1
|
Ellingsen DG, Sikkeland LIB, Lund MB, Skaugset NP, Ulvestad B. A study of inflammatory biomarkers in crystalline silica exposed rock drillers. Int Arch Occup Environ Health 2024; 97:587-595. [PMID: 38702427 PMCID: PMC11130035 DOI: 10.1007/s00420-024-02070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Crystalline silica (CS) exposure can cause serious lung disease in humans, but mechanisms of pulmonary toxicity have not been completely elucidated. AIMS To assess pro-inflammatory and anti-inflammatory biomarkers and biomarkers related to the development of chronic obstructive pulmonary disease and fibrosis in serum of rock drillers exposed to CS. METHODS Rock drillers (N = 123) exposed to CS and non-specified particulate matter (PM) were compared to 48 referents without current or past exposure to PM in a cross-sectional study. RESULTS The rock drillers had been exposed to CS for 10.7 years on average. Geometric mean (GM) current exposure was estimated to 36 µg/m3. Their GM concentration of matrix metalloproteinase 12 (MMP-12) was significantly higher (16 vs. 13 ng/L; p = 0.04), while interleukin (IL) 6 and IL-8 were significantly lower compared to the referents. Also pentraxin 3 was significantly lower (3558 vs. 4592 ng/L; p = 0.01) in the rock drillers. A dose-response relationship was observed between cumulative exposure to CS and MMP-12, the highest exposed subgroup having significantly higher MMP-12 concentrations than the referents. CONCLUSION Exposure to CS may increase circulating MMP-12 concentrations in a dose-response related fashion. The results may also suggest a down-regulation of pro-inflammatory pathways.
Collapse
Affiliation(s)
- Dag G Ellingsen
- National Institute of Occupational Health, Pb 5330, Majorstuen, Oslo, N-0304, Norway.
| | - Liv Ingunn Bjoner Sikkeland
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital, Oslo, Norway
| | - May Britt Lund
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Nils Petter Skaugset
- National Institute of Occupational Health, Pb 5330, Majorstuen, Oslo, N-0304, Norway
| | - Bente Ulvestad
- National Institute of Occupational Health, Pb 5330, Majorstuen, Oslo, N-0304, Norway
| |
Collapse
|
2
|
Chung YH, Hu MH, Kao SC, Kao YH, Wang FH, Hsieh CY, Shen CI, Chuang CH, Chen DWC, Kuo CC, Su HL, Lin CL. Preclinical Animal Study and Pilot Clinical Trial of Using Enriched Peripheral Blood-Derived Mononuclear Cells for Intervertebral Disc Degeneration. Cell Transplant 2024; 33:9636897231219733. [PMID: 38173231 PMCID: PMC10768619 DOI: 10.1177/09636897231219733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/24/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Low back pain (LBP) is a leading cause of long-term disability globally. Intervertebral disk degeneration (IVDD) is mainly responsible for discogenic pain in LBP-affected young patients. There is no effective therapy to reverse disease severity and IVDD progression. This study investigates the effect of human peripheral blood-derived mononuclear cells (PBMCs) on pain relief and life quality improvement in IVDD patients. The enriched monocytes of the PBMCs could differentiate into CD14 and CD206 double-positive M2 macrophages in vitro. Preclinical evidence in rats showed that the transplanted PBMCs exhibited anti-inflammatory and moderate tissue-repair effects on controlling IVDD progress in the rat model. The PBMCs significantly steered the aggrecan and type II collagen expressions and attenuated the pro-inflammatory cytokines in the affected disk. Based on the animal results, 36 patients with chronic low back pain (CLBP) were included in clinical trials. The control group was conservative care only, and the experimental group was platelet-rich plasma (PRP) and PBMCs intradiscal injections. We first confirmed the single lumbar disk causing the discogenic pain by provocative discography or magnetic resonance imaging (MRI). Discogenic LBP participants received one intradiscal injection of autologous PBMCs and followed for 6 months. Our clinical trial showed that patients' LBP and disability were significantly ameliorated after the PBMCs transplantation rather than PRP. These preclinical and pilot clinical studies indicate that intradiscal injection of the enriched PBMCs might be a feasible and potential cell therapy to control pain and disability in IVDD patients.
Collapse
Affiliation(s)
- Yu-Hsuan Chung
- Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, Taiwan
- PhD Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Hsien Hu
- Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, Taiwan
- Bachelor’s Program of Design and Materials for Medical Equipment and Devices, College of Nursing and Health Sciences, Da-Yeh University, Changhua, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shang-Chyi Kao
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Fu-Hui Wang
- Duogenic StemCells Corporation, Taichung, Taiwan
| | | | - Ching-I Shen
- Duogenic StemCells Corporation, Taichung, Taiwan
| | - Chang-Han Chuang
- Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, Taiwan
- PhD Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Dave Wei-Chih Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chung Kuo
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Duogenic StemCells Corporation, Taichung, Taiwan
| | - Chih-Lung Lin
- Department of Neurosurgery, Asia University Hospital, Taichung, Taiwan
- Department of Occupational Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
3
|
da Silva CO, de Souza Nogueira J, do Nascimento AP, Victoni T, Bártholo TP, da Costa CH, Costa AMA, Valença SDS, Schmidt M, Porto LC. COPD Patients Exhibit Distinct Gene Expression, Accelerated Cellular Aging, and Bias to M2 Macrophages. Int J Mol Sci 2023; 24:9913. [PMID: 37373058 DOI: 10.3390/ijms24129913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
COPD, one of world's leading contributors to morbidity and mortality, is characterized by airflow limitation and heterogeneous clinical features. Three main phenotypes are proposed: overlapping asthma/COPD (ACO), exacerbator, and emphysema. Disease severity can be classified as mild, moderate, severe, and very severe. The molecular basis of inflammatory amplification, cellular aging, and immune response are critical to COPD pathogenesis. Our aim was to investigate EP300 (histone acetylase, HAT), HDAC 2 (histone deacetylase), HDAC3, and HDAC4 gene expression, telomere length, and differentiation ability to M1/M2 macrophages. For this investigation, 105 COPD patients, 42 smokers, and 73 non-smoker controls were evaluated. We identified a reduced HDAC2 expression in patients with mild, moderate, and severe severity; a reduced HDAC3 expression in patients with moderate and severe severity; an increased HDAC4 expression in patients with mild severity; and a reduced EP300 expression in patients with severe severity. Additionally, HDAC2 expression was reduced in patients with emphysema and exacerbator, along with a reduced HDAC3 expression in patients with emphysema. Surprisingly, smokers and all COPD patients showed telomere shortening. COPD patients showed a higher tendency toward M2 markers. Our data implicate genetic changes in COPD phenotypes and severity, in addition to M2 prevalence, that might influence future treatments and personalized therapies.
