period. Fifteen transcriptomes were assembled to identify key molecular and biological pathways affected by high temperatures. Differentially expressed genes (DEGs) analysis revealed essential candidate genes and TFs involved in the heat stress response, including members of the ethylene-responsive factors, WRKY, MYB, bHLH, and Nin-like families. Genes related to heat shock proteins/factors, lipid metabolism, antioxidant enzymes, dehydration responses, and hormone signal transduction were differentially expressed after heat stress and recovery, underscoring their roles in cellular process and recovery after heat stress. This study advances our understanding of plant response and defense strategies against extreme abiotic stresses.
Collapse
Affiliation(s)
- Shujing Wei
- Guangdong Academy of Forestry, Guangzhou 510520, China; (S.W.)
| | - Yingxia Zhong
- Guangdong Academy of Forestry, Guangzhou 510520, China; (S.W.)
| | - Wen Wen
- Guangzhou Institute of Environmental Protection Science, Guangzhou 510520, China;
| | - Chong Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ruisen Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Sisheng Luo
- Guangdong Academy of Forestry, Guangzhou 510520, China; (S.W.)
| |
Collapse
|
3
|
Miao W, Xiao X, Wang Y, Ge L, Yang Y, Liu Y, Liao Y, Guan Z, Chen S, Fang W, Chen F, Zhao S. CmWRKY6-1-CmWRKY15-like transcriptional cascade negatively regulates the resistance to fusarium oxysporum infection in Chrysanthemum morifolium. HORTICULTURE RESEARCH 2023; 10:uhad101. [PMID: 37577400 PMCID: PMC10419886 DOI: 10.1093/hr/uhad101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 08/15/2023]
Abstract
Chrysanthemum Fusarium wilt is a soil-borne disease that causes serious economic losses to the chrysanthemum industry. However, the molecular mechanism underlying the response of chrysanthemum WRKY to Fusarium oxysporum infection remains largely unknown. In this study, we isolated CmWRKY6-1 from chrysanthemum 'Jinba' and identified it as a transcriptional repressor localized in the nucleus via subcellular localization and transcriptional activation assays. We found that CmWRKY6-1 negatively regulated resistance to F. oxysporum and affected reactive oxygen species (ROS) and salicylic acid (SA) pathways using transgenic experiments and transcriptomic analysis. Moreover, CmWRKY6-1 bound to the W-box element on the CmWRKY15-like promoter and inhibited its expression. Additionally, we observed that CmWRKY15-like silencing in chrysanthemum reduced its resistance to F. oxysporum via transgenic experiments. In conclusion, we revealed the mechanism underlying the CmWRKY6-1-CmWRKY15-like cascade response to F. oxysporum infection in chrysanthemum and demonstrated that CmWRKY6-1 and CmWRKY15-like regulates the immune system.
Collapse
Affiliation(s)
- Weihao Miao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Xiangyu Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yuean Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Lijiao Ge
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yanrong Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Ye Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Shuang Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| |
Collapse
|
4
|
Miao W, Yang Y, Wu M, Huang G, Ge L, Liu Y, Guan Z, Chen S, Fang W, Chen F, Zhao S. Potential pathways and genes expressed in Chrysanthemum in response to early fusarium oxysporum infection. BMC PLANT BIOLOGY 2023; 23:312. [PMID: 37308810 PMCID: PMC10262564 DOI: 10.1186/s12870-023-04331-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chrysanthemum Fusarium wilt is a common fungal disease caused by Fusarium oxysporum, which causes continuous cropping obstacles and huge losses to the chrysanthemum industry. The defense mechanism of chrysanthemum against F. oxysporum remains unclear, especially during the early stages of the disease. Therefore, in the present study, we analyzed chrysanthemum 'Jinba' samples inoculated with F. oxysporum at 0, 3, and 72 h using RNA-seq. RESULTS The results revealed that 7985 differentially expressed genes (DEGs) were co-expressed at 3 and 72 h after F. oxysporum infection. We analyzed the identified DEGs using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology. The DEGs were primarily enriched in "Plant pathogen interaction", "MAPK signaling pathway", "Starch and sucrose metabolism", and "Biosynthesis of secondary metabolites". Genes related to the synthesis of secondary metabolites were upregulated in chrysanthemum early during the inoculation period. Furthermore, peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase enzymes were consistently produced to accumulate large amounts of phenolic compounds to resist F. oxysporum infection. Additionally, genes related to the proline metabolic pathway were upregulated, and proline levels accumulated within 72 h, regulating osmotic balance in chrysanthemum. Notably, the soluble sugar content in chrysanthemum decreased early during the inoculation period; we speculate that this is a self-protective mechanism of chrysanthemums for inhibiting fungal reproduction by reducing the sugar content in vivo. In the meantime, we screened for transcription factors that respond to F. oxysporum at an early stage and analyzed the relationship between WRKY and DEGs in the "Plant-pathogen interaction" pathway. We screened a key WRKY as a research target for subsequent experiments. CONCLUSION This study revealed the relevant physiological responses and gene expression changes in chrysanthemum in response to F. oxysporum infection, and provided a relevant candidate gene pool for subsequent studies on chrysanthemum Fusarium wilt.
Collapse
Affiliation(s)
- Weihao Miao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key laboratory of landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, PR China
| | - Yanrong Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key laboratory of landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, PR China
| | - Mengtong Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key laboratory of landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, PR China
| | - Gan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key laboratory of landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, PR China
| | - Lijiao Ge
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key laboratory of landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, PR China
| | - Ye Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key laboratory of landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, PR China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key laboratory of landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, PR China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key laboratory of landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, PR China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key laboratory of landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, PR China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key laboratory of landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, PR China
| | - Shuang Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Key laboratory of landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, Jiangsu, PR China.
| |
Collapse
|
5
|
Hu Y, Song A, Guan Z, Zhang X, Sun H, Wang Y, Yu Q, Fu X, Fang W, Chen F. CmWRKY41 activates CmHMGR2 and CmFPPS2 to positively regulate sesquiterpenes synthesis in Chrysanthemum morifolium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:821-829. [PMID: 36868130 DOI: 10.1016/j.plaphy.2023.02.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Chrysanthemum morifolium is one of the most significant multipurpose crops with ornamental, medicinal, and edible value. Terpenoids, an essentials component of volatile oils, are abundant in chrysanthemum. However, the transcriptional regulation of terpenoid biosynthesis in chrysanthemums remains unclear. In the present investigation, we identified CmWRKY41, whose expression pattern is similar to that of terpenoid content in chrysanthemum floral scent, as a candidate gene that may promote terpenoid biosynthesis in chrysanthemum. Two structural genes 3-hydroxy-3-methylglutaryl-CoA reductase 2 (CmHMGR2) and farnesyl pyrophosphate synthase 2 (CmFPPS2), play key role in terpene biosynthesis in chrysanthemum. CmWRKY41 can directly bind to the promoters of CmHMGR2 or CmFPPS2 through GTGACA or CTGACG elements and activate its expression to promote sesquiterpene biosynthesis. In summary, these results indicate that CmWRKY41 targets CmHMGR2 and CmFPPS2 to positively regulate sesquiterpene biosynthesis in chrysanthemums. This study preliminarily revealed the molecular mechanism of terpenoid biosynthesis in chrysanthemum while enriching the secondary metabolism regulatory network.
