1
|
He CZ, Qiu Q, Lu SJ, Xue FL, Liu JQ, He Y. Adverse event reporting of faricimab: a disproportionality analysis of FDA adverse event reporting system (FAERS) database. Front Pharmacol 2025; 16:1521358. [PMID: 40144657 PMCID: PMC11936923 DOI: 10.3389/fphar.2025.1521358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background Faricimab is the first and only bispecific antibody approved by the U.S. Food and Drug Administration (FDA) for intravitreal injection. Given its increasingly widespread use in retinal vascular diseases, understanding its adverse events (AEs) in real-world settings is crucial. This study employed the FDA Adverse Event Reporting System (FAERS) database to investigate potential safety concerns, with the aim of providing new insights for clinical practice. Methods This study conducted a disproportionality analysis of adverse event data from the FAERS database, in which faricimab was identified as the primary suspect, covering the period from the first quarter of 2022 to the second quarter of 2024. To ensure the accuracy and reliability of the study, we employed four types of disproportionality analyses: the reporting odds ratio (ROR), proportional reporting ratio (PRR), multi-item gamma Poisson shrinker (MGPS), and Bayesian confidence propagation neural network (BCPNN). Additionally, the Weibull distribution was utilized to model the risk of adverse events over time. Results A total of 2,735 adverse reaction reports, in which faricimab was identified as the primary suspect, were retrieved from the FAERS database. The analysis showed that faricimab-induced AEs occurred across 25 system organ classes (SOCs), with eye disorders meeting the positive threshold for all four algorithms. Significant AEs were mapped to preferred terms (PT), identifying the adverse reactions listed on the drug label: endophthalmitis, elevated intraocular pressure, cataract, retinal pigment epithelial tear, vitreous floaters, retinal vasculitis, retinal artery occlusion, and retinal vein occlusion. In addition to the AEs listed on the drug label, several previously unreported AEs were identified, including blindness, cerebral infarction, retinal hemorrhage, retinal occlusive vasculitis, glaucoma, dry eye, metamorphopsia, and unilateral blindness. Conclusion This study provided valuable evidence on the real-world safety of faricimab, suggesting that clinicians should place greater emphasis on monitoring its adverse effects during use.
Collapse
Affiliation(s)
- Chang-Zhu He
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Song-Jie Lu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fu-Li Xue
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jun-Qiao Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu He
- Department of Ophthalmology, Chengdu First People’s Hospital/Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Yan Y, Wu Y, Zhao Y, Yang Y, An G, Liu Z, Qi D. A review on eye diseases induced by blue light: pathology, model, active ingredients and mechanisms. Front Pharmacol 2025; 16:1513406. [PMID: 39917620 PMCID: PMC11798942 DOI: 10.3389/fphar.2025.1513406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Blue light induced eye damage (BLED) belongs to modern diseases. It is an ophthalmic disease caused by prolonged exposure to electronic devices or screens containing a large amount of high-energy short waves (blue light). Specific symptoms include dryness and discomfort in the eyes, blurred vision, headache, insomnia, and in severe cases, it may also cause various eye diseases such as cataracts and glaucoma. At present, the development of health products and drugs for eye blue light injury faces many difficulties. Therefore, further exploration and research are needed on the pathogenesis, pathophysiology, and pharmacological mechanisms of blue light injury. Natural medicine ingredients and preparations have unique advantages in targeting eye blue light injury fatigue products due to their multi-component synergistic effects, overall regulation, and mild and safe characteristics. Starting from the disease-related mechanisms and pathophysiological characteristics of eye blue light injury, this article elucidates the pharmacological mechanisms of various drugs for treating eye blue light injury. At the same time, it reviews the research on in vitro cultured cell and animal model conditions for blue light injury eyes, in order to provide reference for subsequent blue light injury modeling experiments. And explore future research directions to provide new ideas and methods for the prevention and treatment of BLED.
Collapse
Affiliation(s)
- Yuan Yan
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyao Wu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Zhao
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaguang Yang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangtao An
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Chinese Medicine, Tianjin University of Chinese Medicine, Tianjin, China
| | - Dongli Qi
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
La Rosa LR, Pepe V, Lazzara F, Romano GL, Conti F, Giuffrida E, Bucolo C, Viola S, De Pasquale G, Curatolo MC, Zappulla C. Retinal Protection of New Nutraceutical Formulation. Pharmaceutics 2025; 17:73. [PMID: 39861721 PMCID: PMC11769253 DOI: 10.3390/pharmaceutics17010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Retinal ganglion cell (RGC) protection represents an unmet need in glaucoma. This study assessed the neuroprotective, antioxidant, and anti-inflammatory effect of a new nutraceutical formulation named Epicolin, based on citicoline, homotaurine, epigallocatechin-3-gallate, forskolin, and vitamins, through in vitro and in vivo studies. Methods: The neuroprotective effect of Epicolin or its single components, and Epicolin compared to an untreated control and two marketed formulations [Formulation G (FG) and N (FN)], was evaluated in neuroblastoma cells (SH-SY5Y) challenged with staurosporine. The antioxidant potential and the scavenging activity of Epicolin compared to the untreated control, and FG and FN, was evaluated in SH-SY5Y cells and through oxygen radical absorbance capacity acellular assay, respectively. Moreover, the protective effect against hypoxic damage was evaluated in Muller cells (MIO-M1) subjected to hypoxia. The efficacy of Epicolin was also evaluated in DBA/2J glaucomatous mice through the use of a pattern electroretinogram (PERG), immunostaining, and real-time PCR. Results: Among the nutraceutical formulations tested, only Epicolin showed a significant neuroprotective effect on SH-SY5Y attributable to the synergistic action of its single ingredients. As for antioxidant and scavenging activity, Epicolin showed a higher efficacy compared to FG and FN. Furthermore, Epicolin showed the same protective effect on MIO-M1 cells reducing HIF-1α expression. Finally, Epicolin treatment on DBA/2J mice protected the RGCs from loss of function, as demonstrated by PERG analysis, and attenuated their death by enhancing brain-derived neurotrophic factor (BDNF) and reducing interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) expression. Conclusions: Epicolin, due to its neuroprotective, antioxidant, and anti-inflammatory properties, represents a promising potential treatment for glaucoma.
