1
|
Zhao X, Shi Y, Yang M, Sun L, Fu Y, Gao G, Ma T, Li G. Barnacle-inspired and polyphenol-assisted modification of bacterial cellulose-based wound dressings for promoting infectious wound healing. Int J Biol Macromol 2024; 279:135291. [PMID: 39233174 DOI: 10.1016/j.ijbiomac.2024.135291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Bacterial cellulose (BC) is an ideal candidate for wound dressings due to its natural origin, exceptional water-holding capacity, pliability, biocompatibility, and high absorption capability. However, the lack of essential antimicrobial activity limits its biomedical applications. This study reported BC-based wound dressings containing silk fibroin protein (SF), offering the potential for biomimetic properties, and (-)-epigallocatechin-3-gallate (EGCG) for polyphenol-assisted surface modification to promote infectious wound healing. Glycerol was used as the carbon source to promote the formation of an adhesive layer by facilitating the β-sheet folding of SF, and different concentrations of EGCG were employed to interact with SF through strong hydrogen bonding facilitated by the polyphenolic groups. The functionalized membrane exhibited outstanding water-holding capacity, swelling ratio, and degradation properties, along with enhanced hydrophilicity, adhesiveness, and a remarkable free radical scavenging ability. Both in vitro and in vivo experiments confirmed its potent bacteriostatic activity. The composite membrane displayed excellent biocompatibility, including cellular and hemocompatibility. Importantly, it effectively promoted wound healing in murine back infections. These findings suggest the significant feasibility of the innovative modification approach, and that functionalized membranes have great potential as wound-dressing materials for infection management in future clinical applications.
Collapse
Affiliation(s)
- Xueqing Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yucheng Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingbo Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liyuan Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yue Fu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ge Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| |
Collapse
|
2
|
Chen Z, Hong N, Yan C, Zheng Z, Xi J, Cao P. The potential of Paeonia lactiflora pall seeds oil as a pure natural cosmetics raw material: In Vitro findings. J Cosmet Dermatol 2024; 23:1875-1883. [PMID: 38450923 DOI: 10.1111/jocd.16204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND As a traditional Chinese herbal medicine, Paeonia lactiflora Pall is rich in various active ingredients such as polysaccharides and total flavonoids while having ornamental value. It has potential application value in the development of food and cosmetics. OBJECTIVE To study the in vitro efficacy of Paeonia lactiflora Pall seeds oil. METHODS Firstly, the levels of linolenic acid and linoleic acid in Paeonia lactiflora Pall seeds oil were quantified using gas chromatography. The impact of Paeonia lactiflora Pall seeds oil on the proliferation rate of B16F10 cells was assessed through the CCK-8 method, while the melanin content of B16F10 cells was determined using the sodium hydroxide lysis method. The inhibitory effects of Paeonia lactiflora Pall seeds oil on elastase, collagenase and hyaluronidase were evaluated by biochemical techniques in vitro. Lastly, the hen's egg chorioallantoic membrane test (HET-CAM) was conducted to confirm the absence of eye irritation caused by Paeonia lactiflora Pall seeds oil. RESULTS Paeonia lactiflora Pall seeds oil within a certain volume concentration range (0.5%-4%) had no effect on the proliferation of B16F10 cells. Paeonia lactiflora Pall seeds oil showed significant inhibition of elastase, collagenase and hyaluronidase. Notably, the highest concentration tested, 4% Paeonia lactiflora Pall seed oil, yielded the most pronounced outcomes without causing any irritation. CONCLUSION A certain concentration of Paeonia lactiflora Pall seeds oil has a significant effect on decreasing the melanin content in B16F10 cells and inhibiting the activities of elastase, collagenase, and hyaluronidase, which can provide a reference for the development of pure natural cosmetics raw materials.