Collapse
Affiliation(s)
- Yueheng Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hainan Sun
- Jiangsu Academy of Forestry, Nanjing, 211153, China.
| | - Yuxi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qi Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianrong Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Overexpression of CmWRKY8-1- VP64 Fusion Protein Reduces Resistance in Response to Fusarium oxysporum by Modulating the Salicylic Acid Signaling Pathway in Chrysanthemum morifolium. Int J Mol Sci 2023; 24:ijms24043499. [PMID: 36834908 PMCID: PMC9964100 DOI: 10.3390/ijms24043499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Chrysanthemum Fusarium wilt, caused by the pathogenic fungus Fusarium oxysporum, severely reduces ornamental quality and yields. WRKY transcription factors are extensively involved in regulating disease resistance pathways in a variety of plants; however, it is unclear how members of this family regulate the defense against Fusarium wilt in chrysanthemums. In this study, we characterized the WRKY family gene CmWRKY8-1 from the chrysanthemum cultivar 'Jinba', which is localized to the nucleus and has no transcriptional activity. We obtained CmWRKY8-1 transgenic chrysanthemum lines overexpressing the CmWRKY8-1-VP64 fusion protein that showed less resistance to F. oxysporum. Compared to Wild Type (WT) lines, CmWRKY8-1 transgenic lines had lower endogenous salicylic acid (SA) content and expressed levels of SA-related genes. RNA-Seq analysis of the WT and CmWRKY8-1-VP64 transgenic lines revealed some differentially expressed genes (DEGs) involved in the SA signaling pathway, such as PAL, AIM1, NPR1, and EDS1. Based on Gene Ontology (GO) enrichment analysis, the SA-associated pathways were enriched. Our results showed that CmWRKY8-1-VP64 transgenic lines reduced the resistance to F. oxysporum by regulating the expression of genes related to the SA signaling pathway. This study demonstrated the role of CmWRKY8-1 in response to F. oxysporum, which provides a basis for revealing the molecular regulatory mechanism of the WRKY response to F. oxysporum infestation in chrysanthemum.
Collapse
|
7
|
Ren L, Wan W, Yin D, Deng X, Ma Z, Gao T, Cao X. Genome-wide analysis of WRKY transcription factor genes in Toona sinensis: An insight into evolutionary characteristics and terpene synthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1063850. [PMID: 36743538 PMCID: PMC9895799 DOI: 10.3389/fpls.2022.1063850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
WRKY transcription factors (TFs), one of the largest TF families, serve critical roles in the regulation of secondary metabolite production. However, little is known about the expression pattern of WRKY genes during the germination and maturation processes of Toona sinensis buds. In the present study, the new assembly of the T. sinensis genome was used for the identification of 78 TsWRKY genes, including gene structures, phylogenetic features, chromosomal locations, conserved protein domains, cis-regulatory elements, synteny, and expression profiles. Gene duplication analysis revealed that gene tandem and segmental duplication events drove the expansion of the TsWRKYs family, with the latter playing a key role in the creation of new TsWRKY genes. The synteny and evolutionary constraint analyses of the WRKY proteins among T. sinensis and several distinct species provided more detailed evidence of gene evolution for TsWRKYs. Besides, the expression patterns and co-expression network analysis show TsWRKYs may multi-genes co-participate in regulating terpenoid biosynthesis. The findings revealed that TsWRKYs potentially play a regulatory role in secondary metabolite synthesis, forming the basis for further functional characterization of WRKY genes with the intention of improving T. sinensis.
Collapse
Affiliation(s)
- Liping Ren
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
- Horticultural Institute, Fuyang Academy of Agricultural Sciences, Fuyang, China
| | - Wenyang Wan
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Dandan Yin
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Xianhui Deng
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Zongxin Ma
- Horticultural Institute, Fuyang Academy of Agricultural Sciences, Fuyang, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Xiaohan Cao
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| |
Collapse
|
8
|
Chang X, Yang Z, Zhang X, Zhang F, Huang X, Han X. Transcriptome-wide identification of WRKY transcription factors and their expression profiles under different stress in Cynanchum thesioides. PeerJ 2022; 10:e14436. [PMID: 36518281 PMCID: PMC9744163 DOI: 10.7717/peerj.14436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Cynanchum thesioides (Freyn) K. Schum. is an important economic and medicinal plant widely distributed in northern China. WRKY transcription factors (TFs) play important roles in plant growth, development and regulating responses. However, there is no report on the WRKY genes in Cynanchum thesioides. A total of 19 WRKY transcriptome sequences with complete ORFs were identified as WRKY transcriptome sequences by searching for WRKYs in RNA sequencing data. Then, the WRKY genes were classified by phylogenetic and conserved motif analysis of the WRKY family in Cynanchum thesioides and Arabidopsis thaliana. qRT-PCR was used to determine the expression patterns of 19 CtWRKY genes in different tissues and seedlings of Cynanchum thesioides under plant hormone (ABA and ETH) and abiotic stresses (cold and salt). The results showed that 19 CtWRKY genes could be divided into groups I-III according to their structure and phylogenetic characteristics, and group II could be divided into five subgroups. The prediction of CtWRKY gene protein interactions indicates that CtWRKY is involved in many biological processes. In addition, the CtWRKY gene was differentially expressed in different tissues and positively responded to abiotic stress and phytohormone treatment, among which CtWRKY9, CtWRKY18, and CtWRKY19 were significantly induced under various stresses. This study is the first to identify the WRKY gene family in Cynanchum thesioides, and the systematic analysis lays a foundation for further identification of the function of WRKY genes in Cynanchum thesioides.
Collapse
Affiliation(s)
- Xiaoyao Chang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Zhongren Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Xiaoyan Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Fenglan Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Xiumei Huang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| | - Xu Han
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhehaote, Inner Mongolia, China
| |
Collapse
|
9
|
Ayoub Khan M, Dongru K, Yifei W, Ying W, Penghui A, Zicheng W. Characterization of WRKY Gene Family in Whole-Genome and Exploration of Flowering Improvement Genes in Chrysanthemum lavandulifolium. FRONTIERS IN PLANT SCIENCE 2022; 13:861193. [PMID: 35557735 PMCID: PMC9087852 DOI: 10.3389/fpls.2022.861193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/02/2022] [Indexed: 05/27/2023]
Abstract
Chrysanthemum is a well-known ornamental plant with numerous uses. WRKY is a large family of transcription factors known for a variety of functions ranging from stress resistance to plant growth and development. Due to the limited research on the WRKY family in chrysanthemums, we examined them for the first time in Chrysanthemum lavandulifolium. A total of 138 ClWRKY genes were identified, which were classified into three groups. Group III in C. lavandulifolium contains 53 members, which is larger than group III of Arabidopsis. The number of introns varied from one to nine in the ClWRKY gene family. The "WRKYGQK" motif is conserved in 118 members, while other members showed slight variations. AuR and GRE responsive cis-acting elements were located in the promoter region of WRKY members, which are important for plant development and flowering induction. In addition, the W box was present in most genes; the recognition site for the WRKY gene may play a role in autoregulation and cross-regulation. The expression of the most variable 19 genes in terms of different parameters was observed at different stages. Among them, 10 genes were selected due to the presence of CpG islands, while nine genes were selected based on their close association with important Arabidopsis genes related to floral traits. ClWRKY36 and ClWRKY45 exhibit differential expression at flowering stages in the capitulum, while methylation is detected in three genes, including ClWRKY31, ClWRKY100, and ClWRKY129. Our results provide a basis for further exploration of WRKY members to find their functions in plant growth and development, especially in flowering traits.
