1
|
Crispim M, Silva TC, Lima ADS, Cruz LDS, Bento NA, Cruz TM, Stelle Y, Mar JM, Rocha DDQ, Bezerra JDA, Azevedo L. From Traditional Amazon Use to Food Applications: Tapirira guianensis Seed Extracts as a Triad of Antiproliferative Effect, Oxidative Defense, and Antimalarial Activity. Foods 2025; 14:467. [PMID: 39942060 PMCID: PMC11817332 DOI: 10.3390/foods14030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Tapirira guianensis is a tropical plant found in South America and is widely used by indigenous communities owing to its medicinal properties. Its seeds are rich in phenolic compounds that are known for their anti-inflammatory, antioxidant, and antimicrobial properties. Despite its traditional use, there are limited scientific data on the biological activities of its seed extracts, especially in the context of antimalarial and cytoprotective effects. In this study, we investigated the chemical composition, antioxidant potential, cytotoxic effects, and antimalarial properties of hydroethanolic, ethanolic, and aqueous seed extracts. A 1:1 (v/v) water/ethanol combination efficiently extracted bioactive compounds and delivered the highest phenolic compound content. Furthermore, the hydroethanolic extracts exhibited significant biological activities, including an ability to reduce cancer-cell viability, protect against damage caused by reactive oxygen species (ROS), and decrease chromosomal aberrations, while exhibiting high efficacy against both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains. Hence, the use of T. guianensis seed extract as a natural source of bioactive compounds with cytoprotective, antiproliferative, antioxidant, and antimalarial properties is innovative and highlights the need for additional in vivo studies to better elucidate its mechanisms of action and safety.
Collapse
Affiliation(s)
- Marcell Crispim
- Nutritional and Toxicological Analysis Laboratory In Vitro and In Vivo, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil; (M.C.); (T.C.S.); (A.d.S.L.); (L.d.S.C.); (N.A.B.)
| | - Thaise Caputo Silva
- Nutritional and Toxicological Analysis Laboratory In Vitro and In Vivo, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil; (M.C.); (T.C.S.); (A.d.S.L.); (L.d.S.C.); (N.A.B.)
| | - Amanda dos Santos Lima
- Nutritional and Toxicological Analysis Laboratory In Vitro and In Vivo, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil; (M.C.); (T.C.S.); (A.d.S.L.); (L.d.S.C.); (N.A.B.)
| | - Laura da Silva Cruz
- Nutritional and Toxicological Analysis Laboratory In Vitro and In Vivo, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil; (M.C.); (T.C.S.); (A.d.S.L.); (L.d.S.C.); (N.A.B.)
| | - Nathalia Alves Bento
- Nutritional and Toxicological Analysis Laboratory In Vitro and In Vivo, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil; (M.C.); (T.C.S.); (A.d.S.L.); (L.d.S.C.); (N.A.B.)
| | - Thiago Mendanha Cruz
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil; (T.M.C.); (Y.S.)
| | - Yasmin Stelle
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, PR, Brazil; (T.M.C.); (Y.S.)
| | - Josiana Moreira Mar
- Department of Chemistry, Environment, and Food, Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, AM, Brazil; (J.M.M.); (D.d.Q.R.); (J.d.A.B.)
| | - Daniel de Queiroz Rocha
- Department of Chemistry, Environment, and Food, Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, AM, Brazil; (J.M.M.); (D.d.Q.R.); (J.d.A.B.)
| | - Jaqueline de Araújo Bezerra
- Department of Chemistry, Environment, and Food, Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, AM, Brazil; (J.M.M.); (D.d.Q.R.); (J.d.A.B.)
| | - Luciana Azevedo
- Nutritional and Toxicological Analysis Laboratory In Vitro and In Vivo, Federal University of Alfenas, Alfenas 37130-000, MG, Brazil; (M.C.); (T.C.S.); (A.d.S.L.); (L.d.S.C.); (N.A.B.)