Collapse
Affiliation(s)
| | - Ni Hong
- Huzhou Jiaheng Industrial Co., Ltd., Huzhou, China
| | - Cui Yan
- Huzhou Jiaheng Industrial Co., Ltd., Huzhou, China
| | | | - Jie Xi
- Huzhou Jiaheng Industrial Co., Ltd., Huzhou, China
| | - Ping Cao
- Huzhou Jiaheng Industrial Co., Ltd., Huzhou, China
| |
Collapse
|
3
|
Huang Y, Cuan X, Zhu W, Yang X, Zhao Y, Sheng J, Zi C, Wang X. An EGCG Derivative in Combination with Nimotuzumab for the Treatment of Wild-Type EGFR NSCLC. Int J Mol Sci 2023; 24:14012. [PMID: 37762316 PMCID: PMC10531337 DOI: 10.3390/ijms241814012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Inhibiting the tyrosine kinase activity of epidermal growth factor receptor (EGFR) using small-molecule tyrosine kinase inhibitors (TKIs) or monoclonal antibodies is often ineffective in treating cancers harboring wild-type EGFR. Given the fact that EGFR possesses a kinase-independent pro-survival function, more effective inhibition of EGFR-mediated signals is therefore necessary. In this study, we investigated the effects of using a combination of low-dose nimotuzumab and theasinensin A to evaluate whether the inhibitory effect of nimotuzumab on NCI-H441 cancer cells was enhanced. Here, theasinensin A, a novel epigallocatechin-3-gallate (EGCG) derivative, was identified and its potent anticancer activity against wild-type EGFR NSCLC was demonstrated in vitro; the anticancer activity was induced through degradation of EGFR. Mechanistic studies further revealed that theasinensin A bound directly to the EGFR extracellular domain, which decreased interaction with its ligand EGF in combination with nimotuzumab. Theasinensin A significantly promoted EGFR degradation and repressed downstream survival pathways in combination with nimotuzumab. Meanwhile, treatment with theasinensin A and nimotuzumab prevented xenograft growth, whereas the single agents had limited effect. Thus, the combination therapy of theasinensin A with nimotuzumab is a powerful candidate for treatment of wild-type EGFR cancers.
Collapse
Affiliation(s)
- Yanping Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Y.H.); (X.C.); (W.Z.); (X.Y.); (Y.Z.); (J.S.)
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xiangdan Cuan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Y.H.); (X.C.); (W.Z.); (X.Y.); (Y.Z.); (J.S.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwei Zhu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Y.H.); (X.C.); (W.Z.); (X.Y.); (Y.Z.); (J.S.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xingying Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Y.H.); (X.C.); (W.Z.); (X.Y.); (Y.Z.); (J.S.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yunli Zhao
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Y.H.); (X.C.); (W.Z.); (X.Y.); (Y.Z.); (J.S.)
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Y.H.); (X.C.); (W.Z.); (X.Y.); (Y.Z.); (J.S.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650201, China
| | - Chengting Zi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Y.H.); (X.C.); (W.Z.); (X.Y.); (Y.Z.); (J.S.)
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; (Y.H.); (X.C.); (W.Z.); (X.Y.); (Y.Z.); (J.S.)
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Messire G, Serreau R, Berteina-Raboin S. Antioxidant Effects of Catechins (EGCG), Andrographolide, and Curcuminoids Compounds for Skin Protection, Cosmetics, and Dermatological Uses: An Update. Antioxidants (Basel) 2023; 12:1317. [PMID: 37507856 PMCID: PMC10376544 DOI: 10.3390/antiox12071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Here we have chosen to highlight the main natural molecules extracted from Camellia sinensis, Andrographis paniculata, and Curcuma longa that may possess antioxidant activities of interest for skin protection. The molecules involved in the antioxidant process are, respectively, catechins derivatives, in particular, EGCG, andrographolide, and its derivatives, as well as various curcuminoids. These plants are generally used as beverages for Camellia sinensis (tea tree), as dietary supplements, or as spices. The molecules they contain are known for their diverse therapeutic activities, including anti-inflammatory, antimicrobial, anti-cancer, antidiabetic, and dermatological treatment. Their common antioxidant activities and therapeutic applications are widely documented, but their use in cosmetics is more recent. We will see that the use of pharmacomodulated derivatives, the addition of co-antioxidants, and the use of various formulations enable better skin penetration and greater ingredient stability. In this review, we will endeavor to compile the cosmetic uses of these natural molecules of interest and the various structural modulations reported with the aim of improving their bioavailability as well as establishing their different mechanisms of action.