Collapse
|
10
|
Ning K, Li M, Wei G, Zhou Y, Zhang G, Huai H, Wei F, Chen Z, Wang Y, Dong L, Chen S. Genomic and Transcriptomic Analysis Provide Insights Into Root Rot Resistance in Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2021; 12:775019. [PMID: 34975957 PMCID: PMC8714957 DOI: 10.3389/fpls.2021.775019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Panax notoginseng (Panax notoginseng (Burk.) F.H. Chen), a plant of high medicinal value, is severely affected by root rot during cultivation. Here, we generated a reference genome of P. notoginseng, with a contig N50 size of 241.268 kb, and identified 66 disease-resistance genes (R-genes) as candidate genes for breeding disease-resistant varieties. We then investigated the molecular mechanism underlying the responses of resistant and susceptible P. notoginseng genotypes to Fusarium oxysporum infection at six time points by RNA-seq. Functional analysis of the genes differentially expressed between the two genotypes indicated that genes involved in the defense response biological process like hormone transduction and plant-pathogen interaction are continuously and highly expressed in resistant genotype during infection. Moreover, salicylic acid and jasmonic acid levels gradually increased during infection in the resistant genotype. Coexpression analysis showed that PnWRKY22 acts as a hub gene in the defense response of the resistant genotype. Finally, transiently overexpressing PnWRKY22 increased salicylic acid levels in P. notoginseng leaves. Our findings provide a theoretical basis for studying root rot resistance in P. notoginseng.
Collapse
Affiliation(s)
- Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengzhi Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Zhou
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Huai
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., Wenshan, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Genome-Wide Analysis of WRKY Gene Family and the Dynamic Responses of Key WRKY Genes Involved in Ostrinia furnacalis Attack in Zea mays. Int J Mol Sci 2021; 22:ijms222313045. [PMID: 34884854 PMCID: PMC8657575 DOI: 10.3390/ijms222313045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
WRKY transcription factors comprise one of the largest gene families and serve as key regulators of plant defenses against herbivore attack. However, studies related to the roles of WRKY genes in response to herbivory are limited in maize. In this study, a total of 128 putative maize WRKY genes (ZmWRKYs) were identified from the new maize genome (v4). These genes were divided into seven subgroups (groups I, IIa–e, and III) based on phylogenomic analysis, with distinct motif compositions in each subgroup. Syntenic analysis revealed that 72 (56.3%) of the genes were derived from either segmental or tandem duplication events (69 and 3, respectively), suggesting a pivotal role of segmental duplication in the expansion of the ZmWRKY family. Importantly, transcriptional regulation prediction showed that six key WRKY genes contribute to four major defense-related pathways: L-phenylalanine biosynthesis II and flavonoid, benzoxazinoid, and jasmonic acid (JA) biosynthesis. These key WRKY genes were strongly induced in commercial maize (Jingke968) infested with the Asian corn borer, Ostrinia furnacalis, for 0, 2, 4, 12 and 24 h in the field, and their expression levels were highly correlated with predicted target genes, suggesting that these genes have important functions in the response to O. furnacalis. Our results provide a comprehensive understanding of the WRKY gene family based on the new assembly of the maize genome and lay the foundation for further studies into functional characteristics of ZmWRKY genes in commercial maize defenses against O. furnacalis in the field.
Collapse
|
12
|
Bi M, Li X, Yan X, Liu D, Gao G, Zhu P, Mao H. Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway. HORTICULTURE RESEARCH 2021; 8:6. [PMID: 33384451 PMCID: PMC7775453 DOI: 10.1038/s41438-020-00436-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 05/12/2023]
Abstract
Chrysanthemum white rust disease, which is caused by the fungus Puccinia horiana Henn., severely reduces the ornamental quality and yield chrysanthemum. WRKY transcription factors function in the disease-resistance response in a variety of plants; however, it is unclear whether members of this family improve resistance to white rust disease in chrysanthemum. In this study, using PCR, we isolated a WRKY15 homologous gene, CmWRKY15-1, from the resistant chrysanthemum cultivar C029. Real-time quantitative PCR (RT-qPCR) revealed that CmWRKY15-1 exhibited differential expression patterns between the immune cultivar C029 and the susceptible cultivar Jinba upon P. horiana infection. In addition, salicylic acid (SA) treatment strongly induced CmWRKY15-1 expression. Overexpression of CmWRKY15-1 in the chrysanthemum-susceptible cultivar Jinba increased tolerance to P. horiana infection. Conversely, silencing CmWRKY15-1 via RNA interference (RNAi) in C029 increased sensitivity to P. horiana infection. We also determined that P. horiana infection increased both the endogenous SA content and the expression of salicylic acid biosynthesis genes in CmWRKY15-1-overexpressing plants, whereas CmWRKY15-1 RNAi plants exhibited the opposite effects under the same conditions. Finally, the transcript levels of pathogenesis-related (PR) genes involved in the SA pathway were positively associated with CmWRKY15-1 expression levels. Our results demonstrated that CmWRKY15-1 plays an important role in the resistance of chrysanthemum to P. horiana by influencing SA signaling.
Collapse
Affiliation(s)
- Mengmeng Bi
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xueying Li
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xin Yan
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Di Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ge Gao
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Pengfang Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Hongyu Mao
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China.
| |
Collapse
|
13
|
Transcriptome-Wide Identification of WRKY Transcription Factors and Their Expression Profiles under Different Types of Biological and Abiotic Stress in Pinus massoniana Lamb. Genes (Basel) 2020; 11:genes11111386. [PMID: 33238446 PMCID: PMC7700256 DOI: 10.3390/genes11111386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
Pinus massoniana Lamb, an economically important conifer tree, is widely distributed in China. WRKY transcription factors (TFs) play important roles in plant growth and development, biological and abiotic stress. Nevertheless, there is little information about the WRKY genes in P. massoniana. By searching for conserved WRKY motifs in transcriptomic RNA sequencing data for P. massoniana, 31 sequences were identified as WRKY TFs. Then, phylogenetic and conserved motif analyses of the WRKY family in P. massoniana, Pinus taeda and Arabidopsis thaliana were used to classify WRKY genes. The expression patterns of six PmWRKY genes from different groups were determined using real-time quantitative PCR for 2-year-old P. massoniana seedings grown in their natural environment and challenged by phytohormones (salicylic acid, methyl jasmonate, or ethephon), abiotic stress (H2O2) and mechanical damage stress. As a result, the 31 PmWRKY genes identified were divided into three major groups and several subgroups based on structural and phylogenetic features. PmWRKY genes are regulated in response to abiotic stress and phytohormone treatment and may participate in signaling to improve plant stress resistance. Some PmWRKY genes behaved as predicted based on their homology with A. thaliana WRKY genes, but others showed divergent behavior. This systematic analysis lays the foundation for further identification of WRKY gene functions to aid further exploration of the functions and regulatory mechanisms of PmWRKY genes in biological and abiotic stress in P. massoniana.