| |
Collapse
|
2
|
Mitea G, Schröder V, Iancu IM, Mireșan H, Iancu V, Bucur LA, Badea FC. Molecular Targets of Plant-Derived Bioactive Compounds in Oral Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3612. [PMID: 39518052 PMCID: PMC11545343 DOI: 10.3390/cancers16213612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND With a significant increase in both incidence and mortality, oral cancer-particularly oral squamous cell carcinoma (OSCC)-is one of the main causes of death in developing countries. Even though there is evidence of advances in surgery, chemotherapy, and radiotherapy, the overall survival rate for patients with OSCC has improved, but by a small percentage. This may be due, on the one hand, to the fact that the disease is diagnosed when it is at a too-advanced stage, when metastases are already present. METHODS This review explores the therapeutic potential of natural herbal products and their use as adjuvant therapies in the treatment of oral cancer from online sources in databases (PubMed, Web of Science, Google Scholar, Research Gate, Scopus, Elsevier). RESULTS Even if classic therapies are known to be effective, they often produce many serious side effects and can create resistance. Certain natural plant compounds may offer a complementary approach by inducing apoptosis, suppressing tumor growth, and improving chemotherapy effectiveness. The integration of these compounds with conventional treatments to obtain remarkable synergistic effects represents a major point of interest to many authors. This review highlights the study of molecular mechanisms and their efficiency in in vitro and in vivo models, as well as the strategic ways in which drugs can be administered to optimize their use in real contexts. CONCLUSIONS This review may have a significant impact on the oncology community, creating new inspirations for the development of more effective, safer cancer therapies with less toxic potential.
Collapse
Affiliation(s)
- Gabriela Mitea
- Department of Pharmacology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Irina Mihaela Iancu
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Horațiu Mireșan
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Valeriu Iancu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Laura Adriana Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Florin Ciprian Badea
- Department of Dental Medicine, Faculty of Dental Medicine, Ovidius University of Constanta, 900684 Constanta, Romania;
| |
Collapse
|
3
|
Oliveira AGS, Rocha MA, de Azevedo LS, Coelho ATDM, Chagas RCR, Santos HB, Thomé RG, Samuel P, Wolfram E, Kim B, Reis RM, Ribeiro RIMA. Tapirira guianensis is Selectively Cytotoxic, Induces Apoptosis to the Glioblastoma and Decreases Tumor Growth and Angiogenesis in vivo. PLANTA MEDICA 2024; 90:13-24. [PMID: 37832581 DOI: 10.1055/a-2181-2569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Glioblastoma is the most frequent primary malignant brain tumor without effective treatment, which makes this work extremely relevant. The study of the bioactive compounds from medicinal plants plays an important role in the discovery of new drugs.This research investigated the constituents of Tapirira guianensis and its antitumor potential (in vitro and in vivo) in glioblastoma. The T. guianensis extracts were characterized by mass spectrometry. The ethyl acetate partition (01ID) and its fractions 01ID-F2 and 01ID-F4 from T. guianensis showed potential antitumor treatment evidenced by selective cytotoxicity for GAMG with IC50 14.1 µg/mL, 83.07 µg/mL, 59.27 µg/mL and U251 with IC50 25.92 µg/mL, 37.3 µg/mL and 18.84 µg/mL. Fractions 01ID-F2 and 01ID-F4 were 10 times more selective when compared to TMZ and 01ID for the two evaluated cell lines. T. guianensis also reduced matrix metalloproteinases 2 - 01ID-F2 (21.84%), 01ID-F4 (29.6%) and 9 - 01ID-F4 (73.42%), ID-F4 (53.84%) activities, and induced apoptosis mainly through the extrinsic pathway. Furthermore, all treatments significantly reduced tumor size (01ID p < 0,01, 01ID-F2 p < 0,01 and 01ID-F4 p < 0,0001) and caused blood vessels to shrink in vivo. The present findings highlight that T. guianensis exhibits considerable antitumor potential in preclinical studies of glioblastoma. This ability may be related to the phenolic compounds and sesquiterpene derivatives identified in the extracts. This study deserves further in vivo research, followed by clinical investigation.
