1
|
Xiao M, Hou J, Xu M, Li S, Yang B. Aquaporins in Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:99-124. [PMID: 36717489 DOI: 10.1007/978-981-19-7415-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the nine AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2, and AQP4 expressed in the peripheral nervous system are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica, brain tumors, and neurodegenerative disorders. Moreover, AQP4 has been demonstrated as a functional regulator of recently discovered glymphatic system that is a main contributor to clearance of toxic macromolecule from the brain. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.
Collapse
Affiliation(s)
- Ming Xiao
- Jiangsu Province, Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jiaoyu Hou
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengmeng Xu
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shao Li
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Wei T, Zhou M, Gu L, Yang H, Zhou Y, Li M. A Novel Gating Mechanism of Aquaporin-4 Water Channel Mediated by Blast Shockwaves for Brain Edema. J Phys Chem Lett 2022; 13:2486-2492. [PMID: 35271290 DOI: 10.1021/acs.jpclett.2c00321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the principal water channel in the brain, aquaporin-4 (AQP4) plays a vital role in brain edema, but its role in blast brain edema is unclear. On the basis of molecular simulations, we reveal the atomically detailed picture of AQP4 in response to blast shockwaves. The results show that the shockwave alone closes the AQP4 channel; however, shock-induced bubble collapse opens it. The jet from bubble collapse forcefully increases the distance between helices and the tilt angles of six helices relative to the membrane vertical direction in a very short time. The average channel size increases about 2.6 times, and the water flux rate is nearly 20 times higher than for normal states. It is responsible for abnormal water transport and a potential cause of acute blast brain edema. Additionally, the open AQP4 channel quickly returns to its normal state, which is in turn helpful for edema absorption. Thus, a novel gating mechanism for AQP4 related to the secondary structure change has been provided, which is different from the previous residue-mediated gating mechanism.
Collapse
Affiliation(s)
- Tong Wei
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Mi Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Lingzhi Gu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Hong Yang
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Ming Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
3
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
4
|
Bernardi M, Marracino P, Ghaani MR, Liberti M, Del Signore F, Burnham CJ, Gárate JA, Apollonio F, English NJ. Human aquaporin 4 gating dynamics under axially oriented electric-field impulses: A non-equilibrium molecular-dynamics study. J Chem Phys 2019; 149:245102. [PMID: 30599740 DOI: 10.1063/1.5044665] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human aquaporin 4 has been studied using non-equilibrium molecular dynamics simulations in the absence and presence of pulses of external electric fields. The pulses were 100 ns in duration and 0.005-0.015 V/Å in intensity acting along the pores' axes. Water diffusivity and the dipolar response of various residues of interest within the pores have been studied. Results show relatively little change in levels of water permeability per se within aquaporin channels during axially oriented field impulses, although care must be taken with regard to statistical certainty. However, the spatial variation of water permeability vis-à-vis electric-field intensity within the milieu of the channels, as revealed by heterogeneity in diffusivity-map gradients, indicates the possibility of somewhat enhanced diffusivity, owing to several residues being affected substantially by external fields, particularly for HIS 201 and 95 and ILE 93. This has the effect of increasing slightly intra-pore water diffusivity in the "pore-mouths" locale, albeit rendering it more spatially uniform overall vis-à-vis zero-field conditions (via manipulation of the selectivity filter).
Collapse
Affiliation(s)
- Mario Bernardi
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University, 00184 Rome, Italy
| | - Paolo Marracino
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University, 00184 Rome, Italy
| | - Mohammad Reza Ghaani
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, D4, Ireland
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University, 00184 Rome, Italy
| | - Federico Del Signore
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University, 00184 Rome, Italy
| | - Christian J Burnham
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, D4, Ireland
| | - José-Antonio Gárate
- Centro Interdisciplinario de neurociencia de Valparaíso, CINV, Universidad de Valparaíso, 05101 Valparaíso, Chile
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University, 00184 Rome, Italy
| | - Niall J English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, D4, Ireland
| |
Collapse
|
5
|
Passeri GI, Trisciuzzi D, Alberga D, Siragusa L, Leonetti F, Mangiatordi GF, Nicolotti O. Strategies of Virtual Screening in Medicinal Chemistry. ACTA ACUST UNITED AC 2018. [DOI: 10.4018/ijqspr.2018010108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virtual screening represents an effective computational strategy to rise-up the chances of finding new bioactive compounds by accelerating the time needed to move from an initial intuition to market. Classically, the most pursued approaches rely on ligand- and structure-based studies, the former employed when structural data information about the target is missing while the latter employed when X-ray/NMR solved or homology models are instead available for the target. The authors will focus on the most advanced techniques applied in this area. In particular, they will survey the key concepts of virtual screening by discussing how to properly select chemical libraries, how to make database curation, how to applying and- and structure-based techniques, how to wisely use post-processing methods. Emphasis will be also given to the most meaningful databases used in VS protocols. For the ease of discussion several examples will be presented.