Collapse
Affiliation(s)
- Gatien Messire
- Institut de Chimie Organique et Analytique ICOA, Université d'Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, 45067 Orléans CEDEX 02, France
| | - Raphaël Serreau
- Unité de Recherche PSYCOMADD, APHP Université Paris Saclay, Hôpital Paul-Brousse, 12 Avenue Paul Vaillant Couturier, 94804 Villejuif, France
- Addictologie EPSM Georges DAUMEZON, GHT Loiret, 1 Route de Chanteau, 45400 Fleury les Aubrais, France
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique ICOA, Université d'Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, 45067 Orléans CEDEX 02, France
| |
Collapse
|
5
|
Huang L, You L, Aziz N, Yu SH, Lee JS, Choung ES, Luong VD, Jeon MJ, Hur M, Lee S, Lee BH, Kim HG, Cho JY. Antiphotoaging and Skin-Protective Activities of Ardisia silvestris Ethanol Extract in Human Keratinocytes. PLANTS (BASEL, SWITZERLAND) 2023; 12:1167. [PMID: 36904025 PMCID: PMC10007040 DOI: 10.3390/plants12051167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Ardisia silvestris is a traditional medicinal herb used in Vietnam and several other countries. However, the skin-protective properties of A. silvestris ethanol extract (As-EE) have not been evaluated. Human keratinocytes form the outermost barrier of the skin and are the main target of ultraviolet (UV) radiation. UV exposure causes skin photoaging via the production of reactive oxygen species. Protection from photoaging is thus a key component of dermatological and cosmetic products. In this research, we found that As-EE can prevent UV-induced skin aging and cell death as well as enhance the barrier effect of the skin. First, the radical-scavenging ability of As-EE was checked using DPPH, ABTS, TPC, CUPRAC, and FRAP assays, and a 3-(4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay was used to examine cytotoxicity. Reporter gene assays were used to determine the doses that affect skin-barrier-related genes. A luciferase assay was used to identify possible transcription factors. The anti-photoaging mechanism of As-EE was investigated by determining correlated signaling pathways using immunoblotting analyses. As-EE had no harmful effects on HaCaT cells, according to our findings, and As-EE revealed moderate radical-scavenging ability. With high-performance liquid chromatography (HPLC) analysis, rutin was found to be one of the major components. In addition, As-EE enhanced the expression levels of hyaluronic acid synthase-1 and occludin in HaCaT cells. Moreover, As-EE dose-dependently up-regulated the production of occludin and transglutaminase-1 after suppression caused by UVB blocking the activator protein-1 signaling pathway, in particular, the extracellular response kinase and c-Jun N-terminal kinase. Our findings suggest that As-EE may have anti-photoaging effects by regulating mitogen-activated protein kinase, which is good news for the cosmetics and dermatology sectors.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Long You
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nur Aziz
- Pharmacy Program, Faculty of Science and Technology, Ma Chung University, Malang 65151, Indonesia
| | - Seung Hui Yu
- DanjoungBio, Co., Ltd., Wonju 26303, Republic of Korea
| | - Jong Sub Lee
- DanjoungBio, Co., Ltd., Wonju 26303, Republic of Korea
| | - Eui Su Choung
- DanjoungBio, Co., Ltd., Wonju 26303, Republic of Korea
| | - Van Dung Luong
- Department of Biology, Dalat University, 01 Phu Dong Thien Vuong, Dalat 66106, Vietnam
| | - Mi-Jeong Jeon
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Moonsuk Hur
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Mariadoss AVA, Subramanian SA, Kwon YM, Shin S, Kim SJ. Epigallocatechin gallate protects the hydrogen peroxide-induced cytotoxicity and oxidative stress in tenocytes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Oxidized tea polyphenol (OTP-3) targets EGFR synergistic nimotuzumab at inhibition of non-small cell lung tumor growth. Bioorg Chem 2022; 128:106084. [DOI: 10.1016/j.bioorg.2022.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022]
|
8
|
Noll C, Kandiah J, Moroy G, Gu Y, Dairou J, Janel N. Catechins as a Potential Dietary Supplementation in Prevention of Comorbidities Linked with Down Syndrome. Nutrients 2022; 14:2039. [PMID: 35631180 PMCID: PMC9147372 DOI: 10.3390/nu14102039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-derived polyphenols flavonoids are increasingly being recognized for their medicinal potential. These bioactive compounds derived from plants are gaining more interest in ameliorating adverse health risks because of their low toxicity and few side effects. Among them, therapeutic approaches demonstrated the efficacy of catechins, a major group of flavonoids, in reverting several aspects of Down syndrome, the most common genomic disorder that causes intellectual disability. Down syndrome is characterized by increased incidence of developing Alzheimer's disease, obesity, and subsequent metabolic disorders. In this focused review, we examine the main effects of catechins on comorbidities linked with Down syndrome. We also provide evidence of catechin effects on DYRK1A, a dosage-sensitive gene encoding a protein kinase involved in brain defects and metabolic disease associated with Down syndrome.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Janany Kandiah
