1
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. Integrated metabolomic and transcriptomic analysis reveals the role of phenylpropanoid biosynthesis pathway in tomato roots during salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1023696. [PMID: 36570882 PMCID: PMC9773889 DOI: 10.3389/fpls.2022.1023696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As global soil salinization continues to intensify, there is a need to enhance salt tolerance in crops. Understanding the molecular mechanisms of tomato (Solanum lycopersicum) roots' adaptation to salt stress is of great significance to enhance its salt tolerance and promote its planting in saline soils. A combined analysis of the metabolome and transcriptome of S. lycopersicum roots under different periods of salt stress according to changes in phenotypic and root physiological indices revealed that different accumulated metabolites and differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis were significantly altered. The levels of phenylpropanoids increased and showed a dynamic trend with the duration of salt stress. Ferulic acid (FA) and spermidine (Spd) levels were substantially up-regulated at the initial and mid-late stages of salt stress, respectively, and were significantly correlated with the expression of the corresponding synthetic genes. The results of canonical correlation analysis screening of highly correlated DEGs and construction of regulatory relationship networks with transcription factors (TFs) for FA and Spd, respectively, showed that the obtained target genes were regulated by most of the TFs, and TFs such as MYB, Dof, BPC, GRAS, and AP2/ERF might contribute to the regulation of FA and Spd content levels. Ultimately, FA and Spd attenuated the harm caused by salt stress in S. lycopersicum, and they may be key regulators of its salt tolerance. These findings uncover the dynamics and possible molecular mechanisms of phenylpropanoids during different salt stress periods, providing a basis for future studies and crop improvement.
Collapse
Affiliation(s)
- Chunping Jia
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Qinghui Yu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| |
Collapse
|
2
|
Rasheed A, Li H, Nawaz M, Mahmood A, Hassan MU, Shah AN, Hussain F, Azmat S, Gillani SFA, Majeed Y, Qari SH, Wu Z. Molecular tools, potential frontiers for enhancing salinity tolerance in rice: A critical review and future prospective. FRONTIERS IN PLANT SCIENCE 2022; 13:966749. [PMID: 35968147 PMCID: PMC9366114 DOI: 10.3389/fpls.2022.966749] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 05/08/2023]
Abstract
Improvement of salinity tolerance in rice can minimize the stress-induced yield losses. Rice (Oryza sativa) is one of Asia's most widely consumed crops, native to the subtropical regions, and is generally associated with sensitivity to salinity stress episodes. Salt-tolerant rice genotypes have been developed using conventional breeding methods; however, the success ratio is limited because of the complex nature of the trait and the high cost of development. The narrow genetic base of rice limited the success of conventional breeding methods. Hence, it is critical to launch the molecular tools for screening rice novel germplasm for salt-tolerant genes. In this regard, the latest molecular techniques like quantitative trait loci (QTL) mapping, genetic engineering (GE), transcription factors (TFs) analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) are reliable for incorporating the salt tolerance in rice at the molecular level. Large-scale use of these potent genetic approaches leads to identifying and editing several genes/alleles, and QTL/genes are accountable for holding the genetic mechanism of salinity tolerance in rice. Continuous breeding practices resulted in a huge decline in rice genetic diversity, which is a great worry for global food security. However, molecular breeding tools are the only way to conserve genetic diversity by exploring wild germplasm for desired genes in salt tolerance breeding programs. In this review, we have compiled the logical evidences of successful applications of potent molecular tools for boosting salinity tolerance in rice, their limitations, and future prospects. This well-organized information would assist future researchers in understanding the genetic improvement of salinity tolerance in rice.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Huijie Li