Collapse
Affiliation(s)
- Camila Oliveira da Silva
- Laboratory of Histocompatibility and Cryopreservation, University of the State of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
| | - Jeane de Souza Nogueira
- Laboratory of Histocompatibility and Cryopreservation, University of the State of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
| | | | - Tatiana Victoni
- VetAgro Sup, University of Lyon, APCSe, 69280 Marcy l'Étoile, France
| | - Thiago Prudente Bártholo
- Department of Thorax, University of the State of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
| | | | - Andrea Monte Alto Costa
- Tissue Repair Laboratory, University of the State of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
| | - Samuel Dos Santos Valença
- Laboratory of Redox Biology, ICB, Federal University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Luís Cristóvão Porto
- Laboratory of Histocompatibility and Cryopreservation, University of the State of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil
| |
Collapse
|
4
|
Sangani RG, Deepak V, Anwar J, Patel Z, Ghio AJ. Cigarette Smoking, and Blood Monocyte Count Correlate with Chronic Lung Injuries and Mortality. Int J Chron Obstruct Pulmon Dis 2023; 18:431-446. [PMID: 37034898 PMCID: PMC10076620 DOI: 10.2147/copd.s397667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
Background Cigarette smoking (CS)-related monocytosis contributes to the development of chronic lung injuries via complex mechanisms. We aim to determine correlations between measures of CS and monocytes, their capacities to predict chronic lung diseases, and their associations with mortality. Methods A single-center retrospective study of patients undergoing surgical resection for suspected lung nodules/masses was performed. CS was quantified as cigarettes smoked per day (CPD), duration of smoking, composite pack years (CPY), current smoking status, and smoking cessation years. A multivariate logistic regression analysis was performed. Results Of 382 eligible patients, 88% were ever smokers. In this group, 45% were current smokers with mean CPD of 27.2±40.0. CPY and duration of smoking showed positive linear correlations with percentage monocyte count. Physiologically, CPY was associated with progressive obstruction, hyperinflation, and reduced diffusion capacity (DLCO). Across the quartiles of smoking, there was an accumulation of radiologic and histologic abnormalities. Anthracosis and emphysema were associated with CPD, while lung cancer, respiratory bronchiolitis (RB), emphysema, and honeycombing were statistically related to duration of smoking. Analysis using consecutive CPY showed associations with lung cancer (≥10 and <30), fibrosis (≥20 and <40), RB (≥50), anthracosis and emphysema (≥10 and onwards). Percentage monocytes correlated with organizing pneumonia (OP), fibrosis, and emphysema. The greater CPY increased mortality across the groups. Significant predictors of mortality included percentage monocyte, anemia, GERD, and reduced DLCO. Conclusion Indices of CS and greater monocyte numbers were associated with endpoints of chronic lung disease suggesting a participation in pathogenesis. Application of these easily available metrics may support a chronology of CS-induced chronic lung injuries. While a relative lesser amount of smoking can be associated with lung cancer and fibrosis, greater CPY increases the risk for emphysema. Monocytosis predicted lung fibrosis and mortality. Duration of smoking may serve as a better marker of monocytosis and associated chronic lung diseases.
Collapse
Affiliation(s)
- Rahul G Sangani
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
- Correspondence: Rahul G Sangani, Section of Pulmonary, Critical Care, and Sleep Medicine, West Virginia University School of Medicine, 1 Medical Center Dr, PO BOX 9166, Morgantown, WV, 26506, USA, Tel +1 304 293-4661 option #2, Fax +1 304-293-3724, Email
| | - Vishal Deepak
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Javeria Anwar
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Zalak Patel
- Department of Radiology, West Virginia University, Morgantown, WV, USA
| | | |
Collapse
|
5
|
Deng L, Jian Z, Xu T, Li F, Deng H, Zhou Y, Lai S, Xu Z, Zhu L. Macrophage Polarization: An Important Candidate Regulator for Lung Diseases. Molecules 2023; 28:molecules28052379. [PMID: 36903624 PMCID: PMC10005642 DOI: 10.3390/molecules28052379] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Macrophages are crucial components of the immune system and play a critical role in the initial defense against pathogens. They are highly heterogeneous and plastic and can be polarized into classically activated macrophages (M1) or selectively activated macrophages (M2) in response to local microenvironments. Macrophage polarization involves the regulation of multiple signaling pathways and transcription factors. Here, we focused on the origin of macrophages, the phenotype and polarization of macrophages, as well as the signaling pathways associated with macrophage polarization. We also highlighted the role of macrophage polarization in lung diseases. We intend to enhance the understanding of the functions and immunomodulatory features of macrophages. Based on our review, we believe that targeting macrophage phenotypes is a viable and promising strategy for treating lung diseases.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Fengqin Li
- College of Animal Science, Xichang University, Xichang 615000, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 625014, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 625014, China
- Correspondence: (Z.X.); (L.Z.); Tel.: +86-139-8160-4765 (L.Z.)
