1
|
Jia Y, Feng G, Wang Z, Feng Y, Jiao L, Wang TL. Prediction of risk factors for intraoperative hypotension during general anesthesia undergoing carotid endarterectomy. Front Neurol 2022; 13:890107. [PMID: 36147039 PMCID: PMC9485479 DOI: 10.3389/fneur.2022.890107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveCarotid endarterectomy (CEA) has been considered as “gold standard” treatment for patients with significant carotid stenosis Intra-operative hypotension was a risk factor for post-operative complications in patients undergoing CEA. This study aimed to investigate the predictors for intra-operative hypotension during CEA.MethodsThis retrospective study included consecutive patients underwent CEA from June 1, 2020 to May 31, 2021 in the neurosurgery department of Xuanwu Hospital, Capital Medical University. The intraoperative hypotension was defined as blood pressure (BP) of 20% below standard value for longer than 5 min. Univariable and multivariable analyses were performed to identify the prediction of risk factors for intraoperative hypotension.ResultsOverall, 367 patients were included, and 143 (39.0%) patients had hypotension during CEA procedure. Univariate analysis indicated Grade 3 hypertension (P = 0.002), peripheral artery disease (P = 0.006) and shunting (P = 0.049) were associated with occurrence of intraoperative hypotension during CEA procedure. On multivariable analysis, Grade 3 hypertension (P = 0.005), peripheral artery disease (P = 0.009), and shunting (P = 0.034) were all found to be independent predicting factors of hypotension during the CEA process.ConclusionIntraoperative hypotension is a dynamic phenomenon may be affected by patients with grade 3 hypertension, peripheral artery disease and intra-operative shunting. It is necessary to pay special attention to these patients, both intraoperatively and postoperatively, to improve the final clinical outcome.
Collapse
Affiliation(s)
- Yitong Jia
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guang Feng
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tian-Long Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Tian-Long Wang
| |
Collapse
|
2
|
Rots ML, Fassaert LM, Kappelle LJ, de Groot MC, Haitjema S, Bonati LH, van Klei WA, de Borst GJ. Intra-Operative Hypotension is a Risk Factor for Post-operative Silent Brain Ischaemia in Patients With Pre-operative Hypertension Undergoing Carotid Endarterectomy. Eur J Vasc Endovasc Surg 2020; 59:526-534. [DOI: 10.1016/j.ejvs.2020.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/28/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
3
|
Netto JP, Iliff J, Stanimirovic D, Krohn KA, Hamilton B, Varallyay C, Gahramanov S, Daldrup-Link H, d'Esterre C, Zlokovic B, Sair H, Lee Y, Taheri S, Jain R, Panigrahy A, Reich DS, Drewes LR, Castillo M, Neuwelt EA. Neurovascular Unit: Basic and Clinical Imaging with Emphasis on Advantages of Ferumoxytol. Neurosurgery 2019; 82:770-780. [PMID: 28973554 DOI: 10.1093/neuros/nyx357] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Physiological and pathological processes that increase or decrease the central nervous system's need for nutrients and oxygen via changes in local blood supply act primarily at the level of the neurovascular unit (NVU). The NVU consists of endothelial cells, associated blood-brain barrier tight junctions, basal lamina, pericytes, and parenchymal cells, including astrocytes, neurons, and interneurons. Knowledge of the NVU is essential for interpretation of central nervous system physiology and pathology as revealed by conventional and advanced imaging techniques. This article reviews current strategies for interrogating the NVU, focusing on vascular permeability, blood volume, and functional imaging, as assessed by ferumoxytol an iron oxide nanoparticle.