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Humanity and Public Administration, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Fiaz Hussain
- Directorate of Agronomy, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Saira Azmat
- Department of Agriculture, Agriculture Extension and Adaptive Research, Government of the Punjab, Lahore, Pakistan
| | | | - Yasir Majeed
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ziming Wu
- Key Laboratory of Plant Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Li C, Zhao Y, Qi Y, Duan C, Zhang H, Zhang Q. Eutrema EsMYB90 Gene Improves Growth and Antioxidant Capacity of Transgenic Wheat Under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:856163. [PMID: 35574106 PMCID: PMC9102796 DOI: 10.3389/fpls.2022.856163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/28/2022] [Indexed: 05/27/2023]
Abstract
The ectopic expression of the EsMYB90 transcription factor gene from halophytic Eutrema salsugineum has been reported to enhance the level of anthocyanin and other flavonoid metabolites in transgenic tobacco. In this study, the wheat JW1 overexpressing EsMYB90 showed longer roots and higher fresh weight than that in wild type (WT) under salt stress. In addition, the transgenic wheat plants displayed significantly higher peroxidase (POD) and glutathione S-transferase (GST) activity, as well as markedly lower malondialdehyde (MDA) content than that of the WT during salt stress conditions. The analysis of histochemical staining and H2O2 level indicated that the accumulation of reactive oxygen species (ROS) was significantly lower in the roots of transgenic wheat plants compared to the WT under salt stress. Transcriptome analysis revealed that the EsMYB90 gene affected the expression of considerable amounts of stress-related genes that were involved in phenylpropanoid biosynthesis and antioxidant activity in transgenic plants subjected to NaCl treatment. Importantly, the significantly upregulated expression genes in transgenic wheat under salt stress were mainly associated with the antioxidative enzymes POD and GST encoding genes compared with the WT. Furthermore, EsMYB90 is suggested to bind with the MYB-binding elements of pTaANS2 and pTaDFR1 by dual luciferase assay, to activate the transcription of TaANS2 and TaDFR1 genes that are encoding key enzymes of anthocyanin biosynthesis in transgenic wheat plants. All the results indicated that, under salt stress, the EsMYB90 gene plays a crucial role in preventing wheat seedlings from oxidative stress damage via enhancing the accumulation of non-enzymatic flavonoids and activities of antioxidative enzymes, which suggested that EsMYB90 is an ideal candidate gene for the genetic engineering of crops.
Collapse
|
4
|
Upadhyaya G, Das A, Ray S. A rice R2R3-MYB (OsC1) transcriptional regulator improves oxidative stress tolerance by modulating anthocyanin biosynthesis. PHYSIOLOGIA PLANTARUM 2021; 173:2334-2349. [PMID: 34625959 DOI: 10.1111/ppl.13583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The R2R3 type MYB transcription factors participate in controlling flavonoid production in plants, including anthocyanin and proanthocyanin. Black rice with high anthocyanin content is an important candidate for understanding R2R3-MYB-based regulation of the anthocyanin biosynthesis pathway (ABP). This study was undertaken to draw the functional relationship of an R2R3-MYB protein with anthocyanin biosynthesis and oxidative stress tolerance in plants. The expression levels of the late ABP genes in the panicle stage of black rice were in good agreement with the accumulation of anthocyanin, especially cyanidin 3-glucoside. Among all MYB genes present in rice, an R2R3 type (C1) regulates anthocyanin biosynthesis and was studied further. The positive correlation between the expression of ABP genes and OsC1 along with the nuclear localization of OsC1 are in line with its possible involvement as a transcriptional regulator of ABP genes. Interestingly, OsC1 overexpressed in white rice plants triggered anthocyanin production through augmentation of the transcript level of late ABP genes. Moreover, OsC1-transformed plants exhibited a lower amount of reactive oxygen species upon exposure to oxidative stress. The increased anthocyanin content in white rice seedlings resulted in higher photosynthetic efficiency, less membrane damage and consequently lower oxidative stress. The OsC1 transcriptional regulator helps to ameliorate oxidative stresses in plants owing to its anthocyanin modulating ability.