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 625014, China
- Correspondence: (Z.X.); (L.Z.); Tel.: +86-139-8160-4765 (L.Z.)
| |
Collapse
|
6
|
Chuang CH, Kuo CC, Chiang YF, Lee PY, Wang FH, Hsieh CY, Shen CI, Chung YH, Lee KD, Wu SF, Su HL, Lin CL. Enriched Peripheral Blood-Derived Mononuclear Cells for Treating Knee Osteoarthritis. Cell Transplant 2023; 32:9636897221149445. [PMID: 36661223 PMCID: PMC9903009 DOI: 10.1177/09636897221149445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic skeletal disease in the elderly. There is no effective therapy to reverse disease severity and knee OA (KOA) progression, particularly at the late stage. This study aims to examine the effect of peripheral blood-derived mononuclear cells (PBMNCs) on pain and motor function rescue in patients with Kellgren-Lawrence (KL) grade II to IV KOA. Participants received one intra-articular (IA) injection of autologous PBMNCs. The mononuclear cells were isolated from peripheral blood, enriched by a specialized medium (MoFi medium), and separated by Ficoll-Paque solution. The isolated and enriched PBMNCs could differentiate into M1 and M2 macrophages in vitro. The in vivo anti-inflammatory effect of the PBMNCs was similar to that of bone marrow mesenchymal stem cells, evaluated by complete Freund's adjuvant-induced arthritis in rodents. A single-arm and open-label pilot study showed that patients' knee pain and motor dysfunction were significantly attenuated after the cell transplantation, assessed by visual analogue scale (VAS) and Knee injury and Osteoarthritis Outcome Score (KOOS) at 6 and 12 months post-treatment. Notably, the therapeutic effect of the PBMNCs treatment can be stably maintained for 24 months, as revealed by the KOOS scores. These preclinical and pilot clinical data suggest that IA injection of MoFi-PBMNCs might serve as a novel medical technology to control the pain and the progress of KOA.
Collapse
Affiliation(s)
- Chang-Han Chuang
- Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, Taiwan
- PhD Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Chung Kuo
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yueh-Feng Chiang
- Department of Orthopedics, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung
| | - Pei-Yuan Lee
- Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Fu-Hui Wang
- DuoGenic StemCells Corporation, Taichung, Taiwan
| | | | - Ching-I Shen
- DuoGenic StemCells Corporation, Taichung, Taiwan
| | - Yu-Hsuan Chung
- Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, Taiwan
- PhD Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Der Lee
- Department of Medical Research and Cell Therapy and Regenerative Medicine Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine and Center for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Shih-Fang Wu
- The Joint Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
- National Health Research Institutes, Taichung, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Lung Lin
- Department of Neurosurgery, Asia University Hospital, Taichung, Taiwan
- Department of Occupational Therapy, Asia University, Taichung, Taiwan
- Chih-Lung Lin, Department of Neurosurgery, Asia University Hospital, 222 Fuxin Rd., Wufeng Dist., Taichung 413.
| |
Collapse
|
7
|
Yamagishi A, Nakajima H, Kokubo Y, Yamamoto Y, Matsumine A. Polarization of infiltrating macrophages in the outer annulus fibrosus layer associated with the process of intervertebral disc degeneration and neural ingrowth in the human cervical spine. Spine J 2022; 22:877-886. [PMID: 34902589 DOI: 10.1016/j.spinee.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT As no infiltrating macrophages exist in healthy discs, understanding the role of infiltrating macrophages including their polarity (M1 and M2 phenotypes) in intervertebral discs (IVDs) is important in the assessment of the pathomechanisms of disc degeneration. PURPOSE To determine the relationship between infiltrating macrophage polarization and the progression of human cervical IVD degeneration. STUDY DESIGN Histopathological study using harvested human cervical IVDs. METHODS IVDs collected during anterior cervical decompression from 60 patients were subjected to immunostaining and immunoblotting. The samples were classified as type 0-3 according to the percentage of CD16- and CD206-positive cells to CD68-positive cells in the outer annulus fibrosus layer. The number of vessels and nerve fibers and the severity of chronic inflammation with a focus on inflammatory cell infiltration, fibrosis, and capillary proliferation were also assessed. RESULTS The number of CD16-positive cells was the highest in type 2 IVDs, and was suppressed following the infiltration of CD206-positive cells. The degree of chronic inflammation was significantly higher in type 2 and type 3 IVDs, and the number of nerve fibers was significantly higher in type 3 IVDs. The endothelial cells of small vessels were positive for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 expression. Staining for tropomyosin receptor kinase (Trk)-A, Trk-B, and Trk-C was positive in aberrant fibers. In immunoblot analysis, the expression levels of these neurotrophic factors and receptors were significantly higher in type 2 and 3 IVDs. CONCLUSIONS The polarity of macrophages around newly developed microvasculature might be altered with cervical IVD degeneration. A higher number of infiltrating M1 macrophages around the vessels was associated with chronic inflammation; however, their number got suppressed following the infiltration of M2 macrophages. The expression of neurotrophins in the capillaries of small vessels might contribute to neural ingrowth into degenerated IVDs. CLINICAL SIGNIFICANCE Clarifying macrophages polarity change around new microvasculature associated with progression of IVD degeneration could enhance our understanding of the underlying mechanisms of neural ingrowth into degenerated IVDs and lead to development of a novel therapeutic target for prevention of IVD.
