1
|
Wu Y, Zou Y, Song C, Cao K, Cai K, Chen S, Zhang Z, Geng D, Zhang N, Feng H, Tang M, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of serine/threonine protein kinases in cardiovascular disease and potential therapeutic methods. Biomed Pharmacother 2024; 177:117093. [PMID: 38971012 DOI: 10.1016/j.biopha.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| |
Collapse
|
2
|
Yan Y, Zhao C, Niu J, Yan P, Li J, Wang D, Li G. Rationale and Design of the IMPROVE Trial: A Multicenter, Randomized, Controlled, Open-label, Blinded-endpoint Trial Assessing the Efficacy of Remote Ischemic Conditioning in Patients Undergoing Off-Pump Coronary Artery Bypass Grafting. Adv Ther 2024; 41:3003-3012. [PMID: 38616242 DOI: 10.1007/s12325-024-02836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Despite the appearance of off-pump coronary artery bypass grafting (CABG), ischemia-reperfusion injury (IRI) in the perioperative period still arouses concerns of clinicians. Remote ischemic conditioning (RIC) is the process of repeated ischemia and reperfusion in the peripheral vessels, which is proven to reduce IRI in vital organs. However, the effect of RIC in patients undergoing off-pump CABG is still unclear. METHODS This IMPROVE trial is a national, multicenter, randomized, controlled, open-label, blinded-endpoint clinical trial designed to assess whether RIC intervention can improve short-term prognosis of patients undergoing off-pump CABG. It plans to enroll 648 patients who will be randomly assigned into a RIC group or control group. Patients in the RIC group will receive four cycles of 5 min of pressurization (about 200 mmHg) and 5 min of rest in the 3 days before and 7 days after the surgery. PLANNED OUTCOMES The primary outcome is the occurrence of major adverse cardiovascular and cerebrovascular events (MACCE) within the 3-month follow-up. MACCE is defined as all-cause death, myocardial infarction, stroke, and coronary revascularization surgery. CLINICAL TRIAL REGISTRATION NCT06141525 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Changying Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jialan Niu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengyun Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Cardiovascular Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Duolao Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guoliang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Scurt FG, Bose K, Mertens PR, Chatzikyrkou C, Herzog C. Cardiac Surgery-Associated Acute Kidney Injury. KIDNEY360 2024; 5:909-926. [PMID: 38689404 PMCID: PMC11219121 DOI: 10.34067/kid.0000000000000466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
AKI is a common and serious complication of cardiac surgery that has a significant impact on patient morbidity and mortality. The Kidney Disease Improving Global Outcomes definition of AKI is widely used to classify and identify AKI associated with cardiac surgery (cardiac surgery-associated AKI [CSA-AKI]) on the basis of changes in serum creatinine and/or urine output. There are various preoperative, intraoperative, and postoperative risk factors for the development of CSA-AKI which should be recognized and addressed as early as possible to expedite its diagnosis, reduce its occurrence, and prevent or ameliorate its devastating complications. Crucial issues are the inaccuracy of serum creatinine as a surrogate parameter of kidney function in the perioperative setting of cardiothoracic surgery and the necessity to discover more representative markers of the pathophysiology of AKI. However, except for the tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 ratio, other diagnostic biomarkers with an acceptable sensitivity and specificity are still lacking. This article provides a comprehensive review of various aspects of CSA-AKI, including pathogenesis, risk factors, diagnosis, biomarkers, classification, prevention, and treatment management.