Collapse
|
14
|
Wang Z, Ni L, Guo J, Liu L, Li H, Yin Y, Gu C. Phylogenetic and Transcription Analysis of Hibiscus hamabo Sieb. et Zucc. WRKY Transcription Factors. DNA Cell Biol 2020; 39:1141-1154. [PMID: 32397757 DOI: 10.1089/dna.2019.5254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
WRKY transcription factors are known to play important roles in the regulation of various aspects of plant growth and development, including germination, stress resistance, and senescence. Nevertheless, there is little information about the WRKY genes in Hibiscus hamabo Sieb. et Zucc., an important semimangrove plant. In this study, HhWRKY genes in H. hamabo were identificated based on Illumina RNA-sequencing and isoform sequencing from salt-treated roots. Then phylogenetic analysis and conserved motif analysis of the WRKY family in H. hamabo and Arabidopsis thaliana were used to classify WRKY genes. Sixteen HhWRKY genes were selected from different groups to detect their expression patterns using real-time quantitative PCR in different organ (root, old leaf, tender leaf, receptacle, petal, or stamen) from 10-year-old H. hamabo plants grown in their natural environment and in seedlings with 8 to 10 true leaves challenged by phytohormone (salicylic acid, methyl jasmonate, or abscisic acid) and abiotic stress (drought, salt, or high temperature). As a result, the identified 78 HhWRKY genes were divided into two major groups and several subgroups based on their structural and phylogenetic features. Most transcripts of the selected 16 HhWRKY genes were more abundant in old than in tender leaves of H. hamabo. HhWRKY genes were regulated in reaction to abiotic stresses and phytohormone treatments and may participate in signaling networks to improve plant stress resistance. Some of HhWRKY genes behaved as would be predicted based on their homology with A. thaliana WRKY genes, but others showed divergent behavior. This systematic analysis lays the foundation for further identification of WRKY gene functions, with the aim of improving woody plants.
Collapse
Affiliation(s)
- Zhiquan Wang
- Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Longjie Ni
- College of Forest Sciences, Nanjing Forestry University, Nanjing, China
| | - Jinbo Guo
- Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Liangqin Liu
- Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Huogen Li
- College of Forest Sciences, Nanjing Forestry University, Nanjing, China
| | - Yunlong Yin
- Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chunsun Gu
- Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
15
|
Du X, Li W, Sheng L, Deng Y, Wang Y, Zhang W, Yu K, Jiang J, Fang W, Guan Z, Chen F, Chen S. Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress. BMC PLANT BIOLOGY 2018; 18:178. [PMID: 30180804 PMCID: PMC6122619 DOI: 10.1186/s12870-018-1400-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 08/28/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Chrysanthemum is among the top ten traditional flowers in China, and one of the four major cut flowers in the world, but the growth of chrysanthemum is severely restricted by high temperatures which retard growth and cause defects in flowers. DREB (dehydration-responsive element-binding) transcription factors play important roles in the response to abiotic and biotic stresses. However, whether the DREB A-6 subgroup is involved in heat tolerance has not been reported conclusively. RESULT In the present study, CmDREB6 was cloned from chrysanthemum (Chrysanthemum morifolium) 'Jinba'. CmDREB6, containing a typical AP2/ERF domain, was classed into the DREB A-6 subgroup and shared highest homology with Cichorium intybus L. CiDREB6 (73%). CmDREB6 was expressed at its highest levels in the leaf. The CmDREB6 protein localized to the nucleus. Based on the yeast one hybrid assay, CmDREB6 showed transcription activation activity in yeast, and the transcriptional activation domain was located in the 3 'end ranging from 230 to 289 amino acids residues. CmDREB6 overexpression enhanced the tolerance of chrysanthemum to heat. The survival rate of two transgenic lines was as high as 85%, 50%, respectively, in contrast to 3.8% of wild-type (WT). Over-expression of CmDREB6 promoted the expression of CmHsfA4, CmHSP90, and the active oxygen scavenging genes CmSOD and CmCAT. CONCLUSION In this study, DREB A-6 subgroup gene CmDREB6 was cloned from chrysanthemum 'Jinba'. Overexpression of CmDREB6 enhanced heat tolerance of chrysanthemum by regulating genes involved in the heat shock response and ROS homeogenesis.
Collapse
Affiliation(s)
- Xinping Du
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenyan Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liping Sheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ye Deng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yinjie Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wanwan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kaili Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
16
|
Song A, Hu Y, Ding L, Zhang X, Li P, Liu Y, Chen F. Comprehensive analysis of mitogen-activated protein kinase cascades in chrysanthemum. PeerJ 2018; 6:e5037. [PMID: 29942696 PMCID: PMC6014330 DOI: 10.7717/peerj.5037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Background Mitogen-activated protein kinase (MAPK) cascades, an important type of pathway in eukaryotic signaling networks, play a key role in plant defense responses, growth and development. Methods Phylogenetic analysis and conserved motif analysis of the MKK and MPK families in Arabidopsis thaliana, Helianthus annuus and Chrysanthemum morifolium classified MKK genes and MPK genes. qRT-PCR was used for the expression patterns of CmMPK and CmMKK genes, and yeast two-hybrid assay was applied to clear the interaction between CmMPKs and CmMKKs. Results We characterized six MKK genes and 11 MPK genes in chrysanthemum based on transcriptomic sequences and classified these genes into four groups. qRT-PCR analysis demonstrated that CmMKKs and CmMPKs exhibited various expression patterns in different organs of chrysanthemum and in response to abiotic stresses and phytohormone treatments. Furthermore, a yeast two-hybrid assay was applied to analyze the interaction between CmMKKs and CmMPKs and reveal the MAPK cascades in chrysanthemum. Discussion Our data led us to propose that CmMKK4-CmMPK13 and CmMKK2-CmMPK4 may be involved in regulating salt resistance and in the relationship between CmMKK9 and CmMPK6 and temperature stress.
Collapse
Affiliation(s)
- Aiping Song
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Yueheng Hu
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Lian Ding
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Xue Zhang
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Peiling Li
- College of Horticulture, Xinyang Agricultural and Forestry University, Xinyang, Henan, China
| | - Ye Liu
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscape Agriculture, Ministry of Agriculture, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Yang H, Sun M, Lin S, Guo Y, Yang Y, Zhang T, Zhang J. Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses. PLoS One 2017; 12:e0187124. [PMID: 29131853 PMCID: PMC5683599 DOI: 10.1371/journal.pone.0187124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/13/2017] [Indexed: 01/18/2023] Open
Abstract
Soil salinization is becoming a limitation to the utilization of ornamental plants worldwide. Crossostephium chinensis (Linnaeus) Makino is often cultivated along the southeast coast of China for its desirable ornamental qualities and high salt tolerance. However, little is known about the genomic background of the salt tolerance mechanism in C. chinensis. In the present study, we used Illumina paired-end sequencing to systematically investigate leaf transcriptomes derived from C. chinensis seedlings grown under normal conditions and under salt stress. A total of 105,473,004 bp of reads were assembled into 163,046 unigenes, of which 65,839 (40.38% of the total) and 54,342 (33.32% of the total) were aligned in Swiss-Prot and Nr protein, respectively. A total of 11,331 (6.95%) differentially expressed genes (DEGs) were identified among three comparisons, including 2,239 in ‘ST3 vs ST0’, 5,880 in ‘ST9 vs ST3’ and 9,718 in ‘ST9 vs ST0’, and they were generally classified into 26 Gene Ontology terms and 58 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms. Many genes encoding important transcription factors (e.g., WRKY, MYB, and AP2/EREBP) and proteins involved in starch and sucrose metabolism, arginine and proline metabolism, plant hormone signal transduction, amino acid biosynthesis, plant-pathogen interactions and carbohydrate metabolism, among others, were substantially up-regulated under salt stress. These genes represent important candidates for studying the salt-response mechanism and molecular biology of C. chinensis and its relatives. Our findings provide a genomic sequence resource for functional genetic assignments in C. chinensis. These transcriptome datasets will help elucidate the molecular mechanisms responsible for salt-stress tolerance in C. chinensis and facilitate the breeding of new stress-tolerant cultivars for high-saline areas using this valuable genetic resource.