Collapse
Affiliation(s)
- Luca Rosario La Rosa
- Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant’Antonio, Italy; (V.P.); (S.V.); (G.D.P.); (M.C.C.); (C.Z.)
| | - Veronica Pepe
- Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant’Antonio, Italy; (V.P.); (S.V.); (G.D.P.); (M.C.C.); (C.Z.)
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.L.); (F.C.); (E.G.); (C.B.)
| | - Giovanni Luca Romano
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, 95125 Catania, Italy;
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.L.); (F.C.); (E.G.); (C.B.)
| | - Erika Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.L.); (F.C.); (E.G.); (C.B.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.L.); (F.C.); (E.G.); (C.B.)
- Center for Research in Ocular Pharmacology–CERFO, University of Catania, 95125 Catania, Italy;
| | - Santa Viola
- Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant’Antonio, Italy; (V.P.); (S.V.); (G.D.P.); (M.C.C.); (C.Z.)
| | - Giuseppe De Pasquale
- Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant’Antonio, Italy; (V.P.); (S.V.); (G.D.P.); (M.C.C.); (C.Z.)
| | - Maria Cristina Curatolo
- Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant’Antonio, Italy; (V.P.); (S.V.); (G.D.P.); (M.C.C.); (C.Z.)
| | - Cristina Zappulla
- Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant’Antonio, Italy; (V.P.); (S.V.); (G.D.P.); (M.C.C.); (C.Z.)
| |
Collapse
|
4
|
Zhou Y, Xue F. Revolutionary drug repositioning: the preventive and therapeutic potential of metformin and other antidiabetic drugs in age-related macular degeneration. Front Pharmacol 2024; 15:1507860. [PMID: 39720591 PMCID: PMC11666363 DOI: 10.3389/fphar.2024.1507860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly worldwide. Anti-vascular endothelial growth factor (anti-VEGF) injections remain the first-line therapy for AMD. However, their high cost and the need for frequent administration pose challenges to long-term adherence, highlighting the need for accessible and cost-effective preventive strategies. Emerging evidence suggests that traditional antidiabetic drugs, such as metformin, sulfonylureas, and thiazolidinediones, may offer neuroprotective benefits, opening new avenues for AMD prevention. Among these, metformin has emerged as the most promising candidate, demonstrating significant potential in reducing AMD risk, even at low cumulative doses, primarily through AMP-activated protein kinase (AMPK) activation. Sulfonylureas, although effective in stimulating insulin secretion, carry risks such as hypoglycemia, hyperinsulinemia, and a possible association with increased cancer risk. Similarly, thiazolidinediones, while improving insulin sensitivity, are associated with adverse effects, including cardiovascular risks and macular edema, limiting their broader application in AMD prevention. This paper explores the preventive potential and underlying mechanisms of these antidiabetic drugs in AMD and discusses the role of artificial intelligence in optimizing individualized prevention strategies. By advancing precision medicine, these approaches may improve public health outcomes and reduce the burden of aging-related vision loss.
Collapse
|
5
|
Kume T. FOXC1 and retinopathy: targeting molecular mechanisms in retinal blood vessel growth. Expert Opin Ther Targets 2024; 28:1017-1020. [PMID: 39560136 PMCID: PMC11710970 DOI: 10.1080/14728222.2024.2432411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Affiliation(s)
- Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
6
|
Giuffrida E, Platania CBM, Lazzara F, Conti F, Marcantonio N, Drago F, Bucolo C. The Identification of New Pharmacological Targets for the Treatment of Glaucoma: A Network Pharmacology Approach. Pharmaceuticals (Basel) 2024; 17:1333. [PMID: 39458974 PMCID: PMC11509888 DOI: 10.3390/ph17101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration and death of retinal ganglion cells (RGCs), leading to blindness. Current glaucoma interventions reduce intraocular pressure but do not address retinal neurodegeneration. In this effort, to identify new pharmacological targets for glaucoma management, we employed a network pharmacology approach. Methods: We first retrieved transcriptomic data from GEO, an NCBI database, and carried out GEO2R (an interactive web tool aimed at comparing two or more groups of samples in a GEO dataset). The GEO2R statistical analysis aimed at identifying the top differentially expressed genes (DEGs) and used these as input of STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) app within Cytoscape software, which builds networks of proteins starting from input DEGs. Analyses of centrality metrics using Cytoscape were carried out to identify nodes (genes or proteins) involved in network stability. We also employed the web-server software MIRNET 2.0 to build miRNA-target interaction networks for a re-analysis of the GSE105269 dataset, which reports analyses of microRNA expressions. Results: The pharmacological targets, identified in silico through analyses of the centrality metrics carried out with Cytoscape, were rescored based on correlations with entries in the PubMed and clinicaltrials.gov databases. When there was no match (82 out of 135 identified central nodes, in 8 analyzed networks), targets were considered "potential innovative" targets for the treatment of glaucoma, after further validation studies. Conclusions: Several druggable targets, such as GPCRs (e.g., 5-hydroxytryptamine 5A (5-HT5A) and adenosine A2B receptors) and enzymes (e.g., lactate dehydrogenase A or monoamine oxidase B), were found to be rescored as "potential innovative" pharmacological targets for glaucoma treatment.