Collapse
Affiliation(s)
- Florian G. Scurt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Magdeburg, Germany
| | - Peter R. Mertens
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christos Chatzikyrkou
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Carolin Herzog
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Hardt J, Seyfried S, Brodrecht H, Khalil L, Büttner S, Herrle F, Reissfelder C, Rahbari NN. Remote ischemic preconditioning versus sham-control for prevention of anastomotic leakage after resection for rectal cancer (RIPAL trial): a pilot randomized controlled, triple-blinded monocenter trial. Int J Colorectal Dis 2024; 39:65. [PMID: 38700747 PMCID: PMC11068831 DOI: 10.1007/s00384-024-04637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE Remote ischemic preconditioning (RIPC) reportedly reduces ischemia‒reperfusion injury (IRI) in various organ systems. In addition to tension and technical factors, ischemia is a common cause of anastomotic leakage (AL) after rectal resection. The aim of this pilot study was to investigate the potentially protective effect of RIPC on anastomotic healing and to determine the effect size to facilitate the development of a subsequent confirmatory trial. MATERIALS AND METHODS Fifty-four patients with rectal cancer (RC) who underwent anterior resection were enrolled in this prospectively registered (DRKS0001894) pilot randomized controlled triple-blinded monocenter trial at the Department of Surgery, University Medicine Mannheim, Mannheim, Germany, between 10/12/2019 and 19/06/2022. The primary endpoint was AL within 30 days after surgery. The secondary endpoints were perioperative morbidity and mortality, reintervention, hospital stay, readmission and biomarkers of ischemia‒reperfusion injury (vascular endothelial growth factor, VEGF) and cell death (high mobility group box 1 protein, HMGB1). RIPC was induced through three 10-min cycles of alternating ischemia and reperfusion to the upper extremity. RESULTS Of the 207 patients assessed, 153 were excluded, leaving 54 patients to be randomized to the RIPC or the sham-RIPC arm (27 each per arm). The mean age was 61 years, and the majority of patients were male (37:17 (68.5:31.5%)). Most of the patients underwent surgery after neoadjuvant therapy (29/54 (53.7%)) for adenocarcinoma (52/54 (96.3%)). The primary endpoint, AL, occurred almost equally frequently in both arms (RIPC arm: 4/25 (16%), sham arm: 4/26 (15.4%), p = 1.000). The secondary outcomes were comparable except for a greater rate of reintervention in the sham arm (9 (6-12) vs. 3 (1-5), p = 0.034). The median duration of endoscopic vacuum therapy was shorter in the RIPC arm (10.5 (10-11) vs. 38 (24-39) days, p = 0.083), although the difference was not statistically significant. CONCLUSION A clinically relevant protective effect of RIPC on anastomotic healing after rectal resection cannot be assumed on the basis of these data.
Collapse
Affiliation(s)
- Julia Hardt
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Steffen Seyfried
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Hannah Brodrecht
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Leila Khalil
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Sylvia Büttner
- Medical Statistics, Biomathematics and Information Processing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Herrle
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Nuh N Rahbari
- Medical Statistics, Biomathematics and Information Processing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Hardt JLS, Pohlmann P, Reissfelder C, Rahbari NN. Remote ischemic preconditioning for reduction of ischemia-reperfusion injury after hepatectomy: A randomized sham-controlled trial. Surgery 2024; 175:424-431. [PMID: 37951812 DOI: 10.1016/j.surg.2023.09.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/03/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Remote ischemic preconditioning reduces ischemia-reperfusion injury in patients undergoing hepatectomy. Moreover, there is evidence that the protective effects of remote ischemic preconditioning may be more pronounced in pre-damaged livers. The objective of this trial was to investigate the extent to which remote ischemic preconditioning can attenuate ischemia-reperfusion injury after hepatectomy and Pringle maneuver in patients with chronic liver disease. METHODS In this randomized, controlled, triple-blind monocenter trial, a total of 102 patients with chronic liver disease and planned hepatectomy were enrolled between December 2019 and March 2022. Eligible patients were randomized to the remote ischemic preconditioning or sham arms. Remote ischemic preconditioning was induced through 3 10-minute cycles of alternating ischemia and reperfusion of the upper extremity. The study was prospectively registered in the German Clinical Trials Registry (DRKS00018931). RESULTS A total of 102 patients were included in the study and were randomized (51 per arm). The median age was 69.5 years, approximately two-thirds of the patients were male (69/102, 67.7%), and the mean body mass index was 25.6 kg/m2. Most patients were classified as American Society of Anesthesiologists II (55/102, 53.9%) or III (45/102, 44.1%). The primary endpoint, the transaminases on the first postoperative day (alanine aminotransferase /aspartate aminotransferase: remote ischemic preconditioning arm: 250 (35-1721)/320 (42-1525) U/L versus sham control arm: 283 (32-792)/356 (20-1851) U/L, P = .820/0.639), clinical outcomes as well as remote ischemic preconditioning biomarker levels were comparable between both arms. CONCLUSION Remote ischemic preconditioning did not achieve a significant reduction in postoperative transaminase levels, nor did it affect clinical results and biomarkers.