Collapse
Affiliation(s)
- Atsushi Yamagishi
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.
| | - Yasuo Kokubo
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Yusuke Yamamoto
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| |
Collapse
|
8
|
Wang S, Chen Y, Hong W, Li B, Zhou Y, Ran P. Chronic exposure to biomass ambient particulate matter triggers alveolar macrophage polarization and activation in the rat lung. J Cell Mol Med 2022; 26:1156-1168. [PMID: 34994052 PMCID: PMC8831949 DOI: 10.1111/jcmm.17169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
The role of alveolar macrophages (AMs) in chronic obstructive pulmonary disease is unclear. We characterized the function of AMs in rats chronically exposed to biomass fuel smoke (BMF) and studied the signal pathways that regulate AMs polarization. One hundred and eighty male Sprague‐Dawley rats were divided into BMF group and clean air control (CON) group. After BMF smoke exposure for 4 days, 1 month and 6 months, the cytokine secretion and function of AMs were determined by flow cytometry, quantitative polymerase chain reaction, Western blotting and immunofluorescence. Bone marrow‐derived macrophages were cultured and exposed to particulate matter (PM) from the smoke. Exposure initially promoted pro‐inflammatory factors, but pro‐inflammatory macrophages shared features of anti‐inflammatory macrophages. Consistent with IL‐4 upregulated in bronchoalveolar lavage fluid, p‐Stat6 and peroxisome proliferator‐activated receptor γ (PPARγ) in AMs elevated at 4 days of exposure. After 6 months of exposure, CD206, TGF‐β1 and p‐Smad3 were significantly higher than the control groups. PPARγ reversed the M1 phenotype induced by PM in vitro and drove the macrophages into the M2 phenotype. Altogether, the study demonstrates the dynamic phenotype and functional changes in AMs during exposure to BMF smoke.
Collapse
Affiliation(s)
- Shenlin Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Respiratory Medicine, Ningxia Hui Autonomous Region People's Hospital, The First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, Ningxia, China
| | - Yuhua Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Feng H, Yin Y, Zheng R, Kang J. Rosiglitazone ameliorated airway inflammation induced by cigarette smoke via inhibiting the M1 macrophage polarization by activating PPARγ and RXRα. Int Immunopharmacol 2021; 97:107809. [PMID: 34182323 DOI: 10.1016/j.intimp.2021.107809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Rosiglitazone, an exogenous ligand of PPARγ, plays an important anti-inflammatory role during the inflammation caused by cigarette smoke (CS). CS exposure induces pulmonary inflammation via activating macrophage polarization. However, the effects of rosiglitazone on macrophage polarization induced by CS are unclear. METHODS 36 male Wistar rats were randomly divided into 3 groups: control, CS and ROSI. In the CS group, rats were passively exposed to cigarette smoke for consecutive 3 months. In the ROSI group, rats were treated with rosiglitazone (3 mg/kg/day, ip) during CS exposure period. Alveolar macrophages of rats were isolated and cultured with CSE. The slices of lung tissues were stained with hematoxylin and eosin. The histomorphology was observed to evaluate emphysema and the pulmonary function was detected. Cells in bronchoalveolar lavage fluid (BALF) were examined and the expression of cytokines TNF-α and IL-1β was detected by ELISA and qPCR. The alveolar macrophage polarization was evaluated by immunohistochemistry and flow cytometry assay in vivo and by qPCR in vitro. The protein level of PPARγ and RXRα was measured by Western blot. RESULTS CS exposure induced significant emphysema, diminished FEV0.2/FVC, elevated PEF, and higher level of total cells, neutrophils and cytokines (TNF-α and IL-1β) in BALF compared with control group, whereas rosiglitazone partly ameliorated above disorders. CS exposure activated M1 and M2 macrophage polarization in vivo and in vitro, whereas rosiglitazone inhibited CS induced M1 macrophage polarization and decreased the ratio of M1/M2. The effects of rosiglitazone on macrophage polarization were partly blocked after AMs treated with the antagonists of PPARγ and RXRα, and were synergistically enhanced by the agonist of RXRα. CS exposure decreased the expression of PPARγ and RXRα in lung tissues and AMs, and rosiglitazone partly reversed CS-mediated suppression of PPARγ and RXRα. CONCLUSION Rosiglitazone ameliorated the emphysema and inflammation in lung tissues induced by CS exposure via inhibiting the M1 macrophage polarization through activating PPARγ and RXRα.
Collapse
Affiliation(s)
- Haoshen Feng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, Shenyang, PR China.