Collapse
Affiliation(s)
- Gouranga Upadhyaya
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
5
|
Chen K, Peng Y, Zhang L, Wang L, Mao D, Zhao Z, Bai L, Wang L. Whole transcriptome analysis resulted in the identification of Chinese sprangletop (Leptochloa chinensis) genes involved in cyhalofop-butyl tolerance. BMC Genomics 2021; 22:521. [PMID: 34238252 PMCID: PMC8268407 DOI: 10.1186/s12864-021-07856-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/25/2021] [Indexed: 12/05/2022] Open
Abstract
Background Chinese sprangletop [Leptochloa chinensis (L.) Nees] is an annual malignant weed, which can often be found in paddy fields. Cyhalofop-butyl is a specialized herbicide which is utilized to control L. chinensis. However, in many areas, L. chinensis has become tolerant to this key herbicide due to its continuous long-term use. Results In this study, we utilized a tolerant (LC18002) and a sensitive (LC17041) L. chinensis populations previously identified in our laboratory, which were divided into four different groups. We then employed whole transcriptome analysis to identify candidate genes which may be involved in cyhalofop-butyl tolerance. This analysis resulted in the identification of six possible candidate genes, including three cytochrome P450 genes and three ATP-binding cassette transporter genes. We then carried out a phylogenetic analysis to identify homologs of the differentially expressed cytochrome P450 genes. This phylogenetic analysis indicated that all genes have close homologs in other species, some of which have been implicated in non-target site resistance (NTSR). Conclusions This study is the first to use whole transcriptome analysis to identify herbicide non-target resistance genes in L. chinensis. The differentially expressed genes represent promising targets for better understanding herbicide tolerance in L. chinensis. The six genes belonging to classes already associated in herbicide tolerance may play important roles in the metabolic resistance of L. chinensis to cyhalofop-butyl, although the exact mechanisms require further study. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07856-z.
Collapse
Affiliation(s)
- Ke Chen
- Longping Branch, Graduate School of Hunan University, Changsha, People's Republic of China.,Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China.,Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Yajun Peng
- Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Liang Zhang
- Longping Branch, Graduate School of Hunan University, Changsha, People's Republic of China.,Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China.,Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Long Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, 410082, Changsha, People's Republic of China
| | - Donghai Mao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125, Changsha, People's Republic of China
| | - Zhenghong Zhao
- Longping Branch, Graduate School of Hunan University, Changsha, People's Republic of China
| | - Lianyang Bai
- Longping Branch, Graduate School of Hunan University, Changsha, People's Republic of China. .,Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China. .,Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China.
| | - Lifeng Wang
- Longping Branch, Graduate School of Hunan University, Changsha, People's Republic of China. .,Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China. .,Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China.
| |
Collapse
|
6
|
Kaur H, Kohli SK, Khanna K, Bhardwaj R. Scrutinizing the impact of water deficit in plants: Transcriptional regulation, signaling, photosynthetic efficacy, and management. PHYSIOLOGIA PLANTARUM 2021; 172:935-962. [PMID: 33686690 DOI: 10.1111/ppl.13389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Suboptimal availability of water limits plant growth, development, and performance. Drought is one of the leading factors responsible for worldwide crop yield reduction. In the future, owing to climate changes, more agricultural land will be affected by prolonged periods of water deficit. Thus, understanding the fundamental mechanism of drought response is a major scientific concern for improvement of crop production. To combat drought stress, plants deploy varied mechanistic strategies and alter their morphological, physiochemical, and molecular attributes. This helps plant to enhance water uptake and storage, reduce water loss and avoid wilting. Induction of several transcription factors and drought responsive genes leads to synthesis of stress proteins, regulation of water channels i.e. aquaporins and production of osmolytes that are essential for maintenance of osmotic balance at the cellular level. Self- and hormone-regulated signaling pathways are often stimulated by plants after receiving drought stress signals via secondary messengers, mitogen-activated protein kinases, and stress hormones. These signaling cascades often leads to stomatal closure and reduction in transpiration rates. Reduced carbon dioxide diffusion in chloroplast, lowered efficacy of photosystems, and other metabolic constraints limits the key regulatory photosynthetic process during water deficit. The impact of these stomatal and nonstomatal limitations varies with stress intensity, superimposed stresses and plant species. A clear understanding of the drought resistance process is thus important before adopting strategies for imparting drought tolerance in plants. These management practices at present include exogenous hormone application, breeding, and genetic engineering techniques for combating the water deficit issues.