Collapse
Affiliation(s)
- Julia L S Hardt
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Paulina Pohlmann
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh N Rahbari
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Francisco J, Del Re DP. Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants (Basel) 2023; 12:1944. [PMID: 38001797 PMCID: PMC10669026 DOI: 10.3390/antiox12111944] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (MI) occurs when blood flow to the myocardium is restricted, leading to cardiac damage and massive loss of viable cardiomyocytes. Timely restoration of coronary flow is considered the gold standard treatment for MI patients and limits infarct size; however, this intervention, known as reperfusion, initiates a complex pathological process that somewhat paradoxically also contributes to cardiac injury. Despite being a sterile environment, ischemia/reperfusion (I/R) injury triggers inflammation, which contributes to infarct expansion and subsequent cardiac remodeling and wound healing. The immune response is comprised of subsets of both myeloid and lymphoid-derived cells that act in concert to modulate the pathogenesis and resolution of I/R injury. Multiple mechanisms, including altered metabolic status, regulate immune cell activation and function in the setting of acute MI, yet our understanding remains incomplete. While numerous studies demonstrated cardiac benefit following strategies that target inflammation in preclinical models, therapeutic attempts to mitigate I/R injury in patients were less successful. Therefore, further investigation leveraging emerging technologies is needed to better characterize this intricate inflammatory response and elucidate its influence on cardiac injury and the progression to heart failure.
Collapse
Affiliation(s)
| | - Dominic P. Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Yu Y, Li C, Zhu S, Jin L, Hu Y, Ling X, Miao C, Guo K. Diagnosis, pathophysiology and preventive strategies for cardiac surgery-associated acute kidney injury: a narrative review. Eur J Med Res 2023; 28:45. [PMID: 36694233 PMCID: PMC9872411 DOI: 10.1186/s40001-023-00990-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Acute kidney injury (AKI) is a common and serious complication of cardiac surgery and is associated with increased mortality and morbidity, accompanied by a substantial economic burden. The pathogenesis of cardiac surgery-associated acute kidney injury (CSA-AKI) is multifactorial and complex, with a variety of pathophysiological theories. In addition to the existing diagnostic criteria, the exploration and validation of biomarkers is the focus of research in the field of CSA-AKI diagnosis. Prevention remains the key to the management of CSA-AKI, and common strategies include maintenance of renal perfusion, individualized blood pressure targets, balanced fluid management, goal-directed oxygen delivery, and avoidance of nephrotoxins. This article reviews the pathogenesis, definition and diagnosis, and pharmacological and nonpharmacological prevention strategies of AKI in cardiac surgical patients.
Collapse
Affiliation(s)
- Ying Yu
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, No 180 Fenglin Road, Xuhui District, Shanghai, 20032 China
| | - Chenning Li
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, No 180 Fenglin Road, Xuhui District, Shanghai, 20032 China
| | - Shuainan Zhu
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, No 180 Fenglin Road, Xuhui District, Shanghai, 20032 China
| | - Lin Jin
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, No 180 Fenglin Road, Xuhui District, Shanghai, 20032 China
| | - Yan Hu
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, No 180 Fenglin Road, Xuhui District, Shanghai, 20032 China
| | - Xiaomin Ling
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, No 180 Fenglin Road, Xuhui District, Shanghai, 20032 China
| | - Changhong Miao
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, No 180 Fenglin Road, Xuhui District, Shanghai, 20032 China
| | - Kefang Guo
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, No 180 Fenglin Road, Xuhui District, Shanghai, 20032 China
| |
Collapse
|
8
|
Göbel U. [Clinical importance of perioperative organ protection : "Should" is closer to "must" than "can"…]. DIE ANAESTHESIOLOGIE 2022; 71:739-740. [PMID: 36178507 DOI: 10.1007/s00101-022-01208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Ulrich Göbel
- Klinik für Anästhesie und operative Intensivmedizin, St. Franziskus-Hospital GmbH, Hohenzollernring 70, 48145, Münster, Deutschland.