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Gautier Moroy
- Unité de Biologie Fonctionnelle et Adaptative, INSERM CNRS, Université Paris Cité, F-75013 Paris, France;
| | - Yuchen Gu
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Cité, F-75006 Paris, France;
| | - Nathalie Janel
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| |
Collapse
|
9
|
Mehmood S, Maqsood M, Mahtab N, Khan MI, Sahar A, Zaib S, Gul S. Epigallocatechin gallate: Phytochemistry, bioavailability, utilization challenges, and strategies. J Food Biochem 2022; 46:e14189. [PMID: 35474461 DOI: 10.1111/jfbc.14189] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
Epigallocatechin gallate (EGCG), a green tea catechin, has gained the attention of current study due to its excellent health-promoting effects. It possesses anti-obesity, antimicrobial, anticancer, anti-inflammatory activities, and is under extensive investigation in functional foods for improvement. It is susceptible to lower stability, lesser bioavailability, and lower absorption rate due to various environmental, processing, formulations, and gastrointestinal conditions of the human body. Therefore, it is the foremost concern for the researchers to enhance its bioactivity and make it the most suitable therapeutic compound for its clinical applications. In the current review, factors affecting the bioavailability of EGCG and the possible strategies to overcome these issues are reviewed and discussed. This review summarizes structural modifications and delivery through nanoparticle-based approaches including nano-emulsions, encapsulations, and silica-based nanoparticles for effective use of EGCG in functional foods. Moreover, recent advances to enhance EGCG therapeutic efficacy by specifically targeting its molecules to increase its bioavailability and stability are also described. PRACTICAL APPLICATIONS: The main green tea constituent EGCG possesses several health-promoting effects making EGCG a potential therapeutic compound to cure ailments. However, its low stability and bioavailability render its uses in many disorders. Synthesizing EGCG prodrugs by structural modifications helps against its low bioavailability and stability by overcoming premature degradation and lower absorption rate. This review paper summarizes various strategies that benefit EGCG under different physiological conditions. The esterification, nanoparticle approaches, silica-based EGCG-NPs, and EGCG formulations serve as ideal EGCG modification strategies to deliver superior concentrations with lesser toxicity for its efficient penetration and absorption across cells both in vitro and in vivo. As a result of EGCG modifications, its bioactivities would be highly improved at lower doses. The protected or modified EGCG molecule would have enhanced potential effects and stability that would contribute to the clinical applications and expand its use in various food and cosmetic industries.
Collapse
Affiliation(s)
- Shomaila Mehmood
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, P. R. China
| | - Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Nazia Mahtab
- School of Resources and Environmental Engineering, Anhui University, Hefei, P. R. China
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Sania Zaib
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shehla Gul
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
10
|
Song C, Lorz LR, Lee J, Cho JY. In Vitro Photoprotective, Anti-Inflammatory, Moisturizing, and Antimelanogenic Effects of a Methanolic Extract of Chrysophyllum lucentifolium Cronquist. PLANTS 2021; 11:plants11010094. [PMID: 35009097 PMCID: PMC8747116 DOI: 10.3390/plants11010094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
UVB exposure causes DNA mutation and ROS generation, which lead to skin photoaging, skin wrinkling, skin sagging, and uneven skin pigmentation. ROS activate the NF-κB and MAPK signaling pathways leading to production of inflammatory molecules such as COX-2, collagen-degrading proteins such as matrix metalloproteinases (MMPs), and moisture-deficiency-related proteins such as hyaluronidases (HYALs). UVB exposure also induces irregular skin pigmentation though melanin overproduction, related to CREB transcription factor activity and transcription of melanogenesis genes. Here, we demonstrate that Chrysophyllum lucentifolium methanol extract (Cl-ME) has antioxidant activity; it dose-dependently decreased the expression of COX-2, MMP-1, MMP-9, HYAL-1, and HYAL-4 by downregulating the NF-κB (IKKα/β, IκBα) and MAPK (ERK, JNK, and p38) pathways and increased the expression of Col1a1, which encodes a protein important for maintaining skin elasticity. Cl-ME also showed promising antimelanogenic activity by decreasing the expression of CREB, a transcription factor, which in turn inhibited the expression of genes encoding tyrosinase, MITF, TYRP1, and TYRP2. In summary, a methanol extract of C. lucentifolium exhibited antiphotoaging and antimelanogenic activity and could be useful in the cosmeceutical industry.