Collapse
Affiliation(s)
- Erika Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Nicoletta Marcantonio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| |
Collapse
|
7
|
Romano GL, Gozzo L, Maurel OM, Di Martino S, Riolo V, Micale V, Drago F, Bucolo C. Fluoxetine Protects Retinal Ischemic Damage in Mice. Pharmaceutics 2023; 15:pharmaceutics15051370. [PMID: 37242611 DOI: 10.3390/pharmaceutics15051370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND To evaluate the neuroprotective effect of the topical ocular administration of fluoxetine (FLX) in a mouse model of acute retinal damage. METHODS Ocular ischemia/reperfusion (I/R) injury in C57BL/6J mice was used to elicit retinal damage. Mice were divided into three groups: control group, I/R group, and I/R group treated with topical FLX. A pattern electroretinogram (PERG) was used as a sensitive measure of retinal ganglion cell (RGC) function. Finally, we analyzed the retinal mRNA expression of inflammatory markers (IL-6, TNF-α, Iba-1, IL-1β, and S100β) through Digital Droplet PCR. RESULTS PERG amplitude values were significantly (p < 0.05) higher in the I/R-FLX group compared to the I/R group, whereas PERG latency values were significantly (p < 0.05) reduced in I/R-FLX-treated mice compared to the I/R group. Retinal inflammatory markers increased significantly (p < 0.05) after I/R injury. FLX treatment was able to significantly (p < 0.05) attenuate the expression of inflammatory markers after I/R damage. CONCLUSIONS Topical treatment with FLX was effective in counteracting the damage of RGCs and preserving retinal function. Moreover, FLX treatment attenuates the production of pro-inflammatory molecules elicited by retinal I/R damage. Further studies need to be performed to support the use of FLX as neuroprotective agent in retinal degenerative diseases.
Collapse
Affiliation(s)
- Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| | - Lucia Gozzo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Oriana Maria Maurel
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Valentina Riolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| |
Collapse
|
8
|
Amato R, Cammalleri M, Melecchi A, Bagnoli P, Porciatti V. Natural History of Glaucoma Progression in the DBA/2J Model: Early Contribution of Müller Cell Gliosis. Cells 2023; 12:cells12091272. [PMID: 37174673 PMCID: PMC10177096 DOI: 10.3390/cells12091272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Glaucoma is a chronic optic neuropathy characterized by progressive degeneration of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) and the resulting mechanical stress are classically considered the main causes of RGC death. However, RGC degeneration and ensuing vision loss often occur independent of IOP, indicating a multifactorial nature of glaucoma, with the likely contribution of glial and vascular function. The aim of the present study was to provide a comprehensive evaluation of the time course of neuro-glial-vascular changes associated with glaucoma progression. We used DBA/2J mice in the age range of 2-15 months as a spontaneous model of glaucoma with progressive IOP elevation and RGC loss typical of human open-angle glaucoma. We found that the onset of RGC degeneration at 10 months of age coincided with that of IOP elevation and vascular changes such as decreased density, increased lacunarity and decreased tight-junction protein zonula occludens (ZO)-1, while hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) were already significantly upregulated at 6 months of age together with the onset of Müller cell gliosis. Astrocytes, however, underwent significant gliosis at 10 months. These results indicate that Müller cell activation occurs well before IOP elevation, with probable inflammatory consequences, and represents an early event in the glaucomatous process. Early upregulation of HIF-1α and VEGF is likely to contribute to blood retinal barrier failure, facilitating RGC loss. The different time courses of neuro-glial-vascular changes during glaucoma progression provide further insight into the nature of the disease and suggest potential targets for the development of efficient therapeutic intervention aside from IOP lowering.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | | | | | - Paola Bagnoli
- Department of Biology, University of Pisa, 56127 Pisa, Italy
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Bucolo C, Maugeri G, Giunta S, D’Agata V, Drago F, Romano GL. Corneal wound healing and nerve regeneration by novel ophthalmic formulations based on cross-linked sodium hyaluronate, taurine, vitamin B6, and vitamin B12. Front Pharmacol 2023; 14:1109291. [PMID: 36817120 PMCID: PMC9932323 DOI: 10.3389/fphar.2023.1109291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: To evaluate the pharmacological profile of ocular formulations based on cross-linked sodium hyaluronate (CL-SH), taurine (Tau), vitamin B6 (Vit B6) and vitamin B12 (Vit B12) using in vitro and in vivo paradigms. Methods: Rabbit corneal epithelial cells were used to assess wound healing and reactive oxygen species (ROS) formation by scratch assay and oxidative stress (0.3 mM H2O2; 30 min), respectively with or without ocular formulations exposure. In vivo studies were carried out on albino rabbits to evaluate corneal nerve regeneration and corneal wound healing with or without treatment with six different formulations. Animals were anesthetized, the corneal epithelium was removed, and formulations were topically administered (30 μL/eye; 3 times/day for 6 days). Slit-lamp observation was carried out at different time points. After 6 days the animals were killed, and corneas were collected to evaluate corneal re-innervation by immunohistochemistry of selective neuronal marker β-III tubulin. Results: Formulations containing the concentrations 0.16% or 0.32% of cross-linked sodium hyaluronate, taurine, vitamin B6 and vitamin B12 accelerated corneal wound healing. Cells exposed to H2O2 led to significant (p < 0.05) increase of reactive oxygen species concentration that was significantly (p < 0.05) counteract by formulations containing cross-linked sodium hyaluronate (0.32%) and taurine with or without vitamins. The extent of re-innervation, in terms of β-III tubulin staining, was 5-fold greater (p < 0.01) in the eye of rabbits treated with formulation containing 0.32% cross-linked sodium hyaluronate, taurine, vitamins (RenerviX®) compared with the control group (no treatment). Furthermore, re-innervation elicited by RenerviX® was significantly greater (p < 0.01) compared with the group treated with the formulation containing 0.32% cross-linked sodium hyaluronate and taurine without vitamins, and with the group treated with the formulation containing 0.5% linear sodium hyaluronate (SH), taurine, and vitamin B12, respectively. Discussion: In conclusion, among the formulations tested, the new ophthalmic gel RenerviX® was able to contrast oxidative stress, to accelerate corneal re-epithelization and to promote nerve regeneration.