Collapse
Affiliation(s)
- Haiyan Yang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Ming Sun
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- * E-mail:
| | - Shuangji Lin
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Yanhong Guo
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Yongjuan Yang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Tengxun Zhang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Jingxing Zhang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| |
Collapse
|
18
|
Guan Z, Feng Y, Song A, Shi X, Mao Y, Chen S, Jiang J, Ding L, Chen F. Expression profiling of Chrysanthemum crassum under salinity stress and the initiation of morphological changes. PLoS One 2017; 12:e0175972. [PMID: 28437448 PMCID: PMC5402956 DOI: 10.1371/journal.pone.0175972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023] Open
Abstract
Chrysanthemum crassum is a decaploid species of Chrysanthemum with high stress tolerance that allows survival under salinity stress while maintaining a relatively ideal growth rate. We previously recorded morphological changes after salt treatment, such as the expansion of leaf cells. To explore the underlying salinity tolerance mechanisms, we used an Illumina platform and obtained three sequencing libraries from samples collected after 0 h, 12 h and 24 h of salt treatment. Following de novo assembly, 154,944 transcripts were generated, and 97,833 (63.14%) transcripts were annotated, including 55 Gene Ontology (GO) terms and 128 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression profile of C. crassum was globally altered after salt treatment. We selected functional genes and pathways that may contribute to salinity tolerance and identified some factors involved in the salinity tolerance strategies of C. crassum, such as signal transduction, transcription factors and plant hormone regulation, enhancement of energy metabolism, functional proteins and osmolyte synthesis, reactive oxygen species (ROS) scavenging, photosystem protection and recovery, and cell wall protein modifications. Forty-six genes were selected for quantitative real-time polymerase chain reaction detection, and their expression patterns were shown to be consistent with the changes in their transcript abundance determined by RNA sequencing.
Collapse
Affiliation(s)
- Zhiyong Guan
- College of Horticulture, Institution of Nanjing Agricultural University, City of Nanjing, State of Jiangsu Province, Country of China
| | - Yitong Feng
- College of Horticulture, Institution of Nanjing Agricultural University, City of Nanjing, State of Jiangsu Province, Country of China
| | - Aiping Song
- College of Horticulture, Institution of Nanjing Agricultural University, City of Nanjing, State of Jiangsu Province, Country of China
| | - Xiaomeng Shi
- College of Horticulture, Institution of Nanjing Agricultural University, City of Nanjing, State of Jiangsu Province, Country of China
| | - Yachao Mao
- College of Horticulture, Institution of Nanjing Agricultural University, City of Nanjing, State of Jiangsu Province, Country of China
| | - Sumei Chen
- College of Horticulture, Institution of Nanjing Agricultural University, City of Nanjing, State of Jiangsu Province, Country of China
| | - Jiafu Jiang
- College of Horticulture, Institution of Nanjing Agricultural University, City of Nanjing, State of Jiangsu Province, Country of China
| | - Lian Ding
- College of Horticulture, Institution of Nanjing Agricultural University, City of Nanjing, State of Jiangsu Province, Country of China
| | - Fadi Chen
- College of Horticulture, Institution of Nanjing Agricultural University, City of Nanjing, State of Jiangsu Province, Country of China
| |
Collapse
|
19
|
Zhang F, Hua L, Fei J, Wang F, Liao Y, Fang W, Chen F, Teng N. Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses. BMC Genomics 2016; 17:585. [PMID: 27506621 PMCID: PMC4979184 DOI: 10.1186/s12864-016-2939-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/14/2016] [Indexed: 12/05/2022] Open
Abstract
Background Cross breeding is the most commonly used method in chrysanthemum (Chrysanthemum morifolium) breeding; however, cross barriers always exist in these combinations. Many studies have shown that paternal chromosome doubling can often overcome hybridization barriers during cross breeding, although the underlying mechanism has seldom been investigated. Results In this study, we performed two crosses: C. morifolium (pollen receptor) × diploid C. nankingense (pollen donor) and C. morifolium × tetraploid C. nankingense. Seeds were obtained only from the latter cross. RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) were used to investigate differentially expressed genes and proteins during key embryo development stages in the latter cross. A previously performed cross, C. morifolium × diploid C. nankingense, was compared to our results and revealed that transcription factors (i.e., the agamous-like MADS-box protein AGL80 and the leucine-rich repeat receptor protein kinase EXS), hormone-responsive genes (auxin-binding protein 1), genes and proteins related to metabolism (ATP-citrate synthase, citrate synthase and malate dehydrogenase) and other genes reported to contribute to embryo development (i.e., LEA, elongation factor and tubulin) had higher expression levels in the C. morifolium × tetraploid C. nankingense cross. In contrast, genes related to senescence and cell death were down-regulated in the C. morifolium × tetraploid C. nankingense cross. Conclusions The data resources helped elucidate the gene and protein expression profiles and identify functional genes during different development stages. When the chromosomes from the male parent are doubled, the genes contributing to normal embryo developmentare more abundant. However, genes with negative functions were suppressed, suggesting that chromosome doubling may epigenetically inhibit the expression of these genes and allow the embryo to develop normally. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2939-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, China
| | - Lichun Hua
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangsong Fei
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, China.
| |
Collapse
|
20
|
Wu YH, Wang T, Wang K, Liang QY, Bai ZY, Liu QL, Pan YZ, Jiang BB, Zhang L. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress. PLoS One 2016; 11:e0159721. [PMID: 27447718 PMCID: PMC4957832 DOI: 10.1371/journal.pone.0159721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/07/2016] [Indexed: 11/18/2022] Open
Abstract
Salt stress has some remarkable influence on chrysanthemum growth and productivity. To understand the molecular mechanisms associated with salt stress and identify genes of potential importance in cultivated chrysanthemum, we carried out transcriptome sequencing of chrysanthemum. Two cDNA libraries were generated from the control and salt-treated samples (Sample_0510_control and Sample_0510_treat) of leaves. By using the Illumina Solexa RNA sequencing technology, 94 million high quality sequencing reads and 161,522 unigenes were generated and then we annotated unigenes through comparing these sequences to diverse protein databases. A total of 126,646 differentially expressed transcripts (DETs) were identified in leaf. Plant hormones, amino acid metabolism, photosynthesis and secondary metabolism were all changed under salt stress after the complete list of GO term and KEGG enrichment analysis. The hormone biosynthesis changing and oxidative hurt decreasing appeared to be significantly related to salt tolerance of chrysanthemum. Important protein kinases and major transcription factor families involved in abiotic stress were differentially expressed, such as MAPKs, CDPKs, MYB, WRKY, AP2 and HD-zip. In general, these results can help us to confirm the molecular regulation mechanism and also provide us a comprehensive resource of chrysanthemum under salt stress.