Collapse
Affiliation(s)
- Chaoran Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (C.S.); (L.R.L.)
| | - Laura Rojas Lorz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (C.S.); (L.R.L.)
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (C.S.); (L.R.L.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (J.L.); (J.Y.C.); Tel.: +82-31-290-7862 (J.L.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (C.S.); (L.R.L.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (J.L.); (J.Y.C.); Tel.: +82-31-290-7862 (J.L.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
11
|
Chen M, Ji T, Hong J, Zheng C. Functionalization of sodium carboxymethylated yeast β‐glucan by epigallocatechin gallate: Antioxidant activity and color stability. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meiling Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education Jiangnan University Wuxi China
- School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Tianchen Ji
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education Jiangnan University Wuxi China
- School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Jianquan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education Jiangnan University Wuxi China
- School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Changge Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education Jiangnan University Wuxi China
- School of Chemical and Material Engineering Jiangnan University Wuxi China
| |
Collapse
|
12
|
Chiu YH, Wu YW, Hung JI, Chen MC. Epigallocatechin gallate/L-ascorbic acid-loaded poly-γ-glutamate microneedles with antioxidant, anti-inflammatory, and immunomodulatory effects for the treatment of atopic dermatitis. Acta Biomater 2021; 130:223-233. [PMID: 34087444 DOI: 10.1016/j.actbio.2021.05.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/28/2023]
Abstract
Epigallocatechin gallate (EGCG) is a potential therapeutic agent for treatment of atopic dermatitis (AD) due to its antioxidant and anti-inflammatory activities. However, inherent instability of EGCG greatly limits its bioavailability and clinical efficacy. In this study, we developed a poly-γ-glutamate (γ-PGA)-based microneedle (MN) formulation capable of maintaining EGCG's stability and efficiently delivering EGCG into the skin to ameliorate AD symptoms. The γ-PGA MN can not only protect EGCG from oxidation, but also serve as an immunomodulator to downregulate T helper type 2 (Th2)-type immune responses. Encapsulation of EGCG into the γ-PGA MN and utilization of L-ascorbic acid (AA) as a stabilizer preserved 95% of its structural stability and retained 93% of its initial antioxidant activity after 4 weeks of storage. Once-weekly administration of EGCG/AA-loaded MNs to an Nc/Nga mouse model of AD for 4 weeks significantly ameliorated skin lesions and epidermal hyperplasia by reducing serum IgE (from 12156 ± 1344 to 5555 ± 1362 ng/mL) and histamine levels (from 81 ± 18 to 40 ± 5 pg/mL) and inhibiting IFN-γ (from 0.10 ± 0.01 to 0.01 pg/mg total protein) and Th2-type cytokine production, when compared to the AD (no treatment) group (p < 0.05). Notably, once-weekly MN therapy was at least as effective as the daily topical application of an EGCG + AA solution but markedly reduced the administration frequency and required dose. These results show that EGCG/AA-loaded γ-PGA MNs may be a convenient and promising therapeutic option for AD treatment. STATEMENT OF SIGNIFICANCE: This study describes epigallocatechin gallate (EGCG)/L-ascorbic acid (AA)-loaded poly-γ-glutamate (γ-PGA) microneedles (MN) capable of providing antioxidant, anti-inflammatory, and immunomodulatory effects on inflamed skin for ameliorating atopic dermatitis (AD) symptoms in Nc/Nga mice. After skin insertion, the γ-PGA MN can be quickly dissolved in the skin and remain in the dermis for sustained release of encapsulated active ingredients for 6 days. We demonstrated that once-weekly MN therapy effectively alleviated skin lesions and modulated immune response to relieve Th2-polarized allergic response in mice. Once-weekly MN dosing regimen may provide patients with a more convenient, therapeutically equivalent option to daily topical dosing, and may increase compliance and long-term persistence with AD therapy.