Collapse
Affiliation(s)
- Harsimran Kaur
- PG Department of Agriculture, Plant Protection Division, Khalsa College, Amritsar, Punjab, India
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhmeen Kaur Kohli
- PG Department of Agriculture, Plant Protection Division, Khalsa College, Amritsar, Punjab, India
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
7
|
Modenez IA, Macedo LJA, Melo AFAA, Pereira AR, Oliveira ON, Crespilho FN. Nanosized non-proteinaceous complexes III and IV mimicking electron transfer of mitochondrial respiratory chain. J Colloid Interface Sci 2021; 599:198-206. [PMID: 33945968 DOI: 10.1016/j.jcis.2021.04.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022]
Abstract
Synthetic biology pursues the understanding of biological processes and their possible mimicry with artificial bioinspired materials. A number of materials have already been used to mimic the active site of simple redox proteins, including nanosized iron oxides due to their redox properties. However, the mimicry of membrane redox protein complexes is still a challenge. Herein, magnetic iron oxide nanoparticles (NPs), incorporated as non-proteinaceous complexes III and IV in a mitochondrial model membrane, catalyze electron transfer (ET) similarly to the natural complexes towards cytochrome c. The associated molecular mechanism is experimentally proven in solution and in a Langmuir-Blodgett film. A direct and entropy-driven ET, with rate constant of 2.63 ± 0.05Lmol-1 at 25 °C, occurs between the iron sites of the NPs and the cytochrome c heme group, not affecting the protein secondary and tertiary structures. This process requires an activation energy of 40.2 ± 1.5 kJ mol-1 resulting in an overall Gibbs free energy of -55.3 kJ mol-1. Furthermore, the protein-NP system is governed by electrostatic and non-polar forces that contribute to an associative mechanism in the transition state. Finally, the incorporated NPs in a model membrane were able to catalyze ET, such as the natural complexes in respiratory chain. This work presents an experimental approach demonstrating that inorganic nanostructured systems may behave as embedded proteins in the eukaryotic cells membrane, opening the way for more sophisticated and robust mimicry of membrane protein complexes.
Collapse
Affiliation(s)
- Iago A Modenez
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Antonio F A A Melo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil; Materials Engineering Graduate Program, Federal Institute of Education, Science and Technology of Piauí, Central Campus, Teresina 64000-040, PI, Brazil
| | - Andressa R Pereira
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13560-590, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13560-590, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil.
| |
Collapse
|
8
|
Yan H, Pei X, Zhang H, Li X, Zhang X, Zhao M, Chiang VL, Sederoff RR, Zhao X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int J Mol Sci 2021; 22:3103. [PMID: 33803587 PMCID: PMC8002911 DOI: 10.3390/ijms22063103] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health.
Collapse
Affiliation(s)
- Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiaona Pei
- Harbin Research Institute of Forestry Machinery, State Administration of Forestry and Grassland, Harbin 150086, China;
- Research Center of Cold Temperate Forestry, CAF, Harbin 150086, China
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xinxin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Ross Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| |
Collapse
|
9
|
Isolation of gene conferring salt tolerance from halophilic bacteria of Lunsu, Himachal Pradesh, India. J Genet Eng Biotechnol 2020; 18:57. [PMID: 33025336 PMCID: PMC7538504 DOI: 10.1186/s43141-020-00070-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022]
Abstract
Background Halophiles offer an attractive source of genes conferring salt tolerance. Halobacillus trueperi SS1 strain of Lunsu, Himachal Pradesh, India, a strict halophile, was exploited to isolate and clone the genes for salt tolerance. The genomic library of BamH1 digest of H. trueperi SS1 was constructed in pUC19, and recombinants were screened for salt tolerance on an LB medium containing ampicillin (100 μg/ml) and NaCl (0 to 1.5 M). Results One recombinant clone named as salt-tolerant clone (STC) conferred salt tolerance to host Escherichia coli/DH5α, which showed growth in the LB medium supplemented with ampicillin and 1.2 M NaCl. Restriction digestion and PCR analysis revealed the presence of an insert of approximately 2000 bp in the STC. DNA sequencing of the 2-kb insert on both strands yielded a sequence of 2301 nucleotides. Protein BLAST analysis of 2301-bp sequence of H. trueperi SS1 present in STC showed 97% identity to multidrug transport ATP binding/permease protein of Halobacillus karajensis. The insert contained in STC was subcloned into pGEX4T2 vector, and the recombinant clone STC/pGEX4T2 conferred salt tolerance to the bacterial host E. coli. Conclusions The present study led to the isolation of salt tolerance gene encoding a putative multidrug transport ATP binding/permease protein from H. trueperi SS1. The salt tolerance gene can be subcloned for transferring salt tolerance traits into agricultural crop plants for cultivation in saline and coastal lands.