Collapse
Affiliation(s)
- Yin-Huan Wu
- Department of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tong Wang
- Department of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ke Wang
- Department of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qian-Yu Liang
- Department of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen-Yu Bai
- Department of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing-Lin Liu
- Department of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail:
| | - Yuan-Zhi Pan
- Department of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bei-Bei Jiang
- Department of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lei Zhang
- Department of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Song A, Li P, Xin J, Chen S, Zhao K, Wu D, Fan Q, Gao T, Chen F, Guan Z. Transcriptome-Wide Survey and Expression Profile Analysis of Putative Chrysanthemum HD-Zip I and II Genes. Genes (Basel) 2016; 7:genes7050019. [PMID: 27196930 PMCID: PMC4880839 DOI: 10.3390/genes7050019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/30/2022] Open
Abstract
The homeodomain-leucine zipper (HD-Zip) transcription factor family is a key transcription factor family and unique to the plant kingdom. It consists of a homeodomain and a leucine zipper that serve in combination as a dimerization motif. The family can be classified into four subfamilies, and these subfamilies participate in the development of hormones and mediation of hormone action and are involved in plant responses to environmental conditions. However, limited information on this gene family is available for the important chrysanthemum ornamental species (Chrysanthemum morifolium). Here, we characterized 17 chrysanthemum HD-Zip genes based on transcriptome sequences. Phylogenetic analyses revealed that 17 CmHB genes were distributed in the HD-Zip subfamilies I and II and identified two pairs of putative orthologous proteins in Arabidopsis and chrysanthemum and four pairs of paralogous proteins in chrysanthemum. The software MEME was used to identify 7 putative motifs with E values less than 1e-3 in the chrysanthemum HD-Zip factors, and they can be clearly classified into two groups based on the composition of the motifs. A bioinformatics analysis predicted that 8 CmHB genes could be targeted by 10 miRNA families, and the expression of these 17 genes in response to phytohormone treatments and abiotic stresses was characterized. The results presented here will promote research on the various functions of the HD-Zip gene family members in plant hormones and stress responses.
Collapse
Affiliation(s)
- Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peiling Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kunkun Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dan Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qingqing Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tianwei Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
22
|
Involvement of CmWRKY10 in Drought Tolerance of Chrysanthemum through the ABA-Signaling Pathway. Int J Mol Sci 2016; 17:ijms17050693. [PMID: 27187353 PMCID: PMC4881519 DOI: 10.3390/ijms17050693] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022] Open
Abstract
Drought is one of the important abiotic factors that adversely affects plant growth and production. The WRKY transcription factor plays a pivotal role in plant growth and development, as well as in the elevation of many abiotic stresses. Among three major groups of the WRKY family, the group IIe WRKY has been the least studied in floral crops. Here, we report functional aspects of group IIe WRKY member, i.e., CmWRKY10 in chrysanthemum involved in drought tolerance. The transactivation assay showed that CmWRKY10 had transcriptional activity in yeast cells and subcellular localization demonstrated that it was localized in nucleus. Our previous study showed that CmWRKY10 could be induced by drought in chrysanthemum. Moreover, the overexpression of CmWRKY10 in transgenic chrysanthemum plants improved tolerance to drought stress compared to wild-type (WT). High expression of DREB1A, DREB2A, CuZnSOD, NCED3A, and NCED3B transcripts in overexpressed plants provided strong evidence that drought tolerance mechanism was associated with abscisic acid (ABA) pathway. In addition, lower accumulation of reactive oxygen species (ROS) and higher enzymatic activity of peroxidase, superoxide dismutase and catalase in CmWRKY10 overexpressed lines than that of WT demonstrates its role in drought tolerance. Together, these findings reveal that CmWRKY10 works as a positive regulator in drought stress by regulating stress-related genes.
Collapse
|
23
|
Song A, Gao T, Wu D, Xin J, Chen S, Guan Z, Wang H, Jin L, Chen F. Transcriptome-wide identification and expression analysis of chrysanthemum SBP-like transcription factors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:10-6. [PMID: 26897115 DOI: 10.1016/j.plaphy.2016.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 05/09/2023]
Abstract
SQUAMOSA promoter-binding protein (SBP) transcription factors are known to function in a number of processes in plants. Here, we have characterized twelve SBP-like (SPL) genes in the important ornamental species chrysanthemum (Chrysanthemum morifolium). A total of twelve distinct sequences were isolated and amplified based on transcriptomic sequences. Phylogenetic analysis identified two pairs of orthologous proteins for Arabidopsis and chrysanthemum and two pairs of paralogous proteins in chrysanthemum. Conserved motifs in the SPL proteins shared by Arabidopsis and chrysanthemum were scanned using MEME. A bioinformatics analysis revealed that six of these genes contained a miR156 target site, while five CmSPLs were targeted by miR157. Moreover, we used 5' RLM-RACE to map the cleavage sites in CmSPL2 and CmSPL3. The expression of these twelve genes in response to a variety of phytohormone treatments and abiotic stresses was characterized. This work improves our understanding of the various functions of SPL gene family members in the stress response.
Collapse
Affiliation(s)
- Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, 210095, China.
| | - Tianwei Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Dan Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lili Jin
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, 210095, China.
| |
Collapse
|
24
|
Fan Q, Song A, Jiang J, Zhang T, Sun H, Wang Y, Chen S, Chen F. CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes. PLoS One 2016; 11:e0150572. [PMID: 26938878 PMCID: PMC4777562 DOI: 10.1371/journal.pone.0150572] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/17/2016] [Indexed: 01/09/2023] Open
Abstract
WRKY transcription factors serve as antagonistic or synergistic regulators in a variety of abiotic stress responses in plants. Here, we show that CmWRKY1, a member of the group IIb WRKY family isolated from Chrysanthemum morifolium, exhibits no transcriptional activation in yeast cells. The subcellular localization examination showed that CmWRKY1 localizes to the nucleus in vivo. Furthermore, CmWRKY1-overexpressing transgenic lines exhibit enhanced dehydration tolerance in response to polyethylene glycol (PEG) treatment compared with wild-type plants. We further confirmed that the transgenic plants exhibit suppressed expression levels of genes negatively regulated by ABA, such as PP2C, ABI1 and ABI2, and activated expression levels of genes positively regulated by ABA, such as PYL2, SnRK2.2, ABF4, MYB2, RAB18, and DREB1A. Taken together, our results indicate that CmWRKY1 plays an important role in the response to drought in chrysanthemum through an ABA-mediated pathway.
Collapse
Affiliation(s)
- Qingqing Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hainan Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinjie Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, 210095, China
- * E-mail:
| |
Collapse
|
25
|
Song A, Wu D, Fan Q, Tian C, Chen S, Guan Z, Xin J, Zhao K, Chen F. Transcriptome-Wide Identification and Expression Profiling Analysis of Chrysanthemum Trihelix Transcription Factors. Int J Mol Sci 2016; 17:ijms17020198. [PMID: 26848650 PMCID: PMC4783932 DOI: 10.3390/ijms17020198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 12/19/2015] [Accepted: 01/28/2016] [Indexed: 12/23/2022] Open
Abstract
Trihelix transcription factors are thought to feature a typical DNA-binding trihelix (helix-loop-helix-loop-helix) domain that binds specifically to the GT motif, a light-responsive DNA element. Members of the trihelix family are known to function in a number of processes in plants. Here, we characterize 20 trihelix family genes in the important ornamental plant chrysanthemum (Chrysanthemum morifolium). Based on transcriptomic data, 20 distinct sequences distributed across four of five groups revealed by a phylogenetic tree were isolated and amplified. The phylogenetic analysis also identified four pairs of orthologous proteins shared by Arabidopsis and chrysanthemum and five pairs of paralogous proteins in chrysanthemum. Conserved motifs in the trihelix proteins shared by Arabidopsis and chrysanthemum were analyzed using MEME, and further bioinformatic analysis revealed that 16 CmTHs can be targeted by 20 miRNA families and that miR414 can target 9 CmTHs. qPCR results displayed that most chrysanthemum trihelix genes were highly expressed in inflorescences, while 20 CmTH genes were in response to phytohormone treatments and abiotic stresses. This work improves our understanding of the various functions of trihelix gene family members in response to hormonal stimuli and stress.