Collapse
Affiliation(s)
- Yu-Hsiu Chiu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Wei Wu
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-I Hung
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Chin Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
13
|
Feng M, Zheng X, Wan J, Pan W, Xie X, Hu B, Wang Y, Wen H, Cai S. Research progress on the potential delaying skin aging effect and mechanism of tea for oral and external use. Food Funct 2021; 12:2814-2828. [PMID: 33666618 DOI: 10.1039/d0fo02921a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Skin aging is characterized by the gradual loss of elasticity, the formation of wrinkles and various color spots, the degradation of extracellular matrix proteins, and the structural changes of the dermis. With the increasingly prominent problems of environmental pollution, social pressure, ozone layer thinning and food safety, skin problems have become more and more complex. The skin can reflect the overall health of the body. Skincare products for external use alone cannot fundamentally solve skin problems; it needs to improve the overall health of the body. Based on the literature review in recent 20 years, this paper systematically reviewed the potential delaying effect of tea and its active ingredients on skin aging by oral and external use. Tea is the second-largest health drink after water. It is rich in tea polyphenols, l-theanine, tea pigments, caffeine, tea saponins, tea polysaccharides and other secondary metabolites. Tea and its active substances have whitening, nourishing, anti-wrinkle, removing spots and other skincare effects. Its mechanism of action is ultraviolet absorption, antioxidant, anti-inflammatory, inhibition of extracellular matrix aging, inhibiting the accumulation of melanin and toxic oxidation products, balancing intestinal and skin microorganisms, and improving mood and sleep, among other effects. At present, tea elements skincare products are deeply loved by consumers. This paper provides a scientific theoretical basis for tea-assisted beauty and the high-end application of tea in skincare products.
Collapse
Affiliation(s)
- Meiyan Feng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee TG, Kim Y, Jung W, Kim MK, Chong Y. An Amide Analog of (−)‐Epigallocatechin Gallate Shows Preferential Cytotoxicity toward
Triple‐Negative
Breast Cancer Cells. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tae Gum Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics CenterKonkuk University 120 Neungdong‐ro, Gwangjin‐gu, Seoul 05029 South Korea
| | - Yulim Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics CenterKonkuk University 120 Neungdong‐ro, Gwangjin‐gu, Seoul 05029 South Korea
| | - Woong Jung
- Department of Emergency MedicineKyung Hee University Hospital at Gangdong Seoul 134‐727 South Korea
| | - Mi Kyoung Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics CenterKonkuk University 120 Neungdong‐ro, Gwangjin‐gu, Seoul 05029 South Korea
| | - Youhoon Chong
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics CenterKonkuk University 120 Neungdong‐ro, Gwangjin‐gu, Seoul 05029 South Korea
| |
Collapse
|
15
|
Abstract
Background Catechins, which are polyphenol compounds found in many plants and are an important component of tea leaves, are strong anti-oxidants. Research Many studies seek to enhance the effects of catechins on the human body and boost their protective power against UV radiation. There are many examples of the positive anti-microbial, anti-viral, anti-inflammatory, anti-allergenic, and anti-cancer effects of catechins. Catechins increase the penetration and absorption of healthy functional foods and bio cosmetics into the body and the skin, thus improving their utility. High value-added anti-oxidant substances have been extracted from food and plant sludge, and experiments have shown that catechins are safe when applied to the human body. The stability of catechins is very important for their absorption into the human body and the effectiveness of their anti-oxidant properties. Conclusion Continued research on the strong anti-oxidant effects of catechins is expected to result in many advances in the food, cosmetics, and pharmaceutical industries.