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, Shenyang, PR China
| |
Collapse
|
10
|
Yamashita M, Utsumi Y, Yamauchi K. S100A9/CD163 Expression in Circulating Classical Monocytes in Chronic Obstructive Pulmonary Disease. COPD 2020; 17:587-594. [PMID: 32962431 DOI: 10.1080/15412555.2020.1793925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although many studies have characterized polarity of macrophages in chronic obstructive pulmonary disease (COPD), limited information is available regarding cellular phenotypes of circulating monocytes in this condition. This study aimed to determine the influence of cigarette smoking and COPD on the cellular phenotype of circulating monocytes. Thirty-two patients with COPD and 36 healthy volunteers (n = 17 and 19 in nonsmokers and smokers with normal lung functions, respectively) were enrolled in this study. The expression of two cell surface markers, pro-inflammatory-related S100A9 and anti-inflammatory-related CD163, on classical monocytes was analyzed by flow cytometry. The percentage of CD14strongCD16- classical monocytes in circulating monocytes showed no difference among the three groups. The percentage of S100A9+, S100A9+CD163-, and S100A9+CD163+ cells in classical monocytes was significantly increased in COPD patients relative to nonsmoker controls. In contrast, the levels of S100A9-CD163+ cells were significantly decreased in smokers with normal lung functions and in COPD patients relative to that in nonsmokers. Multivariate analyses revealed an independent association between S100A9+ cell rates and COPD (exponent 1.0336, 95% confidence interval [CI] 1.0063-1.0617, p value < 0.05). In Receiver operating characteristic (ROC) analyses, the ratio of S100A9+CD163-/S100A9-CD163+ cells yielded a receiver operating characteristic-area under the curve of 0.719 (95% CI = 0.567-0.871) for discrimination between smokers with normal lung functions and COPD patients. In conclusion, our results demonstrated increased pro-inflammatory phenotypes in circulating classical monocytes in COPD, providing novel insights to elucidate their roles in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Yu Utsumi
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Shiwa, Japan
| | - Kohei Yamauchi
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Shiwa, Japan.,Department of Internal Medicine, Takisawa Chuo Hospital, Takisawa, Japan
| |
Collapse
|
11
|
da Silva CO, Gicquel T, Daniel Y, Bártholo T, Vène E, Loyer P, Pôrto LC, Lagente V, Victoni T. Alteration of immunophenotype of human macrophages and monocytes after exposure to cigarette smoke. Sci Rep 2020; 10:12796. [PMID: 32732964 PMCID: PMC7393094 DOI: 10.1038/s41598-020-68753-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/29/2020] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoke exposure (CS) is the main risk factor for chronic obstructive pulmonary disease (COPD). Macrophages have an important role in COPD because they release pro-inflammatory and anti-inflammatory cytokines. The present study's we investigate the functional changes in macrophages and monocytes exposed to cigarette smoke extract (CSE). Herein, using human monocyte-derived macrophages (MDMs) from healthy donors and we found that CSE was not associated with significant changes in the production of pro inflammatory cytokines by MDMs. In contrast, exposure to CSE suppressed the production of IL-6 and Gro-a/CXCL1 by LPS-stimulated-MDMs, but had an additive effect on the release of IL-8/CXCL8 and MCP1/CCL2. However, CSE exposure was associated with greater production, TARC/CCL-17 and CCL22/MDC. Moreover, MDMs displayed a lower uptake capacity after CSE exposure. We identify, for what is to our knowledge the first time that monocytes from patients with COPD produced less IL-8/CXCL8 and Gro-α/CXCL1 after LPS stimulation and produced higher levels of TARC/CCL17 and MDC/CCL-22 after IL-4 stimulation. Our present results highlighted a skewed immune response, with an imbalance in M1 vs. M2 cytokine production. In conclusion, exposure to CS has contrasting, multifaceted effects on macrophages and monocytes. Our data may provide a better understanding of the mechanisms underlying COPD.
Collapse
Affiliation(s)
- Camila Oliveira da Silva
- Laboratory of Histocompatibility and Cryopresevation, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Thomas Gicquel
- NuMeCan Institute (Nutrition, Metabolism and Cancer), INSERM, INRAE, CHU Rennes, Hôpital Pontchaillou, Univ Rennes, 35033, Rennes Cedex, France
- Forensic and Toxicology Laboratory, Pontchaillou University Hospital, Rennes, France
| | - Yoann Daniel
- NuMeCan Institute (Nutrition, Metabolism and Cancer), INSERM, INRAE, CHU Rennes, Hôpital Pontchaillou, Univ Rennes, 35033, Rennes Cedex, France
| | - Thiago Bártholo
- Laboratory of Histocompatibility and Cryopresevation, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Department of Pulmonology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Elise Vène
- NuMeCan Institute (Nutrition, Metabolism and Cancer), INSERM, INRAE, CHU Rennes, Hôpital Pontchaillou, Univ Rennes, 35033, Rennes Cedex, France
| | - Pascal Loyer
- NuMeCan Institute (Nutrition, Metabolism and Cancer), INSERM, INRAE, CHU Rennes, Hôpital Pontchaillou, Univ Rennes, 35033, Rennes Cedex, France
| | - Luís Cristóvão Pôrto
- Laboratory of Histocompatibility and Cryopresevation, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), INSERM, INRAE, CHU Rennes, Hôpital Pontchaillou, Univ Rennes, 35033, Rennes Cedex, France
| | - Tatiana Victoni
- Laboratory of Histocompatibility and Cryopresevation, Rio de Janeiro State University, Rio de Janeiro, Brazil.
- NuMeCan Institute (Nutrition, Metabolism and Cancer), INSERM, INRAE, CHU Rennes, Hôpital Pontchaillou, Univ Rennes, 35033, Rennes Cedex, France.
- University of Lyon, VetAgro Sup, APCSe, Marcy l'Étoile, France.
| |
Collapse
|
12
|
Wang S, He N, Xing H, Sun Y, Ding J, Liu L. Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis. J Recept Signal Transduct Res 2020; 40:388-394. [PMID: 32164488 DOI: 10.1080/10799893.2020.1738483] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Purpose: Hesperidin has anti-inflammatory and anti-oxidant stress effects, but its functions in chronic obstructive pulmonary disease (COPD) remains unknown. This study analyzed the role of hesperidin in COPD mice, aiming to provide a basis for the hesperidin application.Materials and methods: Mice were injected with cigarette smoke extract (CSE) to construct COPD models and then treated with budesonide or hesperidin. Hematoxylin-eosin (HE) and TUNEL assays were used to observe the pathological changes and cell death of lung tissue. The levels of interleukin (IL)-6, IL-8, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) in bronchoalveolar lavage fluid (BLAF), as well as myeloperoxidase (MPO) content in lung tissues were confirmed. The expression levels of SIRT1, PGC-1α, and p65 proteins were measured by western blotting (WB) analysis.Results: CSE induced inflammatory cell infiltration and cell death in the lung tissues of mice, whereas budesonide and hesperidin effectively alleviated these pathological changes. The levels of IL-6, IL-8, and MDA in BLAF and pulmonary MPO content in the COPD mice were effectively increased, while the levels of SOD and CAT in BLAF were decreased, which could be reversed by budesonide and hesperidin. Moreover, the addition of budesonide or hesperidin reliably accelerated the expression levels of PGC-1α and SIRT1 but suppressed the phosphorylation of p65 in COPD mice. In general, high-dose hesperidin had a stronger regulatory effect on COPD mice.Conclusions: Hesperidin alleviated inflammation and oxidative stress responses in CES-induced COPD mice, associated with SIRT1/PGC-1α/NF-κB signaling axis, which might become a new direction for COPD treatment.