Collapse
Affiliation(s)
- Joao Prola Netto
- Department of Neurology, Oregon Health & Science University, Portland, Oregon.,Department of Neuroradiology, Oregon Health & Science University, Portland, Oregon
| | - Jeffrey Iliff
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Danica Stanimirovic
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Kenneth A Krohn
- Department of Radiology, University of Washington, Seattle, Washington.,Department of Radiology, Oregon Health & Science University, Portland, Oregon
| | - Bronwyn Hamilton
- Department of Neuroradiology, Oregon Health & Science University, Portland, Oregon
| | - Csanad Varallyay
- Department of Neurology, Oregon Health & Science University, Portland, Oregon.,Department of Radiology, Oregon Health & Science University, Portland, Oregon
| | - Seymur Gahramanov
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico
| | | | - Christopher d'Esterre
- Department of Radiology, University of Calgary, Foothills Medical Center, Calgary, Alberta, Canada
| | - Berislav Zlokovic
- Zikha Neurogenetic Institute, University of Southern California, Los Angeles, California
| | - Haris Sair
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
| | - Yueh Lee
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Saeid Taheri
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Rajan Jain
- Department of Radiology and Neurosurgery, New York University School of Medicine, New York, New York
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel S Reich
- Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota
| | - Mauricio Castillo
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Edward A Neuwelt
- Department of Neurology, Oregon Health & Science University, Portland, Oregon.,Department of Neurosurgery, Oregon Health & Science University, Portland, Oregon.,Portland Veterans Affairs Medical Center, Portland, Oregon
| |
Collapse
|
4
|
Traenka C, Engelter ST, Brown MM, Dobson J, Frost C, Bonati LH. Silent brain infarcts on diffusion-weighted imaging after carotid revascularisation: A surrogate outcome measure for procedural stroke? A systematic review and meta-analysis. Eur Stroke J 2019; 4:127-143. [PMID: 31259261 DOI: 10.1177/2396987318824491] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Aim To investigate whether lesions on diffusion-weighted imaging (DWI+) after carotid artery stenting (CAS) or endarterectomy (CEA) might provide a surrogate outcome measure for procedural stroke. Materials and Methods Systematic MedLine® database search with selection of all studies published up to the end of 2016 in which DWI scans were obtained before and within seven days after CAS or CEA. The correlation between the underlying log odds of stroke and of DWI+ across all treatment groups (i.e. CAS or CEA groups) from included studies was estimated using a bivariate random effects logistic regression model. Relative risks of DWI+ and stroke in studies comparing CAS vs. CEA were estimated using fixed-effect Mantel-Haenszel models. Results We included data of 4871 CAS and 2099 CEA procedures (85 studies). Across all treatment groups (CAS and CEA), the log odds for DWI+ was significantly associated with the log odds for clinically manifest stroke (correlation coefficient 0.61 (95% CI 0.27 to 0.87), p = 0.0012). Across all carotid artery stenting groups, the correlation coefficient was 0.19 (p = 0.074). There were too few CEA groups to reliably estimate a correlation coefficient in this subset alone. In 19 studies comparing CAS vs. CEA, the relative risks (95% confidence intervals) of DWI+ and stroke were 3.83 (3.17-4.63, p < 0.00001) and 2.38 (1.44-3.94, p = 0.0007), respectively. Discussion This systematic meta-analysis demonstrates a correlation between the occurrence of silent brain infarcts on diffusion-weighted imaging and the risk of clinically manifest stroke in carotid revascularisation procedures. Conclusion Our findings strengthen the evidence base for the use of DWI as a surrogate outcome measure for procedural stroke in carotid revascularisation procedures. Further randomised studies comparing treatment effects on DWI lesions and clinical stroke are needed to fully establish surrogacy.