Collapse
Affiliation(s)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Lydia Siragusa
- Molecular Discovery Ltd., Pinner, Middlesex, London, United Kingdom
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe F. Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | | |
Collapse
|
6
|
He D, Zhang A, Li Y, Cai G, Li Y, Guo S. Autoimmune aquaporin-4 induced damage beyond the central nervous system. Mult Scler Relat Disord 2017; 18:41-46. [DOI: 10.1016/j.msard.2017.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 01/24/2023]
|
7
|
Burnham CJ, English NJ. Electropumping of Water Through Human Aquaporin 4 by Circularly Polarized Electric Fields: Dramatic Enhancement and Control Revealed by Non-Equilibrium Molecular Dynamics. J Phys Chem Lett 2017; 8:4646-4651. [PMID: 28905623 DOI: 10.1021/acs.jpclett.7b02323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An extensive suite of nonequilibrium molecular-dynamics (NEMD) simulations have been performed for ∼60 ns of human aquaporin 4 in externally applied circularly polarized (CP) electric fields, applied axially along channels. These external fields were 0.05 V/Å in intensity and 100 GHz in frequency. This has the effect of "electro-pumping" the water through the pores as prototypical biochannels, from conversion of molecules' spin angular momentum to linear momentum in the asymmetric heterogeneous-frictional environment of the pores, thus inducing overall net flow. Water's osmotic permeability was enhanced very substantially (doubled) vis-à-vis the zero-field case. This raises the tantalizing possibility of CP-field-mediated control of water permeability in aquaporins, or other biological (or biomimetic) channels as a potential viable and competitive water-treatment technology.
Collapse
Affiliation(s)
- Christian J Burnham
- School of Chemical and Bioprocess Engineering, University College Dublin , Belfield, Dublin 4, Ireland
| | - Niall J English
- School of Chemical and Bioprocess Engineering, University College Dublin , Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Comparative molecular dynamics study of neuromyelitis optica-immunoglobulin G binding to aquaporin-4 extracellular domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1326-1334. [PMID: 28477975 DOI: 10.1016/j.bbamem.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/26/2023]
Abstract
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which most patients have serum autoantibodies (called NMO-IgG) that bind to astrocyte water channel aquaporin-4 (AQP4). A potential therapeutic strategy in NMO is to block the interaction of NMO-IgG with AQP4. Building on recent observation that some single-point and compound mutations of the AQP4 extracellular loop C prevent NMO-IgG binding, we carried out comparative Molecular Dynamics (MD) investigations on three AQP4 mutants, TP137-138AA, N153Q and V150G, whose 295-ns long trajectories were compared to that of wild type human AQP4. A robust conclusion of our modeling is that loop C mutations affect the conformation of neighboring extracellular loop A, thereby interfering with NMO-IgG binding. Analysis of individual mutations suggested specific hydrogen bonding and other molecular interactions involved in AQP4-IgG binding to AQP4.
Collapse
|
9
|
Abstract
Aquaporins (AQPs ) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the 9 AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2 and AQP4 expressed in the peripheral nervous system (PNS) are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema, and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica , brain tumors and Alzheimer's disease. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.
Collapse
|
10
|
Erratum: Mangiatordi, G.F., et al. Human Aquaporin-4 and Molecular Modeling: Historical Perspective and View to the Future. Int. J. Mol. Sci. 2016, 17, 1119. Int J Mol Sci 2016; 17:ijms17101720. [PMID: 27754372 PMCID: PMC5085751 DOI: 10.3390/ijms17101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/09/2016] [Accepted: 10/09/2016] [Indexed: 11/17/2022] Open
|