1
|
Molecular Mechanisms and Health Benefits of Ghrelin: A Narrative Review. Nutrients 2022; 14:nu14194191. [PMID: 36235843 PMCID: PMC9572668 DOI: 10.3390/nu14194191] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
Ghrelin, an endogenous brain-gut peptide, is secreted in large quantities, mainly from the stomach, in humans and rodents. It can perform the biological function of activating the growth hormone secretagogue receptor (GHSR). Since its discovery in 1999, ample research has focused on promoting its effects on the human appetite and pleasure-reward eating. Extensive, in-depth studies have shown that ghrelin is widely secreted and distributed in tissues. Its role in neurohumoral regulation, such as metabolic homeostasis, inflammation, cardiovascular regulation, anxiety and depression, and advanced cancer cachexia, has attracted increasing attention. However, the effects and regulatory mechanisms of ghrelin on obesity, gastrointestinal (GI) inflammation, cardiovascular disease, stress regulation, cachexia treatment, and the prognosis of advanced cancer have not been fully summarized. This review summarizes ghrelin's numerous effects in participating in a variety of biochemical pathways and the clinical significance of ghrelin in the regulation of the homeostasis of organisms. In addition, potential mechanisms are also introduced.
Collapse
|
2
|
Ringuet MT, Furness JB, Furness SGB. G protein-coupled receptor interactions and modification of signalling involving the ghrelin receptor, GHSR1a. J Neuroendocrinol 2022; 34:e13077. [PMID: 34931385 DOI: 10.1111/jne.13077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/05/2021] [Indexed: 12/28/2022]
Abstract
The growth hormone secretagogue receptor 1a (GHSR1a) is intriguing because of its potential as a therapeutic target and its diverse molecular interactions. Initial studies of the receptor focused on the potential therapeutic ability for growth hormone (GH) release to reduce wasting in aging individuals, as well as food intake regulation for treatment of cachexia. Known roles of GHSR1a now extend to regulation of neurogenesis, learning and memory, gastrointestinal motility, glucose/lipid metabolism, the cardiovascular system, neuronal protection, motivational salience, and hedonic feeding. Ghrelin, the endogenous agonist of GHSR1a, is primarily located in the stomach and is absent from the central nervous system (CNS), including the spinal cord. However, ghrelin in the circulation does have access to a small number of CNS sites, including the arcuate nucleus, which is important in feeding control. At some sites, such as at somatotrophs, GHSR1a has high constitutive activity. Typically, ghrelin-dependent and constitutive GHSR1a activation occurs via Gαq/11 pathways. In vitro and in vivo data suggest that GHSR1a heterodimerises with multiple G protein-coupled receptors (GPCRs), including dopamine D1 and D2, serotonin 2C, orexin, oxytocin and melanocortin 3 receptors (MCR3), as well as the MCR3 accessory protein, MRAP2, providing possible mechanisms for its many physiological effects. In all cases, the receptor interaction changes downstream signalling and the responses to receptor agonists. This review discusses the signalling mechanisms of GHSR1a alone and in combination with other GPCRs, and explores the physiological consequences of GHSR1a coupling with other GPCRs.
Collapse
Affiliation(s)
- Mitchell Ty Ringuet
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - John Barton Furness
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | |
Collapse
|
3
|
Bukhari SNA. An insight into the multifunctional role of ghrelin and structure activity relationship studies of ghrelin receptor ligands with clinical trials. Eur J Med Chem 2022; 235:114308. [PMID: 35344905 DOI: 10.1016/j.ejmech.2022.114308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/06/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Ghrelin is a multifunctional gastrointestinal acylated peptide, primarily synthesized in the stomach and regulates the secretion of growth hormone and energy homeostasis. It plays a central role in modulating the diverse biological, physiological and pathological functions in vertebrates. The synthesis of ghrelin receptor ligands after the finding of growth hormone secretagogue developed from Met-enkephalin led to reveal the endogenous ligand ghrelin and the receptors. Subsequently, many peptides, small molecules and peptidomimetics focusing on the ghrelin receptor, GHS-R1a, were derived. In this review, the key features of ghrelin's structure, forms, its bio-physiological functions, pathological roles and therapeutic potential have been highlighted. A few peptidomimetics and pseudo peptide synthetic perspectives have also been discussed to make ghrelin receptor ligands, clinical trials and their success.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 2014, Saudi Arabia.