| |
Collapse
|
9
|
Chung J, Hur M, Cho H, Bae J, Yoon HK, Lee HJ, Jeong YH, Cho YJ, Ku JH, Kim WH. The Effect of Remote Ischemic Preconditioning on Serum Creatinine in Patients Undergoing Partial Nephrectomy: A Randomized Controlled Trial. J Clin Med 2021; 10:jcm10081636. [PMID: 33921503 PMCID: PMC8069991 DOI: 10.3390/jcm10081636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023] Open
Abstract
Renal function declines after partial nephrectomy due to ischemic reperfusion injury induced by surgical insult or renal artery clamping. The effect of remote ischemic preconditioning (RIPC) on reducing renal injury after partial nephrectomy has not been studied regarding urinary biomarkers. Eighty-one patients undergoing partial nephrectomy were randomly assigned to either RIPC or the control group. RIPC protocol consisted of four cycles of five-min inflation and deflation of a blood pressure cuff to 250 mmHg. Serum creatinine levels were compared at the following time points: preoperative baseline, immediate postoperative, on the first and third days after surgery, and two weeks after surgery. The incidence of acute kidney injury, other surgical complication rates, and urinary biomarkers, including urine creatinine, β-2 microglobulin, microalbumin, and N-acetyl-beta-D-glucosaminidase were compared. Split renal functions measured by renal scan were compared up to 18 months after surgery. There was no significant difference in the serum creatinine level on the first postoperative day (median (interquartile range) 0.87 mg/dL (0.72–1.03) in the RIPC group vs. 0.92 mg/dL (0.71–1.12) in the control group, p = 0.728), nor at any other time point. There was no significant difference in the incidence of acute kidney injury. Secondary outcomes, including urinary biomarkers, were not significantly different between the groups. RIPC showed no significant effect on the postoperative serum creatinine level of the first postoperative day. We could not reveal any significant difference in the urinary biomarkers and clinical outcomes. However, further larger randomized trials are required, because our study was not sufficiently powered for the secondary outcomes.
Collapse
Affiliation(s)
- Jaeyeon Chung
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Min Hur
- Department of Anesthesiology and Pain Medicine, School of Medicine, Ajou University, Suwon 16499, Korea;
| | - Hyeyeon Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Jinyoung Bae
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Hyun-Kyu Yoon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Ho-Jin Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Young Hyun Jeong
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Youn Joung Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Ja Hyeon Ku
- Department of Urology, National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea;
| | - Won Ho Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
- Correspondence:
| |
Collapse
|
10
|
Roth S, Torregroza C, Feige K, Preckel B, Hollmann MW, Weber NC, Huhn R. Pharmacological Conditioning of the Heart: An Update on Experimental Developments and Clinical Implications. Int J Mol Sci 2021; 22:ijms22052519. [PMID: 33802308 PMCID: PMC7959135 DOI: 10.3390/ijms22052519] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of pharmacological conditioning is to protect the heart against myocardial ischemia-reperfusion (I/R) injury and its consequences. There is extensive literature that reports a multitude of different cardioprotective signaling molecules and mechanisms in diverse experimental protocols. Several pharmacological agents have been evaluated in terms of myocardial I/R injury. While results from experimental studies are immensely encouraging, translation into the clinical setting remains unsatisfactory. This narrative review wants to focus on two aspects: (1) give a comprehensive update on new developments of pharmacological conditioning in the experimental setting concentrating on recent literature of the last two years and (2) briefly summarize clinical evidence of these cardioprotective substances in the perioperative setting highlighting their clinical implications. By directly opposing each pharmacological agent regarding its recent experimental knowledge and most important available clinical data, a clear overview is given demonstrating the remaining gap between basic research and clinical practice. Finally, future perspectives are given on how we might overcome the limited translatability in the field of pharmacological conditioning.