Collapse
|
10
|
Ashrafi-Dehkordi E, Alemzadeh A, Tanaka N, Razi H. Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato. PeerJ 2018; 6:e4631. [PMID: 30038850 PMCID: PMC6054068 DOI: 10.7717/peerj.4631] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/27/2018] [Indexed: 12/23/2022] Open
Abstract
A wide range of biotic stresses (BS) and abiotic stresses (AS) adversely affect plant growth and productivity worldwide. The study of individual genes cannot be considered as an effective approach for the understanding of tolerance mechanisms, since these stresses are frequent and often in combination with each other, and a large number of genes are involved in these mechanisms. The availability of high-throughput genomic data has enabled the discovery of the role of transcription factors (TFs) in regulatory networks. A meta-analysis of BS and AS responses was performed by analyzing a total of 391 microarray samples from 23 different experiments and 2,336 differentially expressed genes (DEGs) involved in multiple stresses were identified. We identified 1,862 genes differentially regulated in response to BS was much greater than that regulated by AS, 835 genes, and found 15.4% or 361 DEGs with the conserved expression between AS and BS. The greatest percent of genes related to the cellular process (>76% genes), metabolic process (>76% genes) and response to stimulus (>50%). About 4.2% of genes involved in BS and AS responses belonged to the TF families. We identified several genes, which encode TFs that play an important role in AS and BS responses. These proteins included Jasmonate Ethylene Response Factor 1 (JERF1), SlGRAS6, MYB48, SlERF4, EIL2, protein LATE ELONGATED HYPOCOTYL (LHY), SlERF1, WRKY 26, basic leucine zipper TF, inducer of CBF expression 1-like, pti6, EIL3 and WRKY 11. Six of these proteins, JERF1, MYB48, protein LHY, EIL3, EIL2 and SlGRAS6, play central roles in these mechanisms. This research promoted a new approach to clarify the expression profiles of various genes under different conditions in plants, detected common genes from differentially regulated in response to these conditions and introduced them as candidate genes for improving plant tolerance through genetic engineering approach.
Collapse
Affiliation(s)
- Elham Ashrafi-Dehkordi
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abbas Alemzadeh
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Nobukazu Tanaka
- Center of Gene Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Hooman Razi
- Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
11
|
Patankar HV, Al-Harrasi I, Al-Yahyai R, Yaish MW. Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay. DNA Cell Biol 2018; 37:524-534. [DOI: 10.1089/dna.2018.4159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Himanshu V. Patankar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Ibtisam Al-Harrasi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Rashid Al-Yahyai
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud W. Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
12
|
Li L, Lv M, Zhao L, Ye T, Xu J, Cai L, Xie C, Gao X, Huang Z, Zhu J, Xu Z. Molecular characterization and function analysis of the rice OsDUF829 family. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1437357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Lihua Li
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Miaomiao Lv
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Lu Zhao
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Taozhi Ye
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Jinghong Xu
- Academy of Agricultural and Forestry Sciences, Crop Research Institute, Chengdu, PR China
| | - Liangjun Cai
- Academy of Agricultural and Forestry Sciences, Crop Research Institute, Chengdu, PR China
| | - Chen Xie
- Department of Biology, College of Chemistry and Life Science, Chengdu Normal University, Chengdu, PR China
| | - Xiaoling Gao
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Zhengjian Huang
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Jianqing Zhu
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| | - Zhengjun Xu
- Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Rice Institute of Sichuan Agricultural University, Chengdu, PR China
| |
Collapse
|
13
|
Dou M, Zhang Y, Yang S, Feng X. Identification of ZHOUPI Orthologs in Rice Involved in Endosperm Development and Cuticle Formation. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 29541083 PMCID: PMC5835929 DOI: 10.3389/fpls.2018.00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The endosperm occupies most of the available space within mature rice seeds, contains abundant nutrients, and directly influences both the quality and quantity of rice production. Initial reports noted that AtZHOUPI (AtZOU) coordinates endosperm breakdown and the concomitant separation of the embryo from this structure in Arabidopsis. The results of this study show that rice genomes contain two most closely related homologs of AtZOU, OsZOU-1 and OsZOU-2; of these, OsZOU-1 expression is limited to within the endosperm where it can be detected throughout this structure 5 days after pollination (DAP). Its expression gradually decreases from seven DAP to nine DAP. The second of the two most closely related homologs, OsZOU-2, is highly expressed in leaves and stem, but is not detected in developing seeds. Heterologous expression of OsZOU-1 and OsZOU-2 in Atzou-4 mutants also revealed that OsZOU-1 partially complements the seed phenotypes of these individuals, while its counterpart, OsZOU-2, was unable to recover these phenotypes. The over-expression of OsZOU-1 severely disrupts both seed development and plant growth in transgenic rice lines, as plants in which this gene has been knocked down failed in the separation of endosperm from embryo and cuticle formation during seed development. The results of this study therefore suggest that OsZOU-1 is orthologous to the AtZOU, and regulates both endosperm development and cuticle formation in rice.