| |
Collapse
|
4
|
Giorgioni G, Del Bello F, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Advances in the Development of Nonpeptide Small Molecules Targeting Ghrelin Receptor. J Med Chem 2022; 65:3098-3118. [PMID: 35157454 PMCID: PMC8883476 DOI: 10.1021/acs.jmedchem.1c02191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ghrelin is an octanoylated peptide acting by the activation of the growth hormone secretagogue receptor, namely, GHS-R1a. The involvement of ghrelin in several physiological processes, including stimulation of food intake, gastric emptying, body energy balance, glucose homeostasis, reduction of insulin secretion, and lipogenesis validates the considerable interest in GHS-R1a as a promising target for the treatment of numerous disorders. Over the years, several GHS-R1a ligands have been identified and some of them have been extensively studied in clinical trials. The recently resolved structures of GHS-R1a bound to ghrelin or potent ligands have provided useful information for the design of new GHS-R1a drugs. This perspective is focused on the development of recent nonpeptide small molecules acting as GHS-R1a agonists, antagonists, and inverse agonists, bearing classical or new molecular scaffolds, as well as on radiolabeled GHS-R1a ligands developed for imaging. Moreover, the pharmacological effects of the most studied ligands have been discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - E Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - M V Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
5
|
Danila GM, Puiu M, Zamfir LG, Bala C. Early detection of cannabinoids in biological samples based on their affinity interaction with the growth hormone secretagogue receptor. Talanta 2022; 237:122905. [PMID: 34736642 DOI: 10.1016/j.talanta.2021.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Herein we report on the early detection of cannabinoids in urine samples according to their affinity profiles in competitive assays with labelled ghrelin (GHR). We have demonstrated for the first time that cannabidiol (CBD) and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (carboxy-THC) act as extracellular ligands for the growth hormone secretagogue receptor (GHS-R1a), strongly promoting the binding of ghrelin (GHR), the endogenous ligand of GHS-R1a. The affinity profiles of CBD and carboxy-THC are significantly different from the profiles of synthetic GHR mimetics such as CJC-1295 or [D-Arg1-D-Phe5-D-Trp7,9-Leu11]-Substance P peptides, which are the most common interferents; the cannabinoids promoted the GHR/GHS-R1a interaction, while the ghrelin mimetics acted rather as competitive inhibitors. The analysis of 1:4 diluted urine samples proved that the proposed method displays good linearity and sensitivity in the range of 5-30 ng/mL for both CBD and carboxy-THC, whereas GHR mimetics display no interference at concentrations up to 100 ng/mL. The results were validated by comparison with the gas chromatography tandem mass spectrometry reference method. CBD may exert the same promoting effect on the interaction of GHS-R1a with other GHR mimetics listed as performance-enhancing substances.
Collapse
Affiliation(s)
- George Madalin Danila
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 030018, Bucharest, Romania; Romanian Doping Control Laboratory, 022103, Bucharest, Romania
| | - Mihaela Puiu
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 030018, Bucharest, Romania
| | - Lucian-Gabriel Zamfir
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 030018, Bucharest, Romania; ICUB, University of Bucharest, 050107, Bucharest, Romania
| | - Camelia Bala
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 030018, Bucharest, Romania; Department of Analytical Chemistry, University of Bucharest, 030018, Bucharest, Romania.
| |
Collapse
|
6
|
Kovler ML, Gonzalez Salazar AJ, Fulton WB, Lu P, Yamaguchi Y, Zhou Q, Sampah M, Ishiyama A, Prindle T, Wang S, Jia H, Wipf P, Sodhi CP, Hackam DJ. Toll-like receptor 4-mediated enteric glia loss is critical for the development of necrotizing enterocolitis. Sci Transl Med 2021; 13:eabg3459. [PMID: 34550727 PMCID: PMC8859973 DOI: 10.1126/scitranslmed.abg3459] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease of premature infants, whose pathogenesis remains incompletely understood, although activation of the Gram-negative bacterial receptor Toll-like receptor 4 (TLR4) on the intestinal epithelium plays a critical role. Patients with NEC typically display gastrointestinal dysmotility before systemic disease is manifest, suggesting that dysmotility could drive NEC development. Both intestinal motility and inflammation are governed by the enteric nervous system, a network of enteric neurons and glia. We hypothesized here that enteric glia loss in the premature intestine could lead to dysmotility, exaggerated TLR4 signaling, and NEC development. We found that intestinal motility is reduced early in NEC in mice, preceding the onset of intestinal inflammation, whereas pharmacologic restoration of intestinal motility reduced NEC severity. Ileal samples from mouse, piglet, and human NEC revealed enteric glia depletion, and glia-deficient mice (Plp1ΔDTR, Sox10ΔDTR, and BdnfΔDTR) showed increased NEC severity compared with wild-type mice. Mice lacking TLR4 on enteric glia (Sox10-Tlr4ko) did not show NEC-induced enteric glia depletion and were protected from NEC. Mechanistically, brain-derived neurotrophic factor (BDNF) from enteric glia restrained TLR4 signaling on the intestine to prevent NEC. BDNF was reduced in mouse and human NEC, and BDNF administration reduced both TLR4 signaling and NEC severity in enteric glia–deficient mice. Last, we identified an agent (J11) that enhanced enteric glial BDNF release, inhibited intestinal TLR4, restored motility, and prevented NEC in mice. Thus, enteric glia loss might contribute to NEC through intestinal dysmotility and increased TLR4 activation, suggesting enteric glia therapies for this disorder.