Collapse
Affiliation(s)
- Sebastian Roth
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (S.R.); (K.F.); (R.H.)
| | - Carolin Torregroza
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (S.R.); (K.F.); (R.H.)
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; (B.P.); (M.W.H.); (N.C.W.)
- Correspondence:
| | - Katharina Feige
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (S.R.); (K.F.); (R.H.)
| | - Benedikt Preckel
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; (B.P.); (M.W.H.); (N.C.W.)
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; (B.P.); (M.W.H.); (N.C.W.)
| | - Nina C. Weber
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; (B.P.); (M.W.H.); (N.C.W.)
| | - Ragnar Huhn
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (S.R.); (K.F.); (R.H.)
| |
Collapse
|
11
|
Pearce L, Davidson SM, Yellon DM. Does remote ischaemic conditioning reduce inflammation? A focus on innate immunity and cytokine response. Basic Res Cardiol 2021; 116:12. [PMID: 33629195 PMCID: PMC7904035 DOI: 10.1007/s00395-021-00852-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel therapies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective surgery are the most suitable clinical conditions in which to test this hypothesis.
Collapse
Affiliation(s)
- Lucie Pearce
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
12
|
Abstract
Acute kidney injury (AKI) occurs frequently after cardiac surgery and is associated with high morbidity and mortality. Although the number of cardiac surgical procedures is constantly growing worldwide, incidence of cardiac surgery-associated AKI is still around 40% and has a significant impact on global health care costs. Numerous trials attempted to identify strategies to prevent AKI and attenuate its detrimental consequences. Effective options remained elusive. Current evidence supports a multimodal risk-stratification approach with biomarker-guided management of high-risk patients, perioperative administration of dexmedetomidine, and implementation of a care bundle as recommended by the Kidney Disease: Improving Global Outcomes group.
Collapse
|
13
|
[Perioperative cardioprotection - From bench to bedside : Current experimental evidence and possible reasons for the limited translation into the clinical setting]. Anaesthesist 2021; 70:401-412. [PMID: 33464375 PMCID: PMC8099823 DOI: 10.1007/s00101-020-00912-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Hintergrund Ziel der perioperativen Kardioprotektion ist es, die Auswirkungen eines Ischämie- und Reperfusionsschadens zu minimieren. Aus anästhesiologischer Sicht spielt dieser Aspekt insbesondere in der Herzchirurgie bei Patienten mit Einsatz der Herz-Lungen-Maschine, aber auch allgemein bei längerfristigen hypotensiven Phasen oder perioperativen ischämischen Ereignissen im nichtkardiochirurgischen Setting eine wichtige Rolle. Im Laufe der letzten Jahre konnten diverse pharmakologische sowie nichtpharmakologische Strategien der Kardioprotektion identifiziert werden. Die Ergebnisse von Studien an isoliertem Gewebe sowie von tierexperimentellen In-vivo-Studien sind vielversprechend. Eine Translation dieser kardioprotektiven Strategien in die klinische Praxis ist bislang jedoch nicht gelungen. Große klinische Studien konnten keine signifikante Verbesserung des Outcome der Patienten zeigen. Ziel der Arbeit Dieser Übersichtsartikel gibt einen Überblick über die aktuelle experimentelle Evidenz pharmakologischer und nichtpharmakologischer Kardioprotektion. Außerdem sollen mögliche Gründe für die limitierte Translation diskutiert werden. Schließlich werden Möglichkeiten aufgezeigt, wie der Schritt „from bench to bedside“ in Zukunft doch noch gelingen könnte. Material und Methoden Narrative Übersichtsarbeit. Ergebnisse und Diskussion Trotz der vielversprechenden präklinischen experimentellen Ansätze zum Thema Kardioprotektion besteht nach wie vor eine große Diskrepanz zu den Ergebnissen aus großen klinischen Studien in der perioperativen Phase. Mögliche Gründe für die limitierte Translation könnten insbesondere Komorbiditäten und Komedikationen, die Wahl des Anästhesieverfahrens, aber auch die Wahl des Studiendesigns sein. Eine sorgfältige Studienplanung mit Berücksichtigung der genannten Probleme sowie ein simultaner Einsatz mehrerer kardioprotektiver Strategien mit dem Ziel eines additiven bzw. synergistischen Effekts stellen mögliche Ansätze für die Zukunft dar.