Collapse
Affiliation(s)
- Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy,*Correspondence: Claudio Bucolo,
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Bioequivalence, Drugs with Narrow Therapeutic Index and the Phenomenon of Biocreep: A Critical Analysis of the System for Generic Substitution. Healthcare (Basel) 2022; 10:healthcare10081392. [PMID: 35893214 PMCID: PMC9394341 DOI: 10.3390/healthcare10081392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
The prescription of generic drugs represents one of the main cost-containment strategies of health systems, aimed at reducing pharmaceutical expenditure. In this context, most regulatory authorities encourage or obligate dispensing generic drugs because they are far less expensive than their brand-name alternatives. However, drug substitution can be critical in particular situations, such as the use of drugs with a narrow therapeutic index (NTI). Moreover, generics cannot automatically be considered bioequivalent with each other due to the biocreep phenomenon. In Italy, the regulatory authority has established the Transparency Lists which include the medications that will be automatically substituted for brand-name drugs, except in exceptional cases. This is a useful tool to guide prescribers and guarantee pharmaceutical sustainability, but it does not consider the biocreep phenomenon.
Collapse
|
11
|
Bonfiglio V, Rejdak R, Nowomiejska K, Zweifel SA, Justus Wiest MR, Romano GL, Bucolo C, Gozzo L, Castellino N, Patane C, Pizzo C, Reibaldi M, Russo A, Longo A, Fallico M, Macchi I, Vadalà M, Avitabile T, Costagliola C, Jonak K, Toro MD. Efficacy and Safety of Subthreshold Micropulse Yellow Laser for Persistent Diabetic Macular Edema After Vitrectomy: A Pilot Study. Front Pharmacol 2022; 13:832448. [PMID: 35462889 PMCID: PMC9019565 DOI: 10.3389/fphar.2022.832448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: To examine the effect of subthreshold micropulse yellow laser (SMYL) on best-corrected visual acuity (BCVA), central macular thickness (CMT), and optical coherence tomography angiography (OCT-A) changes in eyes with persistent diabetic macular edema (DME) after pars plana vitrectomy (PPV) for tractional DME (TDME).Patients and Methods: In a comparative study, 95 eyes of 95 consecutive patients with persistent DME were prospectively enrolled. The SMYL group (54 eyes) was treated with SMYL 6 months after PPV, while the control group (41 eyes) was followed up without treatment. BCVA and CMT by OCT were analyzed at baseline and 3 and 6 months. Additionally, parameters such as the vessel density (VD) in the superficial capillary plexus (SCP) and deep capillary plexus (DCP), respectively, and the area of the foveal avascular zone (FAZ) were also evaluated on OCT-A.Results: There were no significant differences between both groups in demographic data. In the SMYL group, mean BCVA was significantly increased [F(2,106) = 17.25; p < 0.001; ηp2 = 0.246] from 51.54 ± 13.81 ETDRS letters at baseline to 57.81 ± 12.82 ETDRS letters at 3 months (p < 0.001) and 57.83 ± 13.95 EDTRS letters at 6 months (p < 0.001), respectively. In comparison to the control group, BCVA values were statistically significantly higher in the SMYL group at 3 and 6 months, respectively. Mean CMT significantly decreased [F(2,106) = 30.98; p < 0.001; ηp2 = 0.368] from the baseline value 410.59 ± 129.91 μm to 323.50 ± 89.66 μm at 3 months (p < 0.001) and to 283.39 ± 73.45 μm at 6 months (p < 0.001). CMT values were significantly lower in the SMYL group (p < 0.001), especially at 6 months follow-up time (p < 0.001) compared with the control group. Parafoveal VD in the SCP and DCP was significantly higher in the SMYL group in comparison to the control group, respectively, at 3-month (SCP p < 0.001; DCP p < 0.001) and 6-month follow-up (SCP p < 0.001; DCP p < 0.001). FAZ area was also significantly smaller in the SMYL group at 6-month follow-up (p = 0.001). There were no adverse SMYL treatment effects.Conclusion: SMYL therapy may be a safe and effective treatment option in eyes with persistent macular edema following PPV for TDME.
Collapse
Affiliation(s)
- Vincenza Bonfiglio
- Department of Experimental Biomedicine and Clinical Neuroscience, Ophthalmology Section, University of Palermo, Palermo, Italy
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Nowomiejska
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | | | | | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology—CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology—CERFO, University of Catania, Catania, Italy
- *Correspondence: Claudio Bucolo, ; Mario Damiano Toro,
| | - Lucia Gozzo
- Center for Research in Ocular Pharmacology—CERFO, University of Catania, Catania, Italy
| | | | - Clara Patane
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Corrado Pizzo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Michele Reibaldi
- Department of Surgical Sciences, Eye Clinic Section, University of Turin, Turin, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Antonio Longo
- Center for Research in Ocular Pharmacology—CERFO, University of Catania, Catania, Italy
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Matteo Fallico
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Iacopo Macchi
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Maria Vadalà
- Department of Experimental Biomedicine and Clinical Neuroscience, Ophthalmology Section, University of Palermo, Palermo, Italy
| | - Teresio Avitabile
- Center for Research in Ocular Pharmacology—CERFO, University of Catania, Catania, Italy
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Ciro Costagliola
- Eye Clinic Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Kamil Jonak
- Department of Clinical Neuropsychiatry, Medical University of Lublin, Lublin, Poland
- Department of Computer Science, Lublin University of Technology, Lublin, Poland
| | - Mario Damiano Toro
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
- Eye Clinic, Public Health Department, University of Naples Federico II, Naples, Italy
- *Correspondence: Claudio Bucolo, ; Mario Damiano Toro,
| |
Collapse
|
12
|
Conti F, Lazzara F, Romano GL, Platania CBM, Drago F, Bucolo C. Caffeine Protects Against Retinal Inflammation. Front Pharmacol 2022; 12:824885. [PMID: 35069225 PMCID: PMC8773454 DOI: 10.3389/fphar.2021.824885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