Collapse
Affiliation(s)
- Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dan Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qingqing Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chang Tian
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kunkun Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Zhu L, Zheng C, Liu R, Song A, Zhang Z, Xin J, Jiang J, Chen S, Zhang F, Fang W, Chen F. Chrysanthemum transcription factor CmLBD1 direct lateral root formation in Arabidopsis thaliana. Sci Rep 2016; 6:20009. [PMID: 26819087 PMCID: PMC4730235 DOI: 10.1038/srep20009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/20/2015] [Indexed: 11/09/2022] Open
Abstract
The plant-specific LATERAL ORGAN BOUNDARIES DOMAIN (LBD) genes are important regulators of growth and development. Here, a chrysanthemum class I LBD transcription factor gene, designated CmLBD1, was isolated and its function verified. CmLBD1 was transcribed in both the root and stem, but not in the leaf. The gene responded to auxin and was shown to participate in the process of adventitious root primordium formation. Its heterologous expression in Arabidopsis thaliana increased the number of lateral roots formed. When provided with exogenous auxin, lateral root emergence was promoted. CmLBD1 expression also favored callus formation from A. thaliana root explants in the absence of exogenously supplied phytohormones. In planta, CmLBD1 probably acts as a positive regulator of the response to auxin fluctuations and connects auxin signaling with lateral root formation.
Collapse
Affiliation(s)
- Lu Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruixia Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaohe Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Song A, Gao T, Li P, Chen S, Guan Z, Wu D, Xin J, Fan Q, Zhao K, Chen F. Transcriptome-Wide Identification and Expression Profiling of the DOF Transcription Factor Gene Family in Chrysanthemum morifolium. FRONTIERS IN PLANT SCIENCE 2016; 7:199. [PMID: 26941763 PMCID: PMC4763086 DOI: 10.3389/fpls.2016.00199] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/05/2016] [Indexed: 05/02/2023]
Abstract
The family of DNA binding with one finger (DOF) transcription factors is plant specific, and these proteins contain a highly conserved domain (DOF domain) of 50-52 amino acids that includes a C2C2-type zinc finger motif at the N-terminus that is known to function in a number of plant processes. Here, we characterized 20 DOF genes in the important ornamental species chrysanthemum (Chrysanthemum morifolium) based on transcriptomic sequences. Phylogenetic analysis identified one pair of putative orthologous proteins in Arabidopsis and chrysanthemum and six pairs of paralogous proteins in chrysanthemum. Conserved motifs in the DOF proteins shared by Arabidopsis and chrysanthemum were analyzed using MEME. Bioinformatics analysis revealed that 13 CmDOFs could be targeted by 16 miRNA families. Moreover, we used 5' RLM-RACE to map the cleavage sites in CmDOF3, 15, and 21. The expression of these 20 genes in response to phytohormone treatments and abiotic stresses was characterized, and the expression patterns of six pairs of paralogous CmDOF genes were found to completely differ from one another, except for CmDOF6 and CmDOF7. This work will promote our research of the various functions of DOF gene family members in plant hormone and stress responses.
Collapse
|
28
|
Fan Q, Song A, Xin J, Chen S, Jiang J, Wang Y, Li X, Chen F. CmWRKY15 Facilitates Alternaria tenuissima Infection of Chrysanthemum. PLoS One 2015; 10:e0143349. [PMID: 26600125 PMCID: PMC4658048 DOI: 10.1371/journal.pone.0143349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/03/2015] [Indexed: 01/08/2023] Open
Abstract
Abscisic acid (ABA) has an important role in the responses of plants to pathogens due to its ability to induce stomatal closure and interact with salicylic acid (SA) and jasmonic acid (JA). WRKY transcription factors serve as antagonistic or synergistic regulators in the response of plants to a variety of pathogens. Here, we demonstrated that CmWRKY15, a group IIa WRKY family member, was not transcriptionally activated in yeast cells. Subcellular localization experiments in which onion epidermal cells were transiently transfected with CmWRKY15 indicated that CmWRKY15 localized to the nucleus in vivo. The expression of CmWRKY15 could be markedly induced by the presence of Alternaria tenuissima inoculum in chrysanthemum. Furthermore, the disease severity index (DSI) data of CmWRKY15-overexpressing plants indicated that CmWRKY15 overexpression enhanced the susceptibility of chrysanthemum to A. tenuissima infection compared to controls. To illustrate the mechanisms by which CmWRKY15 regulates the response to A. tenuissima inoculation, the expression levels of ABA-responsive and ABA signaling genes, such as ABF4, ABI4, ABI5, MYB2, RAB18, DREB1A, DREB2A, PYL2, PP2C, RCAR1, SnRK2.2, SnRK2.3, NCED3A, NCED3B, GTG1, AKT1, AKT2, KAT1, KAT2, and KC1were compared between transgenic plants and controls. In summary, our data suggest that CmWRKY15 might facilitate A. tenuissima infection by antagonistically regulating the expression of ABA-responsive genes and genes involved in ABA signaling, either directly or indirectly.
Collapse
Affiliation(s)
- Qingqing Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yinjie Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiran Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, China
- * E-mail:
| |
Collapse
|
29
|
Li P, Song A, Gao C, Jiang J, Chen S, Fang W, Zhang F, Chen F. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 95:26-34. [PMID: 26184088 DOI: 10.1016/j.plaphy.2015.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/25/2015] [Accepted: 07/01/2015] [Indexed: 05/20/2023]
Abstract
Members of the large WRKY transcription factor family are responsible for the regulation of plant growth, development and the stress response. Here, five WRKY members were isolated from chrysanthemum. They each contained a single WRKY domain and a C2H2 zinc finger motif, so were classified into group II. Transient expression experiments demonstrated that all five were expressed in the nucleus, although CmWRKY42 was also expressed in the cytoplasm. When expressed heterologously in yeast, the products of CmWRKY22 and CmWRKY48 exhibited transactivation activity, while those of CmWRKY21, CmWRKY40 and CmWRKY42 did not. The transcription of the five CmWRKY genes was profiled when the plants were challenged with a variety of abiotic and biotic stress agents, as well as being treated with various phytohormones. CmWRKY21 proved to be markedly induced by salinity stress, and suppressed by high temperature exposure; CmWRKY22 was induced by high temperature exposure; CmWRKY40 was highly induced by salinity stress, and treatment with either abscisic acid (ABA) or methyl jasmonate (MeJA); CmWRKY42 was up-regulated by salinity stress, low temperature, ABA and MeJA treatment and aphid infestation; CmWRKY48 was induced by drought stress, ABA and MeJA treatment and aphid infestation. The function of CmWRKY48 was further investigated by over-expressing it transgenically. The constitutive expression of this transcription factor inhibited the aphids' population growth capacity, suggesting that it may represent an important component of the plant's defense machinery against aphids.