Collapse
|
14
|
Abstract
Perioperative cardioprotection aims to minimize the consequences of myocardial ischemia-reperfusion injury. In isolated tissue and animal experiments, several treatments have been identified providing cardioprotection. Some of these strategies have been confirmed in clinical proof-of-concept studies. However, the final translation of cardioprotective strategies to really improve clinical outcome has been disappointing: large randomized controlled clinical trials mostly revealed inconclusive, neutral, or negative results. This review provides an overview of the currently available evidence regarding clinical implications of perioperative cardioprotective therapies from an anesthesiological perspective, highlighting nonpharmacological as well as pharmacological strategies. We discuss reasons why translation of promising experimental results into clinical practice and outcome improvement is hampered by potential confounders and suggest future perspectives to overcome these limitations.
Collapse
|
15
|
Meersch M, Küllmar M, Pavenstädt H, Rossaint J, Kellum JA, Martens S, Klausmeyer P, Schmidt EA, Kerschke L, Zarbock A. Effects of Different Doses of Remote Ischemic Preconditioning on Kidney Damage Among Patients Undergoing Cardiac Surgery: A Single-Center Mechanistic Randomized Controlled Trial. Crit Care Med 2020; 48:e690-e697. [PMID: 32697510 DOI: 10.1097/ccm.0000000000004415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We have previously shown that remote ischemic preconditioning reduces acute kidney injury (acute kidney injury) in high-risk patients undergoing cardiopulmonary bypass and that the protective effect is confined to patients who exhibit an increased urinary tissue inhibitor of metalloproteinases-2 and insulin-like growth factor-binding protein 7 in response to remote ischemic preconditioning. The purpose of this study was to determine the optimal intensity of remote ischemic preconditioning to induce required [tissue inhibitor of metalloproteinases-2]*[insulin-like growth factor-binding protein 7] changes and further explore mechanisms of remote ischemic preconditioning. DESIGN Observational and randomized controlled, double-blind clinical trial. SETTING University Hospital of Muenster, Germany. PATIENTS High-risk patients undergoing cardiac surgery as defined by the Cleveland Clinic Foundation Score. INTERVENTIONS In the interventional part, patients were randomized to receive either one of four different remote ischemic preconditioning doses (3 × 5 min, 3 × 7 min, 3 × 10 min remote ischemic preconditioning, or 3 × 5 min remote ischemic preconditioning + 2 × 10 min remote ischemic preconditioning in nonresponders) or sham-remote ischemic preconditioning (control). MEASUREMENTS AND MAIN RESULTS The primary endpoint of the interventional part was change in urinary [tissue inhibitor of metalloproteinases-2]*[insulin-like growth factor-binding protein 7] between pre- and postintervention. To examine secondary objectives including acute kidney injury incidence, we included an observational cohort. A total of 180 patients were included in the trial (n = 80 observational and n = 100 randomized controlled part [20 patients/group]). The mean age was 69.3 years (10.5 yr), 119 were men (66.1%). Absolute changes in [tissue inhibitor of metalloproteinases-2]*[insulin-like growth factor-binding protein 7] were significantly higher in all remote ischemic preconditioning groups when compared with controls (p < 0.01). Although we did not observe a dose-response relationship on absolute changes in [tissue inhibitor of metalloproteinases-2]*[insulin-like growth factor-binding protein 7] across the four different remote ischemic preconditioning groups, in the 15 patients failing to respond to the lowest dose, nine (60%) responded to a subsequent treatment at a higher intensity. Compared with controls, fewer patients receiving remote ischemic preconditioning developed acute kidney injury within 72 hours after surgery as defined by both Kidney Disease: Improving Global Outcomes criteria (30/80 [37.5%] vs 61/100 [61.0%]; p = 0.003). CONCLUSIONS All doses of remote ischemic preconditioning significantly increased [tissue inhibitor of metalloproteinases-2]*[insulin-like growth factor-binding protein 7] and significantly decreased acute kidney injury compared with controls. High-dose remote ischemic preconditioning could stimulate [tissue inhibitor of metalloproteinases-2]*[insulin-like growth factor-binding protein 7] increases in patients refractory to low-dose remote ischemic preconditioning.