Collapse
Affiliation(s)
- Ana Gabriela Silva Oliveira
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Marina Andrade Rocha
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Lucas Santos de Azevedo
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | | | - Rafael César Russo Chagas
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Hélio Batista Santos
- Tissue Processing Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Ralph Gruppi Thomé
- Tissue Processing Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Peter Samuel
- Zurich University of Applied Sciences, Department of Life Sciences and Facility Management, Wädenswil, Switzerland
| | - Evelyn Wolfram
- Zurich University of Applied Sciences, Department of Life Sciences and Facility Management, Wädenswil, Switzerland
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal
| | | |
Collapse
|
4
|
Campanella NC, Gomes INF, Alves ALV, Leal LF, Evangelista AF, Rosa MN, Melendez ME, Silva VAO, Dias RLK, Abrahão-Machado LF, Santana I, Martinho O, Guimarães DP, Faça VM, Reis RM. Biological and therapeutic implications of RKIP in Gastrointestinal Stromal Tumor (GIST): an integrated transcriptomic and proteomic analysis. Cancer Cell Int 2023; 23:256. [PMID: 37907993 PMCID: PMC10619323 DOI: 10.1186/s12935-023-03102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GIST) represent a significant clinical challenge due to their metastatic potential and limited treatment options. Raf kinase inhibitor protein (RKIP), a suppressor of the MAPK signaling pathway, is downregulated in various cancers and acts as a metastasis suppressor. Our previous studies demonstrated low RKIP expression in GIST and its association with poor outcomes. This study aimed to expand on the previous findings and investigate the biological and therapeutic implications of RKIP loss on GIST. METHODS To validate the RKIP prognostic significance, its expression was evaluated by immunohistochemistry in 142 bona fide GIST cases. The functional role of RKIP was evaluated in vitro, using the GIST-T1 cell line, which was knocked out for RKIP. The biological and therapeutic implications of RKIP were evaluated by invasion, migration, apoptosis, and 2D / 3D viability assays. Additionally, the transcriptome and proteome of RKIP knockout cells were determined by NanoString and mass spectrometry, respectively. RESULTS Immunohistochemical analysis revealed the absence of RKIP in 25.3% of GIST cases, correlating with a tendency toward poor prognosis. Functional assays demonstrated that RKIP knockout increased GIST cells' invasion and migration potential by nearly 60%. Moreover, we found that RKIP knockout cells exhibited reduced responsiveness to Imatinib treatment and higher cellular viability in 2D and 3D in vitro models, as assessed by apoptosis-related protein expression. Through comprehensive genetic and proteomic profiling of RKIP knockout cells, we identified several putative RKIP-regulated proteins in GIST, such as COL3A1. CONCLUSIONS Using a multidimensional integrative analysis, we identified, for the first time in GIST, molecules and pathways modulated by RKIP that may potentially drive metastasis and, consequently, poor prognosis in this disease.
Collapse
Affiliation(s)
- Nathália Cristina Campanella
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, S. Paulo, 14784-400, Brazil
| | - Izabela Natalia Faria Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, S. Paulo, 14784-400, Brazil
| | - Ana Laura Vieira Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, S. Paulo, 14784-400, Brazil
| | - Leticia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, S. Paulo, 14784-400, Brazil
- School of Health Sciences Dr. Paulo Prata (FACISB), Barretos, 14785-002, Brazil
| | - Adriane Feijó Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, S. Paulo, 14784-400, Brazil
| | - Marcela Nunes Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, S. Paulo, 14784-400, Brazil
| | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, S. Paulo, 14784-400, Brazil
- Molecular Carcinogenesis Program, National Cancer Institute, Rio de Janeiro, 20231-050, Brazil
| | - Viviane Aline Oliveira Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, S. Paulo, 14784-400, Brazil
- Department of Pathology, School of Medicine, Federal University of Bahia, Salvador, 40110-909, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, 40296-710, Brazil
| | - Richard Lucas Konichi Dias
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, S. Paulo, 14784-400, Brazil
- School of Health Sciences Dr. Paulo Prata (FACISB), Barretos, 14785-002, Brazil
| | | | - Iara Santana
- Department of Pathology, Barretos Cancer Hospital, Barretos, 14784-400, Brazil
| | - Olga Martinho
- ICVS/3B's - PT Government Associate Laboratory, Braga, 4806-909, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
| | - Denise Peixoto Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, S. Paulo, 14784-400, Brazil
- Department of Endoscopy, Barretos Cancer Hospital, Barretos, 14784-400, Brazil
| | - Vitor Marcel Faça
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, S. Paulo, 14784-400, Brazil.