Collapse
Affiliation(s)
- Mingzhu Dou
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology (CAS), Changchun, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology (CAS), Changchun, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology (CAS), Changchun, China
- *Correspondence: Suxin Yang, Xianzhong Feng,
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology (CAS), Changchun, China
- *Correspondence: Suxin Yang, Xianzhong Feng,
| |
Collapse
|
14
|
Iquebal MA, Soren KR, Gangwar P, Shanmugavadivel PS, Aravind K, Singla D, Jaiswal S, Jasrotia RS, Chaturvedi SK, Singh NP, Varshney RK, Rai A, Kumar D. Discovery of Putative Herbicide Resistance Genes and Its Regulatory Network in Chickpea Using Transcriptome Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:958. [PMID: 28638398 PMCID: PMC5461349 DOI: 10.3389/fpls.2017.00958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 05/06/2023]
Abstract
Background: Chickpea (Cicer arietinum L.) contributes 75% of total pulse production. Being cheaper than animal protein, makes it important in dietary requirement of developing countries. Weed not only competes with chickpea resulting into drastic yield reduction but also creates problem of harboring fungi, bacterial diseases and insect pests. Chemical approach having new herbicide discovery has constraint of limited lead molecule options, statutory regulations and environmental clearance. Through genetic approach, transgenic herbicide tolerant crop has given successful result but led to serious concern over ecological safety thus non-transgenic approach like marker assisted selection is desirable. Since large variability in tolerance limit of herbicide already exists in chickpea varieties, thus the genes offering herbicide tolerance can be introgressed in variety improvement programme. Transcriptome studies can discover such associated key genes with herbicide tolerance in chickpea. Results: This is first transcriptomic studies of chickpea or even any legume crop using two herbicide susceptible and tolerant genotypes exposed to imidazoline (Imazethapyr). Approximately 90 million paired-end reads generated from four samples were processed and assembled into 30,803 contigs using reference based assembly. We report 6,310 differentially expressed genes (DEGs), of which 3,037 were regulated by 980 miRNAs, 1,528 transcription factors associated with 897 DEGs, 47 Hub proteins, 3,540 putative Simple Sequence Repeat-Functional Domain Marker (SSR-FDM), 13,778 genic Single Nucleotide Polymorphism (SNP) putative markers and 1,174 Indels. Randomly selected 20 DEGs were validated using qPCR. Pathway analysis suggested that xenobiotic degradation related gene, glutathione S-transferase (GST) were only up-regulated in presence of herbicide. Down-regulation of DNA replication genes and up-regulation of abscisic acid pathway genes were observed. Study further reveals the role of cytochrome P450, xyloglucan endotransglucosylase/hydrolase, glutamate dehydrogenase, methyl crotonoyl carboxylase and of thaumatin-like genes in herbicide resistance. Conclusion: Reported DEGs can be used as genomic resource for future discovery of candidate genes associated with herbicide tolerance. Reported markers can be used for future association studies in order to develop marker assisted selection (MAS) for refinement. In endeavor of chickpea variety development programme, these findings can be of immense use in improving productivity of chickpea germplasm.
Collapse
Affiliation(s)
- Mir A. Iquebal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Khela R. Soren
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Priyanka Gangwar
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - P. S. Shanmugavadivel
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - K. Aravind
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Deepak Singla
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Rahul S. Jasrotia
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Sushil K. Chaturvedi
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Narendra P. Singh
- Division of Plant Biotechnology, Indian Institute of Pulses Research (ICAR)Kanpur, India
| | - Rajeev K. Varshney
- Genetic Gains, International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute (ICAR)New Delhi, India
| |
Collapse
|