Collapse
Affiliation(s)
- Melanie Meersch
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Mira Küllmar
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Hermann Pavenstädt
- Department of Medicine, Division D, Nephrology, University Hospital Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, University Hospital Münster, Münster, Germany
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Sven Martens
- Department of Cardiac Surgery, University of Münster, Münster, Germany
| | - Pia Klausmeyer
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Elisa A Schmidt
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Laura Kerschke
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
16
|
The Role of Macrophage Migration Inhibitory Factor in Remote Ischemic Conditioning Induced Hepatoprotection in a Rodent Model of Liver Transplantation. Shock 2019; 52:e124-e134. [DOI: 10.1097/shk.0000000000001307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Guo ZN, Guo WT, Liu J, Chang J, Ma H, Zhang P, Zhang FL, Han K, Hu HH, Jin H, Sun X, Simpson DM, Yang Y. Changes in cerebral autoregulation and blood biomarkers after remote ischemic preconditioning. Neurology 2019; 93:e8-e19. [PMID: 31142636 PMCID: PMC6659004 DOI: 10.1212/wnl.0000000000007732] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Objective To determine the effect of remote ischemic preconditioning (RIPC) on dynamic cerebral autoregulation (dCA) and various blood biomarkers in healthy adults. Methods A self-controlled interventional study was conducted. Serial measurements of dCA were performed at 7 time points (7, 9, and 11 am; 2, 5, and 8 pm, and 8 am on the next day) without or with RIPC, carried out at 7:20 to 8 am. Venous blood samples were collected at baseline (7 am) and 1 hour after RIPC, and blood biomarkers, including 5 neuroprotective factors and 25 inflammation-related biomarkers, were measured with a quantitative protein chip. Results Fifty participants were enrolled (age 34.54 ± 12.01 years, 22 men). Compared with the results on the day without RIPC, dCA was significantly increased at 6 hours after RIPC, and the increase was sustained for at least 24 hours. After RIPC, 2 neuroprotective factors (glial cell-derived neurotrophic factor and vascular endothelial growth factor-A) and 4 inflammation-related biomarkers (transforming growth factor-β1, leukemia inhibitory factor, matrix metallopeptidase-9, and tissue inhibitor of metalloproteinase-1) were significantly elevated compared with their baseline levels. Conversely, monocyte chemoattractant protein-1 was significantly lower compared with its baseline level. Conclusions RIPC induces a sustained increase of dCA from 6 to at least 24 hours after treatment in healthy adults. In addition, several neuroprotective and inflammation-related blood biomarkers were differentially regulated shortly after RIPC. The increased dCA and altered blood biomarkers may collectively contribute to the beneficial effects of RIPC on cerebrovascular function. ClinicalTrials.gov identifier: NCT02965547.
Collapse
Affiliation(s)
- Zhen-Ni Guo
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Wei-Tong Guo
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Jia Liu
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Junlei Chang
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Hongyin Ma
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Peng Zhang
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Fu-Liang Zhang
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Ke Han
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Han-Hwa Hu
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Hang Jin
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Xin Sun
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - David Martin Simpson
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK
| | - Yi Yang
- From the Stroke Center (Z.-N.G., W.-T.G., H.M., F.-L.Z., H.J., X.S., Y.Y.) and Clinical Trial and Research Center for Stroke (Z.-N.G., P.Z., Y.Y.), Department of Neurology, First Hospital of Jilin University, Changchun; Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering (J.L.) and Center for Antibody Drug, Institute of Biomedicine and Biotechnology (J.C.), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town; Department of Neurology (K.H.), Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Neurology, Taipei Medical University-Shaung Ho Hospital (H.-H.H.), and Cerebrovascular Treatment and Research Center (H.-H.H.), College of Medicine, Taipei Medical University, Taiwan; and Institute of Sound and Vibration Research (D.M.S.), University of Southampton, UK.