Caffeine, one of the most consumed central nervous system (CNS) stimulants, is an antagonist of A1 and A2A adenosine receptors. In this study, we investigated the potential protective effects of this methylxanthine in the retinal tissue. We tested caffeine by using in vitro and in vivo paradigms of retinal inflammation. Human retinal pigment epithelial cells (ARPE-19) were exposed to lipopolysaccharide (LPS) with or without caffeine. This latter was able to reduce the inflammatory response in ARPE-19 cells exposed to LPS, attenuating the release of IL-1β, IL-6, and TNF-α and the nuclear translocation of p-NFκB. Additionally, caffeine treatment restored the integrity of the ARPE-19 monolayer assessed by transepithelial electrical resistance (TEER) and the sodium fluorescein permeability test. Finally, the ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to induce retinal inflammation and investigate the effects of caffeine treatment. Mouse eyes were treated topically with caffeine, and a pattern electroretinogram (PERG) was used to assess the retinal ganglion cell (RGC) function; furthermore, we evaluated the levels of IL-6 and BDNF in the retina. Retinal BDNF dropped significantly (p < 0.05) in the I/R group compared to the control group (normal mice); on the contrary, caffeine treatment maintained physiological levels of BDNF in the retina of I/R eyes. Caffeine was also able to reduce IL-6 mRNA levels in the retina of I/R eyes. In conclusion, these findings suggest that caffeine is a good candidate to counteract inflammation in retinal diseases.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
13
|
You L, Zhao Q, Yan J, Li W, Yang Y, Qin C. Effect of Thiopental on Ischemic Stroke in Rat Brain in Spontaneously Hypertensive Rats. Appl Bionics Biomech 2022; 2022:8063965. [PMID: 35103077 PMCID: PMC8800597 DOI: 10.1155/2022/8063965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022] Open
Abstract
Motivation and Problem Statement. Thiopental is an anesthetic drug related to the condition of controlling the area of neurological contexts. This study is related to the analysis of effectiveness for the condition of thiopental application on spontaneously hypertensive rats. Methodology. We have evaluated the thiopental induction as the anesthetic agent. The hypertensive rats were selected to administer thiopental in the form of anesthesia. The selection and application of hypertensive strokes are related to the derivation of an inducible model to assess the efficacy for analyzing the ischemic stroke parameters which relate to the human body. We used middle cerebral artery occlusion (MCAO) models related to spontaneous hypertension with the area of examining the complications in ischemic stroke. Results and Conclusion. The study focused on the experimental analysis based on the selection of spontaneously hypertensive rats associated with the incidence of ischemic stroke. Application of thiopental has reported the weak functionality and mechanism on the relaxation of neuronal activity in the case of rat brain. The considered population of the spontaneously hypertensive rats is evaluated based on the condition of effectiveness as well as the duration of the medication effects within the rat brain. Involvement of thiopental in the case of ischemic stroke has provided the area of risk development for high rate of death incidences after occurrence of acute ischemic stroke. A complication in the area of defining neuroprotective actions provides difficulty in drawing an appropriate conclusion of the study.
Collapse
Affiliation(s)
- Lu You
- Department of Anesthesiology, Guizhou Provincial People's Hospital, China
| | - Qian Zhao
- Department of Anesthesiology, Guizhou Provincial People's Hospital, China
| | - JianYong Yan
- Department of Anesthesiology, Guizhou Provincial People's Hospital, China
| | - Wen Li
- Department of Anesthesiology, Guizhou Provincial People's Hospital, China
| | - Ye Yang
- Department of Anesthesiology, Guizhou Provincial Orthopaedic Hospital, China
| | - Chenguang Qin
- Department of Anesthesiology, Guizhou Provincial People's Hospital, China
| |
Collapse
|
14
|
Mohamad MHN, Abu IF, Fazel MF, Agarwal R, Iezhitsa I, Juliana N, Mellor IR, Franzyk H. Neuroprotection Against NMDA-Induced Retinal Damage by Philanthotoxin-343 Involves Reduced Nitrosative Stress. Front Pharmacol 2022; 12:798794. [PMID: 34970151 PMCID: PMC8714026 DOI: 10.3389/fphar.2021.798794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 01/18/2023] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) overstimulation is known to mediate neurodegeneration, and hence represents a relevant therapeutic target for neurodegenerative disorders including glaucoma. This study examined the neuroprotective effects of philanthotoxin (PhTX)-343 against NMDA-induced retinal injury in rats. Male Sprague Dawley rats were divided into three groups; group 1 received phosphate buffer saline as the negative control, group 2 was injected with NMDA (160 nM) to induce retinal excitotoxic injury, and group 3 was pre-treated with PhTX-343 (160 nM) 24 h before NMDA exposure. All treatments were given intravitreally and bilaterally. Seven days post-treatment, rats were subjected to visual behaviour assessments using open field and colour recognition tests. Rats were then euthanized, and the retinas were harvested and subjected to haematoxylin and eosin (H&E) staining for morphometric analysis and 3-nitrotyrosine (3-NT) ELISA protocol as the nitrosative stress biomarker. PhTX-343 treatment prior to NMDA exposure improved the ability of rats to recognize visual cues and preserved visual functions (i.e., recognition of objects with different colours). Morphological examination of retinal tissues showed that the fractional ganglion cell layer thickness within the inner retina (IR) in the PhTX-343 treated group was greater by 1.28-fold as compared to NMDA-treated rats (p < 0.05) and was comparable to control rats (p > 0.05). Additionally, the number of retinal cell nuclei/100 μm2 in IR for the PhTX-343-treated group was greater by 1.82-fold compared to NMDA-treated rats (p < 0.05) and was comparable to control group (p > 0.05). PhTX-343 also reduced the retinal 3-NT levels by 1.74-fold compared to NMDA-treated rats (p < 0.05). In conclusion, PhTX-343 pretreatment protects against NMDA-induced retinal morphological changes and visual impairment by suppressing nitrosative stress as reflected by the reduced retinal 3-NT level.
