1
|
Agarwala P, Pal A, Hazra MK, Sasmal DK. Differential Mg 2+ deposition on DNA Holliday Junctions dictates the rate and stability of conformational exchange. NANOSCALE 2024; 17:520-532. [PMID: 39569634 DOI: 10.1039/d4nr02411g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
DNA Holliday junctions (HJs) are crucial intermediates in genetic recombination and genome repair processes, characterized by a dynamic nature and transitioning among multiple conformations on the timescale ranging from sub-milliseconds to seconds. Although the influence of ions on HJ dynamics has been extensively studied, precise quantification of the thermodynamic feasibility of transitions and detailed kinetic cooperativity remain unexplored. Understanding the heterogeneity of stochastic gene recombination using ensemble-averaged experimental techniques is extremely difficult because of its lack of ability to differentiate dynamics and function in a high spatiotemporal resolution. Herein, we developed a new technique that combines single-molecule fluorescence resonance energy transfer (smFRET) experiments and molecular simulation to investigate the kinetic choreography and preferential stability of HJ conformations under ionic conditions that closely mimic the physiological environment relevant to cellular biology. Our findings predict the prevalence of three distinct conformational macrostates in HJ dynamics. At low ion concentrations, HJs transition rapidly among three thermodynamically stable conformational macrostates. However, in a physiological ionic environment, the open conformation becomes predominant. Using a kinetic network model based on the multi-order time correlation function (TCF), we delineated thermodynamic parameters that govern heterogeneous dynamics as a function of divalent ion concentration. Stabilization of conformations due to an ionic environment and activation barriers concertedly affect transition rates between open and closed conformations. Furthermore, we observed a significant enhancement of Mg2+ condensation in the central region of HJs rather than branch ends, leading to a plausible conclusion that the differential stability of conformational states may be governed by the junction region of HJs rather than duplex branches. This study gives a new insight into the complex interplay between the ionic environment and HJ dynamics, offering a comprehensive understanding of their behavior under conditions relevant to cellular biology and roles in key biological processes for creating a heterogeneous nature of life.
Collapse
Affiliation(s)
- Pratibha Agarwala
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| | - Arumay Pal
- School of Biosciences, Engineering and Technology, Vellore Institute of Technology Bhopal, India
| | - Milan Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| | - Dibyendu K Sasmal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| |
Collapse
|
2
|
Zhang Z, Šponer J, Bussi G, Mlýnský V, Šulc P, Simmons CR, Stephanopoulos N, Krepl M. Atomistic Picture of Opening-Closing Dynamics of DNA Holliday Junction Obtained by Molecular Simulations. J Chem Inf Model 2023; 63:2794-2809. [PMID: 37126365 PMCID: PMC10170514 DOI: 10.1021/acs.jcim.3c00358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Holliday junction (HJ) is a noncanonical four-way DNA structure with a prominent role in DNA repair, recombination, and DNA nanotechnology. By rearranging its four arms, HJ can adopt either closed or open state. With enzymes typically recognizing only a single state, acquiring detailed knowledge of the rearrangement process is an important step toward fully understanding the biological function of HJs. Here, we carried out standard all-atom molecular dynamics (MD) simulations of the spontaneous opening-closing transitions, which revealed complex conformational transitions of HJs with an involvement of previously unconsidered "half-closed" intermediates. Detailed free-energy landscapes of the transitions were obtained by sophisticated enhanced sampling simulations. Because the force field overstabilizes the closed conformation of HJs, we developed a system-specific modification which for the first time allows the observation of spontaneous opening-closing HJ transitions in unbiased MD simulations and opens the possibilities for more accurate HJ computational studies of biological processes and nanomaterials.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
| | - Petr Šulc
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, 1001 S. McAllister Ave, Tempe, 85287 Arizona, United States
| | - Chad R Simmons
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, 1001 S. McAllister Ave, Tempe, 85287 Arizona, United States
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, 1001 S. McAllister Ave, Tempe, 85287 Arizona, United States
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
3
|
Integration Host Factor Binds DNA Holliday Junctions. Int J Mol Sci 2022; 24:ijms24010580. [PMID: 36614023 PMCID: PMC9820253 DOI: 10.3390/ijms24010580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Integration host factor (IHF) is a nucleoid-associated protein involved in DNA packaging, integration of viral DNA and recombination. IHF binds with nanomolar affinity to duplex DNA containing a 13 bp consensus sequence, inducing a bend of ~160° upon binding. We determined that IHF binds to DNA Four-way or Holliday junctions (HJ) with high affinity regardless of the presence of the consensus sequence, signifying a structure-based mechanism of recognition. Junctions, important intermediates in DNA repair and homologous recombination, are dynamic and can adopt either an open or stacked conformation, where the open conformation facilitates branch migration and strand exchange. Using ensemble and single molecule Förster resonance energy transfer (FRET) methods, we investigated IHF-induced changes in the population distribution of junction conformations and determined that IHF binding shifts the population to the open conformation. Further analysis of smFRET dynamics revealed that even in the presence of protein, the junctions remain dynamic as fast transitions are observed for the protein-bound open state. Protein binding alters junction conformational dynamics, as cross correlation analyses reveal the protein slows the transition rate at 1 mM Mg2+ but accelerates the transition rate at 10 mM Mg2+. Stopped flow kinetic experiments provide evidence for two binding steps, a rapid, initial binding step followed by a slower step potentially associated with a conformational change. These measurements also confirm that the protein remains bound to the junction during the conformer transitions and further suggest that the protein forms a partially dissociated state that allows junction arms to be dynamic. These findings, which demonstrate that IHF binds HJs with high affinity and stabilizes junctions in the open conformation, suggest that IHF may play multiple roles in the processes of integration and recombination in addition to stabilizing bacterial biofilms.