Collapse
Affiliation(s)
- Peiling Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyan Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
30
|
Li P, Song A, Gao C, Wang L, Wang Y, Sun J, Jiang J, Chen F, Chen S. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. PLANT CELL REPORTS 2015; 34:1365-78. [PMID: 25893877 DOI: 10.1007/s00299-015-1793-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/26/2015] [Accepted: 04/11/2015] [Indexed: 05/21/2023]
Abstract
CmWRKY17 was induced by salinity in chrysanthemum, and it might negatively regulate salt stress in transgenic plants as a transcriptional repressor. WRKY transcription factors play roles as positive or negative regulators in response to various stresses in plants. In this study, CmWRKY17 was isolated from chrysanthemum (Chrysanthemum morifolium). The gene encodes a 227-amino acid protein and belongs to the group II WRKY family, but has an atypical WRKY domain with the sequence WKKYGEK. Our data indicated that CmWRKY17 was localized to the nucleus in onion epidermal cells. CmWRKY17 showed no transcriptional activation in yeast; furthermore, luminescence assay clearly suggested that CmWRKY17 functions as a transcriptional repressor. DNA-binding assay showed that CmWRKY17 can bind to W-box. The expression of CmWRKY17 was induced by salinity in chrysanthemum, and a higher expression level was observed in the stem and leaf compared with that in the root, disk florets, and ray florets. Overexpression of CmWRKY17 in chrysanthemum and Arabidopsis increased the sensitivity to salinity stress. The activities of superoxide dismutase and peroxidase and proline content in the leaf were significantly lower in transgenic chrysanthemum than those in the wild type under salinity stress, whereas electrical conductivity was increased in transgenic plants. Expression of the stress-related genes AtRD29, AtDREB2B, AtSOS1, AtSOS2, AtSOS3, and AtNHX1 was reduced in the CmWRKY17 transgenic Arabidopsis compared with that in the wild-type Col-0. Collectively, these data suggest that CmWRKY17 may increase the salinity sensitivity in plants as a transcriptional repressor.
Collapse
Affiliation(s)
- Peiling Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Song A, Wang L, Chen S, Jiang J, Guan Z, Li P, Chen F. Identification of nitrogen starvation-responsive microRNAs in Chrysanthemum nankingense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 91:41-8. [PMID: 25874656 DOI: 10.1016/j.plaphy.2015.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 05/12/2023]
Abstract
MicroRNA (miRNA) is involved in many developmental processes and various abiotic stress responses in plants. As nitrogen is a limited element for plant growth, comparative analyses of miRNAs responding to low nitrogen stress is important for improving the nitrogen use efficiency (NUE). We used high-throughput sequencing to detect the response of miRNAs to low nitrogen stress in the roots and leaves of Chrysanthemum nankingense. Compared with the control, the differential expression was more than 2-fold in 81 miRNAs in roots and 101 miRNAs in leaves. The identified miRNAs showed overlapping or unique response to nitrate limitation in roots and leaves, including several members of known miRNA families with low nitrogen stress response, such as miR156, miR169, and miR393. The potential target genes of these miRNAs were also identified. The total amount of predicted target genes was 219, and the corresponding amount of matched miRNAs was 37 in roots and 44 in leaves. Moreover, we used 5' RLM-RACE to map the cleavage sites in four predicted target genes. The differential expression level of miRNAs and target genes was verified by quantitative real-time polymerase chain reaction (qRT-PCR). According to the functional characteristics of the predicted target genes, they were divided into three main categories: transcription factors, kinases, and metabolism.
Collapse
Affiliation(s)
- Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing 210095, China
| | - Linxiao Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiling Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing 210095, China.
| |
Collapse
|
32
|
Zhang F, Dong W, Huang L, Song A, Wang H, Fang W, Chen F, Teng N. Identification of MicroRNAs and their Targets Associated with Embryo Abortion during Chrysanthemum Cross Breeding via High-Throughput Sequencing. PLoS One 2015; 10:e0124371. [PMID: 25909659 PMCID: PMC4409343 DOI: 10.1371/journal.pone.0124371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators in plant development. They post-transcriptionally regulate gene expression during various biological and metabolic processes by binding to the 3’-untranslated region of target mRNAs to facilitate mRNA degradation or inhibit translation. Chrysanthemum (Chrysanthemum morifolium) is one of the most important ornamental flowers with increasing demand each year. However, embryo abortion is the main reason for chrysanthemum cross breeding failure. To date, there have been no experiments examining the expression of miRNAs associated with chrysanthemum embryo development. Therefore, we sequenced three small RNA libraries to identify miRNAs and their functions. Our results will provide molecular insights into chrysanthemum embryo abortion. Results Three small RNA libraries were built from normal chrysanthemum ovules at 12 days after pollination (DAP), and normal and abnormal chrysanthemum ovules at 18 DAP. We validated 228 miRNAs with significant changes in expression frequency during embryonic development. Comparative profiling revealed that 69 miRNAs exhibited significant differential expression between normal and abnormal embryos at 18 DAP. In addition, a total of 1037 miRNA target genes were predicted, and their annotations were defined by transcriptome data. Target genes associated with metabolic pathways were most highly represented according to the annotation. Moreover, 52 predicted target genes were identified to be associated with embryonic development, including 31 transcription factors and 21 additional genes. Gene ontology (GO) annotation also revealed that high-ranking miRNA target genes related to cellular processes and metabolic processes were involved in transcription regulation and the embryo developmental process. Conclusions The present study generated three miRNA libraries and gained information on miRNAs and their targets in the chrysanthemum embryo. These results enrich the growing database of new miRNAs and lay the foundation for the further understanding of miRNA biological function in the regulation of chrysanthemum embryo abortion.
Collapse
Affiliation(s)
- Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, China
| | - Wen Dong
- China Rural Technology Development Center, Beijing, China
| | - Lulu Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing, China
- * E-mail:
| |
Collapse
|
33
|
Gao C, Li P, Song A, Wang H, Wang Y, Ren L, Qi X, Chen F, Jiang J, Chen S. Isolation and characterization of six AP2/ERF transcription factor genes in Chrysanthemum nankingense. Int J Mol Sci 2015; 16:2052-65. [PMID: 25607731 PMCID: PMC4307348 DOI: 10.3390/ijms16012052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/12/2014] [Accepted: 01/05/2015] [Indexed: 01/08/2023] Open
Abstract
The AP2/ERF family of plant transcription factors (TFs) regulate a variety of developmental and physiological processes. Here, we report the isolation of six AP2/ERF TF family genes from Chrysanthemum nankingense. On the basis of sequence similarity, one of these belonged to the Ethylene Responsive Factor (ERF) subfamily and the other five to the Dehydration Responsive Element Binding protein (DREB) subfamily. A transient expression experiment showed that all six AP2/ERF proteins localized to the nucleus. A yeast-one hybrid assay demonstrated that CnDREB1-1, 1-2 and 1-3 all function as transactivators, while CnERF1, CnDREB3-1 and 3-2 have no transcriptional activation ability. The transcription response of the six TFs in response to wounding, salinity and low temperature stress and treatment with abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) showed that CnERF1 was up-regulated by wounding and low temperature stress but suppressed by salinity stress. The transcription of CnDREB1-1, 1-2 and 1-3 was down-regulated by ABA and JA to varying degrees. CnDREB3-1 and 3-2 was moderately increased or decreased by wounding and SA treatment, suppressed by salinity stress and JA treatment, and enhanced by low temperature stress and ABA treatment.
Collapse
Affiliation(s)
- Chunyan Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peiling Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yinjie Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Liping Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiangyu Qi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|