Collapse
Affiliation(s)
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Muhammad Fattah Fazel
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia.,Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russian Federation
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Negeri Sembilan, Malaysia
| | - Ian R Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Di Y, Xu H, Ye J, Guo Z. A Study on the Drug Concentration in Fellow Eyes After Unilateral Intravitreal Injection of Conbercept Into New Zealand Rabbit Eyes. Front Pharmacol 2021; 12:783057. [PMID: 34925038 PMCID: PMC8672112 DOI: 10.3389/fphar.2021.783057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/05/2022] Open
Abstract
Intravitreal injections of anti-vascular endothelial growth factor (VEGF) have become increasingly popular in the treatment of ocular diseases. However, few studies have determined the efficiency of unilateral intravitreal anti-VEGF injection in the fellow eye. Herein, we performed a study to investigate the drug concentration in fellow eyes and venous serum after unilateral intravitreal injection of conbercept into rabbit eyes. This is an experimental animal study. Thirty male New Zealand rabbits (60 eyes) were used. One eye of each rabbit was intravitreally injected with 0.5 mg of conbercept. Both eyes from six rabbits were enucleated on days 1, 3, 7, 14, and 30. Conbercept concentrations were measured in the serum, aqueous humor, and vitreous humor. We found conbercept was detected in the fellow eyes and serum of rabbits. Conbercept concentrations in the vitreous humor of the fellow eyes increased from 74.11 ng/ml on day 1 to 246.69 ng/ml on day 3 and then declined to 69.11 ng/ml after 30 days. The concentration in the aqueous humor peaked on day 1 with a concentration of 244.82 ng/ml and declined to 40.13 ng/ml after 30 days. The maximum conbercept concentrations in the aqueous humor and vitreous humor of fellow eyes were similar, which were 0.2 and 1.3% of those of the injected eye, respectively. A peak concentration of 102.49 ng/ml was achieved in the venous serum 1 day after intravitreal injection of conbercept, which was 0.08 and 0.5% of those of the maximum conbercept concentrations in the vitreous humor and aqueous humor of the injected eye, respectively, and 41.5 and 41.8% of the maximum conbercept concentrations in the vitreous humor and aqueous humor of the non-injected eye, respectively. In conclusion, after intravitreal injection of 0.5 mg of conbercept into rabbit eyes, very small amounts of conbercept were detected in the fellow non-injected eyes and venous serum.
Collapse
Affiliation(s)
- Yu Di
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Haiyan Xu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Junjie Ye
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zijian Guo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Xu K, Li S, Yang Q, Zhou Z, Fu M, Yang X, Hao K, Liu Y, Ji H. MicroRNA-145-5p targeting of TRIM2 mediates the apoptosis of retinal ganglion cells via the PI3K/AKT signaling pathway in glaucoma. J Gene Med 2021; 23:e3378. [PMID: 34291866 DOI: 10.1002/jgm.3378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND There is accumulating evidence to suggest that microRNAs (miRNAs) are associated with the progressive optic neuropathy including glaucoma. Apoptosis of retinal ganglion cells (RGCs) is a hallmark of glaucoma. The present study focused on the effects of miR-145-5p on RGC apoptosis in glaucoma. METHODS We established a glaucoma rat model by intraocular injection of N-methyl-d-aspartic acid (NMDA). RGCs were isolated from newborn rats and treated with NMDA. Hematoxylin and eosin staining was performed to detect morphological changes in the retinas of rats. The expression of miR-145-5p and tripartite motif-containing 2 (TRIM2) in RGCs was measured by RT-qPCR. The viability of RGCs was measured by MTT assay. Flow cytometry analysis and TUNEL assays were conducted to assess the apoptosis of RGCs. The interaction between miR-145-5p and TRIM2 was investigated using a luciferase reporter assay. RESULTS Rats injected with NMDA showed a thinner ganglion cell layer (GCL) and inner plexiform layer (IPL) as well as increased expression of miR-145-5p. Silencing of miR-145-5p significantly increased the GCL and IPL in the glaucoma rat model. Moreover, miR-145-5p expression was upregulated in RGCs ex vivo in response to NMDA. Silencing of miR-145-5p promoted cell viability and suppressed apoptosis in NMDA-treated RGCs. Mechanistically, miR-145-5p targeted the TRIM2 3' untranslated region to suppress its expression. TRIM2 was upregulated in NMDA-treated RGCs and protected RGCs against NMDA-induced apoptosis. Furthermore, miR-145-5p suppressed the PI3K/AKT pathway by downregulating TRIM2 in NMDA-treated RGCs. CONCLUSIONS Suppression of miR-145-5p inhibited the apoptosis of RGCs via TRIM2-mediated activation of the PI3K/AKT signaling pathway in NMDA-induced glaucoma.