- ICVS/3B's - PT Government Associate Laboratory, Braga, 4806-909, Portugal.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.
| |
Collapse
|
5
|
Bio-Prospecting of Crude Leaf Extracts from Thirteen Plants of Brazilian Cerrado Biome on Human Glioma Cell Lines. Molecules 2023; 28:molecules28031394. [PMID: 36771057 PMCID: PMC9921846 DOI: 10.3390/molecules28031394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Malignant gliomas are aggressive tumors characterized by fast cellular growth and highly invasive properties. Despite all biological and clinical advances in therapy, the standard treatment remains essentially palliative. Therefore, searching for alternative therapies that minimize adverse symptoms and improve glioblastoma patients' outcomes is imperative. Natural products represent an essential source in the discovery of such new drugs. Plants from the cerrado biome have been receiving increased attention due to the presence of secondary metabolites with significant therapeutic potential. (2) Aim: This study provides data on the cytotoxic potential of 13 leaf extracts obtained from plants of 5 families (Anacardiaceae, Annonaceae, Fabaceae, Melastomataceae e Siparunaceae) found in the Brazilian cerrado biome on a panel of 5 glioma cell lines and one normal astrocyte. (3) Methods: The effect of crude extracts on cell viability was evaluated by MTS assay. Mass spectrometry (ESI FT-ICR MS) was performed to identify the secondary metabolites classes presented in the crude extracts and partitions. (4) Results: Our results revealed the cytotoxic potential of Melastomataceae species Miconia cuspidata, Miconia albicans, and Miconia chamissois. Additionally, comparing the four partitions obtained from M. chamissois crude extract indicates that the chloroform partition had the greatest cytotoxic activity against the glioma cell lines. The partitions also showed a mean IC50 close to chemotherapy, temozolomide; nevertheless, lower toxicity against normal astrocytes. Analysis of secondary metabolites classes presented in these crude extracts and partitions indicates the presence of phenolic compounds. (5) Conclusions: These findings highlight M. chamissois chloroform partition as a promising component and may guide the search for the development of additional new anticancer therapies.
Collapse
|
6
|
Polyphenol Composition and Antioxidant Activity of Tapirira guianensis Aubl. (Anarcadiaceae) Leaves. PLANTS 2022; 11:plants11030326. [PMID: 35161307 PMCID: PMC8837918 DOI: 10.3390/plants11030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/23/2022]
Abstract
Tapirira guianensis (Anacardiaceae) is a natural resource from the Amazonian Forest and is locally known in French Guiana as “loussé” (creole), “tata pilili” (wayãpi), or “ara” (palikur). The tree is used by indigenous populations for medicinal purposes. To increase the potential of this tree for cosmetic, agro-food, or pharmaceutical uses, extracts were obtained through ultrasound-assisted extraction (UAE) from T. guianensis leaves using various extraction solvents such as water, methanol, and methanol–water (85/15; v/v). Chemical (DPPH, TEAC, ORAC) tests were applied to assess the anti-radical potential of these extracts. The polyphenol contents were determined by spectrophotometric (UV/Visible) and by means of chromatographic (UPLC-DAD-ESI-IT-MSn) methods. Tapirira guianensis leaf hydromethanolic extract produced the highest polyphenol content and exhibited antiradical activities in chemical assays (DPPH, TEAC, and ORAC) similar to (or higher than) those of a well-known antiradical plant, green tea. In T. guianensis, two classes of polyphenols were evidenced: (1) galloylquinic acids (identified for the first time in the studied species) and (2) flavonols and flavanols (present in small amounts). Flavonols seemed to play a major role in the antioxidant activity of DPPH. These findings provide a rationale for the use of T. guianensis in traditional medicine and to pave the way for seeking new biological properties involving this Amazonian tree.