Collapse
Affiliation(s)
- Christopher Traenka
- Stroke Center and Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland.,Neurorehabilitation Unit, University of Basel and University Center for Medicine of Aging and Rehabilitation, Felix Platter Hospital, Basel, Switzerland
| | - Stefan T Engelter
- Stroke Center and Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland.,Neurorehabilitation Unit, University of Basel and University Center for Medicine of Aging and Rehabilitation, Felix Platter Hospital, Basel, Switzerland
| | - Martin M Brown
- Stroke Research Group, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, London, UK
| | - Joanna Dobson
- Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Frost
- Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Leo H Bonati
- Stroke Center and Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland.,Stroke Research Group, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, London, UK
| |
Collapse
|
5
|
Tsukada N, Katsumata M, Oki K, Minami K, Abe T, Takahashi S, Itoh Y, Suzuki N. Diameter of fluorescent microspheres determines their distribution throughout the cortical watershed area in mice. Brain Res 2018; 1679:109-115. [PMID: 29203170 DOI: 10.1016/j.brainres.2017.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/06/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
A hemodynamic mechanism has long been assumed to play an important role in watershed infarction. In recent years, however, clinical evidence has indicated that an embolic mechanism is involved. The mechanism by which emboli are trapped preferentially in watershed areas remains unclear. In the present study, we developed a mouse embolus model using fluorescent microspheres with different diameters and evaluated the role of the microspheres' diameters in the generation of a watershed-patterned distribution. We injected fluorescent microspheres of four different diameters (i.e., 13, 24, 40, and 69 μm) into the internal carotid artery of C57BL/6 mice either (1) without ligation of the common carotid artery (normal perfusion pressure model: NPPM) or (2) with ligation of the common carotid artery (low perfusion pressure model: LPPM). Left common carotid artery ligation induced reductions in local cerebral blood flow in both the periphery and the core area of the left middle cerebral artery. A greater reduction in the border-zone area between the left anterior cerebral artery and the middle cerebral artery was also noted. After 24 h, the brains were removed and the distribution of the microspheres in the brain was evaluated using a fluorescence microscope. The 24-μm microspheres were distributed in the watershed area more frequently than the other microsphere sizes (P < .05, ANOVA followed by Tukey's test). Meanwhile, the distribution rates were similar between the NPPM and LPPM models for all microsphere sizes. This study suggested that the distribution pattern of the microspheres was only affected by the microspheres' diameters.
Collapse
Affiliation(s)
- Naoki Tsukada
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Katsumata
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Oki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kazushi Minami
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Takato Abe
- Department of Neurology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shinichi Takahashi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshiaki Itoh
- Department of Neurology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Kargiotis O, Safouris A, Magoufis G, Georgala M, Roussopoulou A, Stamboulis E, Moulakakis KG, Lazaris A, Geroulakos G, Vasdekis S, Tsivgoulis G. The Role of Neurosonology in the Diagnosis and Management of Patients with Carotid Artery Disease: A Review. J Neuroimaging 2018; 28:239-251. [PMID: 29334161 DOI: 10.1111/jon.12495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/11/2023] Open
Affiliation(s)
| | | | | | - Maria Georgala
- Department of Clinical NeurophysiologyMetropolitan Hospital Piraeus Greece
| | - Andromachi Roussopoulou
- Second Department of NeurologyMedical SchoolNational and Kapodistrian University of Athens“Attikon” University Hospital Athens Greece
| | | | - Konstantinos G. Moulakakis
- Department of Vascular SurgeryMedical SchoolNational and Kapodistrian University of Athens“Attikon” University Hospital Athens Greece
| | - Andreas Lazaris
- Department of Vascular SurgeryMedical SchoolNational and Kapodistrian University of Athens“Attikon” University Hospital Athens Greece
| | - George Geroulakos
- Department of Vascular SurgeryMedical SchoolNational and Kapodistrian University of Athens“Attikon” University Hospital Athens Greece
| | - Spyros Vasdekis
- Department of Vascular SurgeryMedical SchoolNational and Kapodistrian University of Athens“Attikon” University Hospital Athens Greece
| | - Georgios Tsivgoulis
- Second Department of NeurologyMedical SchoolNational and Kapodistrian University of Athens“Attikon” University Hospital Athens Greece
- Department of NeurologyThe University of Tennessee Health Science Center Memphis TN
| |
Collapse
|