Collapse
Affiliation(s)
- Shuyun Wang
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, P. R. China
| | - Ning He
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, P. R. China
| | - Haiyan Xing
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, P. R. China
| | - Yuemei Sun
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, P. R. China
| | - Juan Ding
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, P. R. China
| | - Liping Liu
- Department of Allergy, Yantai Yuhuangding Hospital, Yantai, P. R. China
| |
Collapse
|
13
|
Feng H, Yin Y, Ren Y, Li M, Zhang D, Xu M, Cai X, Kang J. Effect of CSE on M1/M2 polarization in alveolar and peritoneal macrophages at different concentrations and exposure in vitro. In Vitro Cell Dev Biol Anim 2020; 56:154-164. [PMID: 31898012 DOI: 10.1007/s11626-019-00426-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022]
Abstract
Cigarette smoke exposure is one of the main etiologies for chronic obstructive pulmonary disease. Moreover, cigarette smoke participates in disease progression by inducing abnormal macrophage polarization; however, the effects of cigarette smoke on M1/M2 macrophage polarization have not been established. The aim of the current study was to determine the effects of cigarette smoke extract (CSE) on M1/M2 macrophage polarization in alveolar and peritoneal macrophages (AM and PM, respectively) at different concentrations and exposure times. Rat AM and PM were cultured with CSE at different concentrations. CCK-8 was used as an indicator of cell viability, and mRNA expression of M1 (iNOS, TNF-α, and IL-1β) and M2 markers (arg-1, CD206, and TGF-β1) were measured at 3, 6, 9, 12, and 24 h using qPCR. Expressions of CD86 and CD206 proteins at 12 h were determined using flow cytometry, and the iNOS/arg-1 ratio was used to determine the polarization dominance of M1 and M2. M2 subtypes were detected at 12 h using qPCR and flow cytometry. CSE increased the expression of iNOS, TNF-α, and IL-1β mRNA, and the proportion of CD86-positive cells in AM and PM promoted M1 polarization, and M1 polarization was continuously enhanced as exposure time and concentration increased. CSE reduced the expression of arg-1, CD206, and TGF-β1 mRNA and the proportion of CD206-positive cells in AM and PM and inhibited M2 polarization. At 9-24 h of CSE exposure, the expression of arg-1 in AM and PM gradually increased, showing tendency towards activation of M2 polarization. Besides, CSE might induce M2b and M2d polarization at 12 h. After 12 h of CSE exposure, transformation from M1 to M2 polarization dominance was shown in AM; however, M1 polarization was continuously enhanced in PM within 24 h of CSE exposure. CSE promoted M1 polarization in macrophages, exhibiting dynamic regulatory effects on M2 polarization, first as a suppressor and then as a promoter. The polarization change induced by CSE on AM was more sensitive than PM.
Collapse
Affiliation(s)
- Haoshen Feng
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Yan Yin
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Yuan Ren
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Menglu Li
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Dan Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Mingtao Xu
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Xu Cai
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China
| | - Jian Kang
- Department of Respiratory Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
14
|
Molecular Imaging Probes Based on Matrix Metalloproteinase Inhibitors (MMPIs). Molecules 2019; 24:molecules24162982. [PMID: 31426440 PMCID: PMC6719134 DOI: 10.3390/molecules24162982] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases which are secreted or anchored in the cell membrane and are capable of degrading the multiple components of the extracellular matrix (ECM). MMPs are frequently overexpressed or highly activated in numerous human diseases. Owing to the important role of MMPs in human diseases, many MMP inhibitors (MMPIs) have been developed as novel therapeutics, and some of them have entered clinical trials. However, so far, only one MMPI (doxycycline) has been approved by the FDA. Therefore, the evaluation of the activity of a specific subset of MMPs in human diseases using clinically relevant imaging techniques would be a powerful tool for the early diagnosis and assessment of the efficacy of therapy. In recent years, numerous MMPIs labeled imaging agents have emerged. This article begins by providing an overview of the MMP subfamily and its structure and function. The latest advances in the design of subtype selective MMPIs and their biological evaluation are then summarized. Subsequently, the potential use of MMPI-labeled diagnostic agents in clinical imaging techniques are discussed, including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging (OI). Finally, this article concludes with future perspectives and clinical utility.