Collapse
|
7
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
8
|
Cardona-Mendoza A, Olivares-Niño G, Díaz-Báez D, Lafaurie GI, Perdomo SJ. Chemopreventive and Anti-tumor Potential of Natural Products in Oral Cancer. Nutr Cancer 2021; 74:779-795. [PMID: 34100309 DOI: 10.1080/01635581.2021.1931698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Oral cancer (OC) is a multifactorial disease caused by isolated or combined risk factors related to tobacco, alcohol consumption, and human papillomavirus infection. It is an aggressive pathology with a low five-year survival rate after surgery, chemotherapy, and/or radiotherapy, frequently associated with severe side effects. Drugs with the highest anti-tumor effect are obtained from natural products with diverse biological and molecular activities and potential chemopreventive and anticancer properties. This review summarizes the natural products reported to have the chemopreventive and anti-tumor potential for OC treatment, showing that several of these compounds are promising candidates as chemopreventive agents, and those with the highest anti-tumor potential induce apoptosis and inhibit proliferation and metastasis-related processes. For this reason, natural products have the potential to be important preventive and therapeutic options for OC in the future.
Collapse
Affiliation(s)
- Andrés Cardona-Mendoza
- Grupo de Inmunología Celular y Molecular Universidad El Bosque-INMUBO, Universidad El Bosque, Bogotá, Colombia.,School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | | | - David Díaz-Báez
- Unidad de Investigación Básica Oral-UIBO, Universidad El Bosque, Bogotá, Colombia.,School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Gloria Inés Lafaurie
- Unidad de Investigación Básica Oral-UIBO, Universidad El Bosque, Bogotá, Colombia.,School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Sandra J Perdomo
- Grupo de Inmunología Celular y Molecular Universidad El Bosque-INMUBO, Universidad El Bosque, Bogotá, Colombia.,School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
9
|
Matteucinol, isolated from Miconia chamissois, induces apoptosis in human glioblastoma lines via the intrinsic pathway and inhibits angiogenesis and tumor growth in vivo. Invest New Drugs 2019; 38:1044-1055. [PMID: 31781904 DOI: 10.1007/s10637-019-00878-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Gliomas account for nearly 70% of the central nervous system tumors and present a median survival of approximately 12-17 months. Studies have shown that administration of novel natural antineoplastic agents is been highly effective for treating gliomas. This study was conducted to investigate the antitumor potential (in vitro and in vivo) of Miconia chamissois Naudin for treating glioblastomas. We investigated the cytotoxicity of the chloroform partition and its sub-fraction in glioblastoma cell lines (GAMG and U251MG) and one normal cell line of astrocytes. The fraction showed cytotoxicity and was selective for tumor cells. Characterization of this fraction revealed a single compound, Matteucinol, which was first identified in the species M. chamissois. Matteucinol promoted cell death via intrinsic apoptosis in the adult glioblastoma lines. In addition, Matteucinol significantly reduced the migration, invasion, and clonogenicity of the tumor cells. Notably, it also reduced tumor growth and angiogenesis in vivo. Moreover, this agent showed synergistic effects with temozolomide, a chemotherapeutic agent commonly used in clinical practice. Our study demonstrates that Matteucinol from M chamissois is a promising compound for the treatment of glioblastomas and may be used along with the existing chemotherapeutic agents for more effective treatment.
Collapse
|