Collapse
|
16
|
Qian Y, Yao Z, Wang X, Cheng Y, Fang Z, Yuan WE, Fan C, Ouyang Y. (-)-Epigallocatechin gallate-loaded polycaprolactone scaffolds fabricated using a 3D integrated moulding method alleviate immune stress and induce neurogenesis. Cell Prolif 2019; 53:e12730. [PMID: 31746040 PMCID: PMC6985678 DOI: 10.1111/cpr.12730] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives In peripheral neuropathy, the underlying mechanisms of nerve and muscle degeneration include chronic inflammation and oxidative stress in fibrotic tissues. (‐)‐Epigallocatechin gallate (EGCG) is a major, active component in green tea and may scavenge free radical oxygen and attenuate inflammation. Conservative treatments such as steroid injection only deal with early, asymptomatic, peripheral neuropathy. In contrast, neurolysis and nerve conduit implantation work effectively for treating advanced stages. Materials and methods An EGCG‐loaded polycaprolactone (PCL) porous scaffold was fabricated using an integrated moulding method. We evaluated proliferative, oxidative and inflammatory activity of rat Schwann cells (RSCs) and rat skeletal muscle cells (RSMCs) cultured on different scaffolds in vitro. In a rat radiation injury model, we assessed the morphological, electrophysiological and functional performance of regenerated sciatic nerves and gastrocnemius muscles, as well as oxidative stress and inflammation state. Results RSCs and RSMCs exhibited higher proliferative, anti‐oxidant and anti‐inflammatory states in an EGCG/PCL scaffold. In vivo studies showed improved nerve and muscle recovery in the EGCG/PCL group, with increased nerve myelination and muscle fibre proliferation and reduced macrophage infiltration, lipid peroxidation, inflammation and oxidative stress indicators. Conclusions The EGCG‐modified PCL porous nerve scaffold alleviates cellular oxidative stress and repairs peripheral nerve and muscle structure in rats. It attenuates oxidative stress and inflammation in vivo and may provide further insights into peripheral nerve repair in the future.
Collapse
Affiliation(s)
- Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhixiao Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuan Cheng
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Fang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
17
|
Anti-Wrinkling and Anti-Melanogenic Effect of Pradosia mutisii Methanol Extract. Int J Mol Sci 2019; 20:ijms20051043. [PMID: 30818884 PMCID: PMC6429126 DOI: 10.3390/ijms20051043] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023] Open
Abstract
Ultraviolet (UV) exposure causes skin photoaging leading to skin wrinkling and sagging via production of reactive oxygen species (ROS). For this reason, protection from photoaging is an important feature in cosmeceutical and dermatological products. Natural product-derived biomaterials are highly desired as future possible ingredients, because these biomaterials are often safe and effective. In this study, we aimed to characterize the skin protective activity of Pradosia mutisii, traditionally used to treat sunburn and erythema. We determined the free radical scavenging, anti-melanogenic, and moisturizing effects of a methanol extract of Pradosia mutisii (Pm-ME) in keratinocytes (HaCaT cells), melanocytes (B16F10 cells), and fibroblasts (human dermal fibroblasts (HDFs)) at non-cytotoxic concentrations. Pradosia mutisii methanol extract contains coumaric acid as a major component, and the extract exhibited protective activity against UVB- and H2O2-induced cytotoxicity. This extract also suppressed the expression of metalloproteinases (MMPs) and cyclooxygenase (COX)-2 in HaCaT cells. A reduction of Sirt-1 expression under UVB- and H2O2-treated conditions was recovered in HaCaT cells by Pm-ME. This extract displayed significant free radical scavenging activity according to the 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assay. The Pm-ME also upregulated the expression levels of hyaluronic acid synthase (HAS) and transglutaminase-1 (TGM-1) in HaCaT cells, indicating a putative moisturizing activity. Interestingly, the expression of collagen type 1 (Col1A1) gene and its promoter activity, as assessed by a reporter gene assay, were found to be increased in HDF and HEK293 cells. Similarly, Pm-ME helped recover collagen levels after UVB and H2O2 treatment in HDFs as well as decreased the synthesis and secretion of melanin from B16F10 melanoma cells, which may indicate a beneficial whitening cosmetic value. The p38 inhibitor SB203580 and the JNK inhibitor SP600125 suppressed MMP-9 and COX-2 expression in H2O2-treated HaCaT cells. Similarly, the ERK inhibitor U0126 inhibited HAS-2 in Pm-ME/H2O2-treated HaCaT cells. These findings suggested that inhibition of JNK and p38 and activation of ERK could be targeted by Pm-ME. Therefore, Pm-ME may exert anti-photoaging and anti-melanogenic properties via the regulation of mitogen-activated protein kinase, which could be beneficial in the cosmeceutical industry.
Collapse
|