Collapse
Affiliation(s)
- Kai Xu
- Department of Ophthalmology, Taizhou Second People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu, China
| | - Sizhen Li
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Qingsong Yang
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Zixiu Zhou
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Min Fu
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Xiaodong Yang
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Kuanxiao Hao
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Yating Liu
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Heqing Ji
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| |
Collapse
|
17
|
Conti F, Romano GL, Eandi CM, Toro MD, Rejdak R, Di Benedetto G, Lazzara F, Bernardini R, Drago F, Cantarella G, Bucolo C. Brimonidine is Neuroprotective in Animal Paradigm of Retinal Ganglion Cell Damage. Front Pharmacol 2021; 12:705405. [PMID: 34366858 PMCID: PMC8333612 DOI: 10.3389/fphar.2021.705405] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
To investigate the neuroprotective effect of brimonidine after retinal ischemia damage on mouse eye. Glaucoma is an optic neuropathy characterized by retinal ganglion cells (RGCs) death, irreversible peripheral and central visual field loss, and high intraocular pressure. Ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to mimic conditions of glaucomatous neurodegeneration. Mouse eyes were treated topically with brimonidine and pattern electroretinogram were used to assess the retinal ganglion cells (RGCs) function. A wide range of inflammatory markers, as well as anti-inflammatory and neurotrophic molecules, were investigated to figure out the potential protective effects of brimonidine in mouse retina. In particular, brain-derived neurotrophic factor (BDNF), IL-6, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptor DR-5, TNF-α, GFAP, Iba-1, NOS, IL-1β and IL-10 were assessed in mouse retina that underwent to I/R insult with or without brimonidine treatment. Brimonidine provided remarkable RGCs protection in our paradigm. PERG amplitude values were significantly (p < 0.05) higher in brimonidine-treated eyes in comparison to I/R retinas. Retinal BDNF mRNA levels in the I/R group dropped significantly (p < 0.05) compared to the control group (normal mice); brimonidine treatment counteracted the downregulation of retinal BDNF mRNA in I/R eyes. Retinal inflammatory markers increased significantly (p < 0.05) in the I/R group and brimonidine treatment was able to revert that. The anti-inflammatory IL-10 decreased significantly (p < 0.05) after retinal I/R insult and increased significantly (p < 0.05) in the group treated with brimonidine. In conclusion, brimonidine was effective in preventing loss of function of RGCs and in regulating inflammatory biomarkers elicited by retinal I/R injury.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Maria Eandi
- Department of Ophthalmology, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Mario Damiano Toro
- Department of Ophthalmology, University of Zurich, Zurich, Switzerland.,Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
18
|
Modeling Retinal Ganglion Cell Dysfunction in Optic Neuropathies. Cells 2021; 10:cells10061398. [PMID: 34198840 PMCID: PMC8227951 DOI: 10.3390/cells10061398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
As in glaucoma and other optic neuropathies cellular dysfunction often precedes cell death, the assessment of retinal ganglion cell (RGC) function represents a key outcome measure for neuroprotective strategies aimed at targeting distressed but still viable cells. RGC dysfunction can be assessed with the pattern electroretinogram (PERG), a sensitive measure of electrical activity of RGCs that is recorded non-invasively in human subjects and mouse models. Here, we offer a conceptual framework based on an intuitive state-transition model used for disease management in patients to identify progressive, potentially reversible stages of RGC dysfunction leading to cell death in mouse models of glaucoma and other optic neuropathies. We provide mathematical equations to describe state-transitions with a set of modifiable parameters that alter the time course and severity of state-transitions, which can be used for hypothesis testing and fitting experimental PERG data. PERG dynamics as a function of physiological stimuli are also used to differentiate phenotypic and altered RGC response dynamics, to assess susceptibility to stressors and to assess reversible dysfunction upon pharmacological treatment.
Collapse
|
19
|
Association between Active Helicobacter pylori Infection and Glaucoma: A Systematic Review and Meta-Analysis. Microorganisms 2020; 8:microorganisms8060894. [PMID: 32545826 PMCID: PMC7355761 DOI: 10.3390/microorganisms8060894] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Glaucoma is the second most common cause of blindness worldwide affecting almost 70 million individuals. Helicobacter pylori (H. pylori) is a widespread pathogen with systematic pathogenicity. This meta-analysis aimed to estimate the contradictory data regarding a potential association between active H. pylori infection and glaucoma. Materials and Methods: A research in MEDLINE/PubMed and Google Scholar was conducted and original studies investigating the relationship between H. pylori infection and glaucoma were included. Analysis was performed with random effects model. The main outcome was the odds ratio (OR) with 95% confidence intervals (CI) of H. pylori infection as a risk factor for glaucoma. A parallel analysis studied the role of active infection as indicated by histology and the titer of anti-H. pylori antibodies. For the anti-H. pylori antibody titers, weighted mean differences (WMD) were estimated between patients and controls. Results: Fifteen studies were included, with 2664 participants (872 patients with glaucoma and 1792 controls), divided into primary open-angle glaucoma (POAG), normal tension glaucoma (NTG) and pseudo-exfoliation glaucoma (PEG). The association between H. pylori infection and overall glaucoma was significant (OR = 2.08, CI 95% 1.48–2.93) with moderate heterogeneity (I2 = 61.54%). After stratification by glaucoma subtype, heterogeneity was eliminated in the NTG subgroup. Studies with healthy controls, and controls with anemia yielded very low or no heterogeneity, respectively. Gastric biopsy to document active H. pylori infection yielded the highest OR (5.4, CI: 3.17–9.2, p < 0.001) and null heterogeneity. For anti-H. pylori antibody titers, there was a significant difference in WMD between patients and controls (WMD 15.98 IU/mL; 95% CI: 4.09–27.87; p = 0.008); values were greater in glaucoma patients, with high heterogeneity (I2: 93.8%). Meta-regression analysis showed that mean age had a significant impact on glaucoma (p = 0.037). Conclusions: Active H. pylori infection may be associated with glaucoma with null heterogeneity, as, beyond histology, quantified by anti-H. pylori titers and increases with age.
Collapse
|
20
|
Locri F, Cammalleri M, Dal Monte M, Rusciano D, Bagnoli P. Protective Efficacy of a Dietary Supplement Based on Forskolin, Homotaurine, Spearmint Extract, and Group B Vitamins in a Mouse Model of Optic Nerve Injury. Nutrients 2019; 11:nu11122931. [PMID: 31816880 PMCID: PMC6950150 DOI: 10.3390/nu11122931] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is a multifactorial blinding disease with a major inflammatory component ultimately leading to apoptotic retinal ganglion cell (RGC) death. Pharmacological treatments lowering intraocular pressure can help slow or prevent vision loss although the damage caused by glaucoma cannot be reversed. Recently, nutritional approaches have been evaluated for their efficacy in preventing degenerative events in the retina although mechanisms underlying their effectiveness remain to be elucidated. Here, we evaluated the efficacy of a diet supplement consisting of forskolin, homotaurine, spearmint extract, and vitamins of the B group in counteracting retinal dysfunction in a mouse model of optic nerve crush (ONC) used as an in vivo model of glaucoma. After demonstrating that ONC did not affect retinal vasculature by fluorescein angiography, we determined the effect of the diet supplement on the photopic negative response (PhNR) whose amplitude is strictly related to RGC integrity and is therefore drastically reduced in concomitance with RGC death. We found that the diet supplementation prevents the reduction of PhNR amplitude (p < 0.001) and concomitantly counteracts RGC death, as in supplemented mice, RGC number assessed immunohistochemically is significantly higher than that in non-supplemented animals (p < 0.01). Major determinants of the protective efficacy of the compound are due to a reduction of ONC-associated cytokine secretion leading to decreased levels of apoptotic markers that in supplemented mice are significantly lower than in non-supplemented animals (p < 0.001), ultimately causing RGC survival and ameliorated visual dysfunction. Overall, our data suggest that the above association of compounds plays a neuroprotective role in this mouse model of glaucoma thus offering a new perspective in inflammation-associated neurodegenerative diseases of the inner retina.