Collapse
|
4
|
The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly. Nat Commun 2022; 13:3112. [PMID: 35662248 PMCID: PMC9166708 DOI: 10.1038/s41467-022-30779-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/04/2022] [Indexed: 12/31/2022] Open
Abstract
The programmable synthesis of rationally engineered crystal architectures for the precise arrangement of molecular species is a foundational goal in nanotechnology, and DNA has become one of the most prominent molecules for the construction of these materials. In particular, branched DNA junctions have been used as the central building block for the assembly of 3D lattices. Here, crystallography is used to probe the effect of all 36 immobile Holliday junction sequences on self-assembling DNA crystals. Contrary to the established paradigm in the field, most junctions yield crystals, with some enhancing the resolution or resulting in unique crystal symmetries. Unexpectedly, even the sequence adjacent to the junction has a significant effect on the crystal assemblies. Six of the immobile junction sequences are completely resistant to crystallization and thus deemed “fatal,” and molecular dynamics simulations reveal that these junctions invariably lack two discrete ion binding sites that are pivotal for crystal formation. The structures and dynamics detailed here could be used to inform future designs of both crystals and DNA nanostructures more broadly, and have potential implications for the molecular engineering of applied nanoelectronics, nanophotonics, and catalysis within the crystalline context. Engineered crystal architectures from DNA have become a foundational goal for nanotechnological precise arrangement. Here, the authors systematically investigate the structures of 36 immobile Holliday junction sequences and identify the features allowing the crystallisation of most of them, while 6 are considered fatal.
Collapse
|
5
|
Mismatch Recognition by Saccharomyces cerevisiae Msh2-Msh6: Role of Structure and Dynamics. Int J Mol Sci 2019; 20:ijms20174271. [PMID: 31480444 PMCID: PMC6747400 DOI: 10.3390/ijms20174271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
The mismatch repair (MMR) pathway maintains genome integrity by correcting errors such as mismatched base pairs formed during DNA replication. In MMR, Msh2–Msh6, a heterodimeric protein, targets single base mismatches and small insertion/deletion loops for repair. By incorporating the fluorescent nucleoside base analog 6-methylisoxanthopterin (6-MI) at or adjacent to a mismatch site to probe the structural and dynamic elements of the mismatch, we address how Msh2–Msh6 recognizes these mismatches for repair within the context of matched DNA. Fluorescence quantum yield and rotational correlation time measurements indicate that local base dynamics linearly correlate with Saccharomyces cerevisiae Msh2–Msh6 binding affinity where the protein exhibits a higher affinity (KD ≤ 25 nM) for mismatches that have a significant amount of dynamic motion. Energy transfer measurements measuring global DNA bending find that mismatches that are both well and poorly recognized by Msh2–Msh6 experience the same amount of protein-induced bending. Finally, base-specific dynamics coupled with protein-induced blue shifts in peak emission strongly support the crystallographic model of directional binding, in which Phe 432 of Msh6 intercalates 3′ of the mismatch. These results imply an important role for local base dynamics in the initial recognition step of MMR.
Collapse
|
6
|
Lahiri S, Li Y, Hingorani MM, Mukerji I. MutSγ-Induced DNA Conformational Changes Provide Insights into Its Role in Meiotic Recombination. Biophys J 2018; 115:2087-2101. [PMID: 30467025 DOI: 10.1016/j.bpj.2018.10.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 01/11/2023] Open
Abstract
In many organisms, MutSγ plays a role in meiotic recombination, facilitating crossover formation between homologous chromosomes. Failure to form crossovers leads to improper segregation of chromosomes and aneuploidy, which in humans result in infertility and birth defects. To improve current understanding of MutSγ function, this study investigates the binding affinities and structures of MutSγ in complex with DNA substrates that model homologous recombination intermediates. For these studies, we overexpressed and isolated from Escherichia coli the yeast MutSγ protein Saccharomyces cerevisiae (Sc) Msh4-Msh5. Sc Msh4-Msh5 binds Holliday junction (HJ)-like substrates, 3' overhangs, single-stranded (ss) forks, and the displacement loop with nanomolar affinity. The weakest binding affinities are detected for an intact duplex and open-junction construct. Similar to the human protein, Sc Msh4-Msh5 exhibits the highest affinity for the HJ with a Kd < 0.4 nM in solution. Energy-transfer experiments further demonstrate that DNA structure is modulated by the binding interaction with the largest changes associated with substrates containing an ss end. Upon binding, Sc Msh4-Msh5 displaces the ss away from the duplex in most of the ss-containing intermediates, potentially enabling the binding of RPA and other proteins. In the case of the junction-like intermediates, Msh4-Msh5 binding either stabilizes the existing stacked structure or induces formation of the stacked X conformation. Significantly, we find that upon binding, Msh4-Msh5 stacks an open-junction construct to the same extent as the standard junction. Stabilization of the junction in the stacked conformation is generally refractory to branch migration, which is consistent with a potential role for MutSγ to stabilize HJs and prevent branch migration until resolution by MutLγ. The different binding modalities observed suggest that Msh4-Msh5 not only binds to and stabilizes stacked junctions but also participates in meiotic recombination before junction formation through the stabilization of single-end invasion intermediates.
Collapse
Affiliation(s)
- Sudipta Lahiri
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut
| | - Yan Li
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut
| | - Manju M Hingorani
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut
| | - Ishita Mukerji
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut.
| |
Collapse
|