Collapse
|
15
|
Domingo-Vidal M, Whitaker-Menezes D, Martos-Rus C, Tassone P, Snyder CM, Tuluc M, Philp N, Curry J, Martinez-Outschoorn U. Cigarette Smoke Induces Metabolic Reprogramming of the Tumor Stroma in Head and Neck Squamous Cell Carcinoma. Mol Cancer Res 2019; 17:1893-1909. [PMID: 31239287 DOI: 10.1158/1541-7786.mcr-18-1191] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/17/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is comprised of metabolically linked distinct compartments. Cancer-associated fibroblasts (CAF) and nonproliferative carcinoma cells display a glycolytic metabolism, while proliferative carcinoma cells rely on mitochondrial oxidative metabolism fueled by the catabolites provided by the adjacent CAFs. Metabolic coupling between these reprogrammed compartments contributes to HNSCC aggressiveness. In this study, we examined the effects of cigarette smoke-exposed CAFs on metabolic coupling and tumor aggressiveness of HNSCC. Cigarette smoke (CS) extract was generated by dissolving cigarette smoke in growth media. Fibroblasts were cultured in CS or control media. HNSCC cells were cocultured in vitro and coinjected in vivo with CS or control fibroblasts. We found that CS induced oxidative stress, glycolytic flux and MCT4 expression, and senescence in fibroblasts. MCT4 upregulation was critical for fibroblast viability under CS conditions. The effects of CS on fibroblasts were abrogated by antioxidant treatment. Coculture of carcinoma cells with CS fibroblasts induced metabolic coupling with upregulation of the marker of glycolysis MCT4 in fibroblasts and markers of mitochondrial metabolism MCT1 and TOMM20 in carcinoma cells. CS fibroblasts increased CCL2 expression and macrophage migration. Coculture with CS fibroblasts also increased two features of carcinoma cell aggressiveness: resistance to cell death and enhanced cell migration. Coinjection of carcinoma cells with CS fibroblasts generated larger tumors with reduced apoptosis than control coinjections, and upregulation of MCT4 by CS exposure was a driver of these effects. We demonstrate that a tumor microenvironment exposed to CS is sufficient to modulate metabolism and cancer aggressiveness in HNSCC. IMPLICATIONS: CS shifts cancer stroma toward glycolysis and induces head and neck cancer aggressiveness with a mitochondrial profile linked by catabolite transporters and oxidative stress. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/17/9/1893/F1.large.jpg.
Collapse
Affiliation(s)
- Marina Domingo-Vidal
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cristina Martos-Rus
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Patrick Tassone
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nancy Philp
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph Curry
- Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Guan C, Xiao Y, Li K, Wang T, Liang Y, Liao G. MMP-12 regulates proliferation of mouse macrophages via the ERK/P38 MAPK pathways during inflammation. Exp Cell Res 2019; 378:182-190. [DOI: 10.1016/j.yexcr.2019.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 12/25/2022]
|
17
|
Gilowska I, Majorczyk E, Kasper Ł, Bogacz K, Szczegielniak J, Kasper M, Kaczmarski J, Skomudek A, Czerwinski M, Sładek K. The role of MMP-12 gene polymorphism - 82 A-to-G (rs2276109) in immunopathology of COPD in polish patients: a case control study. BMC MEDICAL GENETICS 2019; 20:19. [PMID: 30658596 PMCID: PMC6339316 DOI: 10.1186/s12881-019-0751-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
Background Major symptoms of chronic obstructive pulmonary disease (COPD) are chronic bronchitis and emphysema leading from lung tissue destruction, that is an effect of an imbalance between metalloproteinases (MMPs) and their tissue inhibitors activity. As potential factor involved in this COPD pathogenesis, MMP-12 is considered. We investigated the role of genetic polymorphism and protein level of MMP-12 in the COPD development among Poles. Methods We analyzed − 82 A > G SNP in the promoter region of MMP-12 gene (rs2276109) among 335 smoked COPD patients and 309 healthy individuals, including 110 smokers. Additionally, 60 COPD patients and 61 controls (23 smokers) were tested for serum levels of MMP-12 using ELISA. All subjects were analyzed for lung function using spirometry (FEV1% and FEV1/FVC parameters). Results We observed that -82G allele and -82GG homozygous genotype frequencies of the SNP rs2276109 were significantly lower in COPD patients than in controls (12.5% vs 16.9%, respectively; χ2 = 4.742, p = 0.02 for allele and 0.5% vs 3.9%, respectively; χ2 = 9.0331, p = 0.01 for genotype). Moreover, −82G allele was more frequent in controls smokers than in non-smokers (22.3% vs 14.1%, χ2 = 6.7588, p = 0.01). Serum level of MMP-12 was significantly higher in COPD patients than in controls groups (6.8 ng/ml vs 3.3 ng/ml, respectively; F = 7.433, p < 0.0001), although independently of analyzed gene polymorphisms. Additionally, no correlation between parameters of lung function (FEV1% and FEV1/FVC) and protein level was found. Conclusions We found that -82G allele of SNP rs2276109 was associated with reduced risk of COPD, and COPD patients released more MMP-12 than healthy individuals, but independently on this SNP. Electronic supplementary material The online version of this article (10.1186/s12881-019-0751-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iwona Gilowska
- Institute of Physiotherapy, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Proszkowska street 76, 45-758, Opole, Poland
| | - Edyta Majorczyk
- Institute of Physiotherapy, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Proszkowska street 76, 45-758, Opole, Poland.