Collapse
Affiliation(s)
- Filippo Locri
- Department of Biology, University of Pisa, via San Zeno, 31, 56127 Pisa, Italy (M.C.)
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, via San Zeno, 31, 56127 Pisa, Italy (M.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, via San Zeno, 31, 56127 Pisa, Italy (M.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: (M.D.M.); (P.B.); Tel.: +39-050-2211426 (M.D.M.)
| | - Dario Rusciano
- Sooft Italia SpA, Contrada Molino 17, 63833 Montegiorgio (FM), Italy;
| | - Paola Bagnoli
- Department of Biology, University of Pisa, via San Zeno, 31, 56127 Pisa, Italy (M.C.)
- Correspondence: (M.D.M.); (P.B.); Tel.: +39-050-2211426 (M.D.M.)
| |
Collapse
|
21
|
Pietrucha-Dutczak M, Amadio M, Govoni S, Lewin-Kowalik J, Smedowski A. The Role of Endogenous Neuroprotective Mechanisms in the Prevention of Retinal Ganglion Cells Degeneration. Front Neurosci 2018; 12:834. [PMID: 30524222 PMCID: PMC6262299 DOI: 10.3389/fnins.2018.00834] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal neurons are not able to undergo spontaneous regeneration in response to damage. A variety of stressors, i.e., UV radiation, high temperature, ischemia, allergens, and others, induce reactive oxygen species production, resulting in consecutive alteration of stress-response gene expression and finally can lead to cell apoptosis. Neurons have developed their own endogenous cellular protective systems. Some of them are preventing cell death and others are allowing functional recovery after injury. The high efficiency of these mechanisms is crucial for cell survival. In this review we focus on the contribution of the most recently studied endogenous neuroprotective factors involved in retinal ganglion cell (RGC) survival, among which, neurotrophic factors and their signaling pathways, processes regulating the redox status, and different pathways regulating cell death are the most important. Additionally, we summarize currently ongoing clinical trials for therapies for RGC degeneration and optic neuropathies, including glaucoma. Knowledge of the endogenous cellular protective mechanisms may help in the development of effective therapies and potential novel therapeutic targets in order to achieve progress in the treatment of retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Marita Pietrucha-Dutczak
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Joanna Lewin-Kowalik
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smedowski
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
22
|
Weinreb RN, Liebmann JM, Cioffi GA, Goldberg I, Brandt JD, Johnson CA, Zangwill LM, Schneider S, Badger H, Bejanian M. Oral Memantine for the Treatment of Glaucoma: Design and Results of 2 Randomized, Placebo-Controlled, Phase 3 Studies. Ophthalmology 2018; 125:1874-1885. [PMID: 30082073 DOI: 10.1016/j.ophtha.2018.06.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/16/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To evaluate the effectiveness and safety of oral memantine as a potential neuroprotective agent in open-angle glaucoma (OAG) at risk for progression. DESIGN Two randomized, double-masked, placebo-controlled, parallel-group, multicenter, 48-month studies identically designed, initiated 1 year apart, and completed in 2006. Protocol amendments included a 1-year extension (first study) and change in primary endpoint and analysis (second study). PARTICIPANTS Patients (2298 total) with bilateral OAG; glaucomatous optic disc damage and visual field loss in 1 eye; glaucomatous optic disc damage and/or visual field loss in the contralateral eye (at screening), topically treated or untreated intraocular pressure (IOP) of 21 mmHg or less (at baseline); and at risk of glaucomatous progression (per prespecified criteria). METHODS Patients were randomized 3:2:2 to receive memantine 20 mg, memantine 10 mg, or placebo tablets daily. Glaucomatous progression was assessed in the intent-to-treat population by full-threshold standard automated perimetry (SAP), frequency doubling technology (FDT), and stereoscopic optic disc photographs, standardized by quality control assessment at centralized reading centers. Safety evaluations included adverse events (AEs), best-corrected visual acuity, biomicroscopy, IOP, and ophthalmoscopy. Efficacy data from each study were analyzed per protocol. Pooled analyses of efficacy and safety data were also performed. MAIN OUTCOME MEASURES The predefined primary efficacy measure was glaucomatous visual field progression, as measured by SAP. Additional efficacy measures included glaucomatous progression of visual field (FDT) and optic nerve damage (stereoscopic optic disc photographs). RESULTS The proportion of patients who completed the studies was similar among groups (80%-83%). Compared with placebo, daily treatment with memantine 10 mg or 20 mg for 48 months did not delay glaucomatous progression significantly in the individual studies and pooled analyses. The pooled risk reduction ratio (95% confidence interval) assessed by SAP was -0.13 (-0.40, 0.09) and -0.17 (-0.46, 0.07) for memantine 10 mg and 20 mg, respectively. Results were similar per FDT and stereoscopic optic disc photographs. The most common AEs leading to treatment discontinuations were dizziness, headache, fatigue, and nausea. CONCLUSIONS With technologies available when the studies were conducted, daily treatment with memantine over 48 months was not shown to prevent glaucomatous progression in this patient population.
Collapse
Affiliation(s)
- Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, California.
| | - Jeffrey M Liebmann
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, New York
| | - George A Cioffi
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, New York
| | - Ivan Goldberg
- Discipline of Ophthalmology, University of Sydney and Sydney Eye Hospital, Sydney, Australia
| | - James D Brandt
- UC Davis Eye Center, University of California, Davis, Sacramento, California
| | - Chris A Johnson
- Department of Ophthalmology, University of Iowa, Iowa City, Iowa
| | - Linda M Zangwill
- Hamilton Glaucoma Center, Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, California
| | | | | | | |
Collapse
|