| |
Collapse
|
18
|
Kepler T, Kuusik K, Lepner U, Starkopf J, Zilmer M, Eha J, Lieberg J, Vähi M, Kals J. The Effect of Remote Ischaemic Preconditioning on Arterial Stiffness in Patients Undergoing Vascular Surgery: A Randomised Clinical Trial. Eur J Vasc Endovasc Surg 2019; 57:868-875. [PMID: 31126835 DOI: 10.1016/j.ejvs.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/01/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The main aim of this study was to evaluate the effect of remote ischaemic preconditioning (RIPC) on arterial stiffness in patients undergoing vascular surgery. METHODS This was a randomised, sham controlled, double blind, single centre study. Patients undergoing open abdominal aortic aneurysm repair, surgical lower limb revascularisation surgery or carotid endarterectomy were recruited. A RIPC or a sham procedure was performed, using a blood pressure cuff, along with preparation for anaesthesia. The RIPC protocol consisting of four cycles of 5 min of ischaemia, followed by 5 min of reperfusion was applied. Arterial stiffness and haemodynamic parameters were measured pre-operatively and 20-28 h after surgery. Two primary outcomes were selected: augmentation index and pulse wave velocity. RESULTS Ninety-eight patients were randomised. After dropouts 44 and 46 patients were included in the RIPC and sham groups, respectively. Both groups were comparable. There were no statistically significant differences in augmentation index (p = .8), augmentation index corrected for heart rate of 75 beats per minute (p = .8), pulse wave velocity (p = .7), large artery elasticity indices (p = .8), small artery elasticity indices (p = .6), or mean arterial pressure (p = .7) changes between the RIPC and sham groups. There occurred statistically significant (p ≤ .01) improvement in augmentation index (-5.8% vs. -5.5%), augmentation index corrected for a heart rate of 75 beats per minute (-2.5% vs. -2%), small artery elasticity indices (0.7 mL/mmHg × 100 vs. 0.9 mL/mmHg × 100), and mean arterial pressure post-operatively in both the RIPC and the sham groups (change median values in RIPC and sham groups, respectively). CONCLUSIONS RIPC had no significant effect on arterial stiffness, but there was significant improvement in arterial stiffness after surgery in both groups. Arterial stiffness and haemodynamics may be influenced by surgery or anaesthesia or oxidative stress or all factors combined. Further studies are needed to clarify these findings. CLINICALTRIALS.GOV: NCT02689414.
Collapse
Affiliation(s)
- Teele Kepler
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Karl Kuusik
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia; Department of Cardiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Urmas Lepner
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Tartu University Hospital, Estonia
| | - Joel Starkopf
- Department of Anaesthesiology and Intensive Care, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Tartu University Hospital, Estonia
| | - Mihkel Zilmer
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia; Tartu University Hospital, Estonia
| | - Jaan Eha
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Tartu University Hospital, Estonia
| | - Jüri Lieberg
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Tartu University Hospital, Estonia
| | - Mare Vähi
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Jaak Kals
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia; Tartu University Hospital, Estonia
| |
Collapse
|
19
|
Tsibulnikov SY, Maslov LN, Gorbunov AS, Voronkov NS, Boshchenko AA, Popov SV, Prokudina ES, Singh N, Downey JM. A Review of Humoral Factors in Remote Preconditioning of the Heart. J Cardiovasc Pharmacol Ther 2019; 24:403-421. [PMID: 31035796 DOI: 10.1177/1074248419841632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase β, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.
Collapse
Affiliation(s)
- Sergey Y Tsibulnikov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Leonid N Maslov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alexander S Gorbunov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nikita S Voronkov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alla A Boshchenko
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Sergey V Popov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Ekaterina S Prokudina
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nirmal Singh
- 2 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - James M Downey
- 3 Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|