| | - Łukasz Kasper
- Second Department of Internal Medicine of Collegium Medicum, Jagiellonian University in Cracow, Skawińska street 8, 31-066, Kraków, Poland
| | - Katarzyna Bogacz
- Institute of Physiotherapy, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Proszkowska street 76, 45-758, Opole, Poland
| | - Jan Szczegielniak
- Institute of Physiotherapy, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Proszkowska street 76, 45-758, Opole, Poland
| | - Marta Kasper
- Faculty of Health Sciences, Jagiellonian University Medical College, Michałowskiego street 12, 31-126, Kraków, Poland
| | - Jacek Kaczmarski
- Institute of Physiotherapy, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Proszkowska street 76, 45-758, Opole, Poland
| | - Aleksandra Skomudek
- Institute of Physiotherapy, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Proszkowska street 76, 45-758, Opole, Poland
| | - Marcin Czerwinski
- Institute of Physiotherapy, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Proszkowska street 76, 45-758, Opole, Poland.,Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla street 12, 53-114, Wrocław, Poland
| | - Krzysztof Sładek
- Second Department of Internal Medicine of Collegium Medicum, Jagiellonian University in Cracow, Skawińska street 8, 31-066, Kraków, Poland
| |
Collapse
|
18
|
Justo-Junior A, Villarejos L, Lima X, Nadruz W, Sposito A, Mamoni R, Abdalla R, Fernandes J, Oliveira R, Blotta M. Monocytes of patients with unstable angina express high levels of chemokine and pattern-recognition receptors. Cytokine 2019; 113:61-67. [DOI: 10.1016/j.cyto.2018.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/26/2022]
|
19
|
Yuan Y, Lin D, Feng L, Huang M, Yan H, Li Y, Chen Y, Lin B, Ma Y, Ye Z, Mei Y, Yu X, Zhou K, Zhang Q, Chen T, Zeng J. Upregulation of miR-196b-5p attenuates BCG uptake via targeting SOCS3 and activating STAT3 in macrophages from patients with long-term cigarette smoking-related active pulmonary tuberculosis. J Transl Med 2018; 16:284. [PMID: 30326918 PMCID: PMC6192289 DOI: 10.1186/s12967-018-1654-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
Background Cigarette smoking (CS) triggers an intense and harmful inflammatory response in lungs mediated by alveolar and blood macrophages, monocytes, and neutrophils and is closely associated with prevalence of tuberculosis (TB). The risk of death in patients with long-term cigarette smoking-related pulmonary tuberculosis (LCS-PTB) is approximately 4.5 times higher than those with nonsmoking pulmonary tuberculosis (N-PTB). However, the mechanisms underlying the harmful inflammatory responses in the setting of LCS-PTB have not been well documented. Methods 28 cases LCS-PTB patients, 22 cases N-PTB patients and 20 cases healthy volunteers were enrolled in this study. Monocytes were isolated from peripheral blood mononuclear cells. Differentiated human MDM and U937 cell were prepared with M-CSF and PMA stimulation, respectively. The miR-196b-5p, STAT1, STAT3, STAT4, STAT5A, STAT5B, STAT6, SOCS1 and SOCS3 mRNA expression were detected by qRT-PCR. Western blot was performed according to SOCS1, SOCS3, and pSTAT3 expression. The mycobacterial uptake by MDMs from different groups of patients after Bacillus Calmette–Guérin (BCG) infection and agomir-196b-5p or antagomir-196b-5p transfection were used by flow cytometry analysis. Human IL-6, IL-10 and TNF-α levels on the plasma and cell culture supernatant samples were measured using ELISA. For dual-luciferase reporter assay, the SOCS3 3′-UTR segments, containing the binding elements of miR-196b-5p or its mutant versions were synthesized as sense and antisense linkers. Results In this study, we found that IL-6, TNF-α production, SOCS3 mRNA expression were downregulated, while miR-196b-5p and STAT3 mRNA expression were upregulated in monocytes from LCS-PTB patients as compared to N-PTB patients. Meanwhile, we demonstrated that miR-196b-5p could target SOCS3 and activate STAT3 signaling pathway, which may possibly contribute to attenuation of BCG uptake and decrease in IL-6 and TNF-α production in macrophages. Conclusions Our findings revealed that CS exposure regulates inflammatory responses in monocyte/macrophages from LCS-PTB patients via upregulating miR-196b-5p, and further understanding of the specific role of miR-196b-5p in inflammatory responses mightfacilitate elucidating the pathogenesis of LCS-PTB, thus leading to the development of new therapeutic strategies for PTB patients with long-term cigarette smoking. Electronic supplementary material The online version of this article (10.1186/s12967-018-1654-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yaoqin Yuan
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Dongzi Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China.,Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Long Feng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huimin Yan
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China.,Provincial Tuberculosis Reference Laboratory of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630, China
| | - Yumei Li
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Yinwen Chen
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yan Ma
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuezhi Mei
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Xiaolin Yu
- Dongguan Sixth People's Hospital, Dongguan, 523008, Guangdong, China
| | - Keyuan Zhou
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, 19104, USA
| | - Tao Chen
- Provincial Tuberculosis Reference Laboratory of Guangdong, Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630, China.
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, Guangdong, China. .,Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, 19104, USA.
| |
Collapse
|
20
|
Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1033. [PMID: 29883409 PMCID: PMC5982072 DOI: 10.3390/ijerph15051033] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
Many studies have been undertaken to reveal how tobacco smoke skews immune responses contributing to the development of chronic obstructive pulmonary disease (COPD) and other lung diseases. Recently, environmental tobacco smoke (ETS) has been linked with asthma and allergic diseases in children. This review presents the most actual knowledge on exact molecular mechanisms responsible for the skewed inflammatory profile that aggravates inflammation, promotes infections, induces tissue damage, and may promote the development of allergy in individuals exposed to ETS. We demonstrate how the imbalance between oxidants and antioxidants resulting from exposure to tobacco smoke leads to oxidative stress, increased mucosal inflammation, and increased expression of inflammatory cytokines (such as interleukin (IL)-8, IL-6 and tumor necrosis factor α ([TNF]-α). Direct cellular effects of ETS on epithelial cells results in increased permeability, mucus overproduction, impaired mucociliary clearance, increased release of proinflammatory cytokines and chemokines, enhanced recruitment of macrophages and neutrophils and disturbed lymphocyte balance towards Th2. The plethora of presented phenomena fully justifies a restrictive policy aiming at limiting the domestic and public exposure to ETS.
Collapse
Affiliation(s)
- Agnieszka Strzelak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksandra Ratajczak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksander Adamiec
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| |
Collapse
|