Collapse
Affiliation(s)
- Mark L. Kovler
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| | - Andres J. Gonzalez Salazar
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| | - William B. Fulton
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| | - Peng Lu
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| | - Yukihiro Yamaguchi
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| | - Qinjie Zhou
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| | - Maame Sampah
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| | - Asuka Ishiyama
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| | - Thomas Prindle
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| | - Sanxia Wang
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| | - Hongpeng Jia
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Chhinder P. Sodhi
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| | - David J. Hackam
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine and the Johns Hopkins Children’s Center, Baltimore, MD 21287
| |
Collapse
|
7
|
Xiao X, Bi M, Jiao Q, Chen X, Du X, Jiang H. A new understanding of GHSR1a--independent of ghrelin activation. Ageing Res Rev 2020; 64:101187. [PMID: 33007437 DOI: 10.1016/j.arr.2020.101187] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone secretagogue receptor 1a (GHSR1a), a member of the G protein-coupled receptor (GPCR) family, is a functional receptor of ghrelin. The expression levels and activities of GHSR1a are affected by various factors. In past years, it has been found that the ghrelin-GHSR1a system can perform biological functions such as anti-inflammation, anti-apoptosis, and anti-oxidative stress. In addition to mediating the effect of ghrelin, GHSR1a also has abnormally high constitutive activity; that is, it can still transmit intracellular signals without activation of the ghrelin ligand. This constitutive activity affects brain functions, growth and development of the body; therefore, it has profound impacts on neurodegenerative diseases and some other age-related diseases. In addition, GHSR1a can also form homodimers or heterodimers with other GPCRs, affecting the release of neurotransmitters, appetite regulation, cell proliferation and insulin release. Therefore, further understanding of the constitutive activities and dimerization of GHSR1a will enable us to better clarify the characteristics of GHSR1a and provide more therapeutic targets for drug development. Here, we focus on the roles of GHSR1a in various biological functions and provide a comprehensive summary of the current research on GHSR1a to provide broader therapeutic prospects for age-related disease treatment.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Behavioural characterization of ghrelin ligands, anamorelin and HM01: Appetite and reward-motivated effects in rodents. Neuropharmacology 2020; 168:108011. [PMID: 32067989 DOI: 10.1016/j.neuropharm.2020.108011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
The ghrelinergic system has been steadily investigated as a therapeutic target in the treatment of metabolic disorders and modulation of appetite. While endogenous ghrelin activates the full complement of the growth hormone secretagogue receptor (GHSR-1a) pathways, synthetic GHSR-1a ligands display biased signalling and functional selectivity, which have a significant impact on the intended and indeed, unintended, therapeutic effects. The widespread expression of the GHSR-1a receptor in vivo also necessitates an imperative consideration of the biodistribution of GHSR-1a ligands. Here, we investigate anamorelin and HM01, two recently described synthetic GHSR-1a ligands which have shown promising effects on food intake in preclinical and clinical studies. We compare the downstream signalling pathways in cellular in vitro assays, including calcium mobilization, IP-one, internalization and β-arrestin recruitment assays. We describe a novel divergent activation of central reward circuitry by anamorelin and HM01 using c-Fos immunostaining as well as behavioural effects in food intake and reward paradigms. Interestingly, we found a paradoxical reduction in reward-related behaviour for anamorelin and HM01 treated animals in our chosen paradigms. The work highlights the critical importance to consider signalling bias in relation to future ghrelin-based therapies. In addition, central access of GHSR-1a ligands, particularly to reward areas of the brain, remains a crucial factor in eliciting potent appetite-stimulating effects. The precise characterization of downstream ghrelinergic signalling and biodistribution of novel GHSR-1a ligands will be decisive in their successful development and will allow predictive modelling and design of future synthetic ligands to combat metabolic and appetite disorders involving the ghrelinergic system. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
9
|
Danila GM, Puiu M, Zamfir LG, Bala C. Early Detection of Growth Hormone Secretagogue Receptor Antagonists Exploiting Their Atypical Behavior in Competitive Assays. Anal Chem 2019; 91:14812-14817. [PMID: 31702907 DOI: 10.1021/acs.analchem.9b03845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the proof-of-concept of a bioaffinity format designed for the early detection of growth hormone secretagogue receptor (GHS-R1a) antagonists in urine samples. We exploit here their atypical behavior in competitive experiments with labeled ghrelin (GHR), namely, the strong promoting effect on the GHR/GHS-R1a interaction at low molar ratios GHR/antagonist. The antagonists potentiate the GHR/GHS-R1a interaction, and they display the same effect on the interaction of GHS-R1a with other agonists listed as doping agents. The developed assay allows the estimation of affinity constants of ligand/receptor and antagonist/receptor binding and is amenable to optical, electrochemical, and mass-sensitive detection. The estimated affinity constants for GHR/GHS-R1a and antagonist/GHS-R1a in the absence of G proteins are in good agreement with recently reported data.
Collapse
Affiliation(s)
- George Madalin Danila
- Laboratory for Quality Control and Process Monitoring , University of Bucharest , 030018 Bucharest , Romania.,Romanian Doping Control Laboratory , 022103 Bucharest , Romania
| | - Mihaela Puiu
- Laboratory for Quality Control and Process Monitoring , University of Bucharest , 030018 Bucharest , Romania
| | - Lucian-Gabriel Zamfir
- Laboratory for Quality Control and Process Monitoring , University of Bucharest , 030018 Bucharest , Romania.,ICUB , University of Bucharest , 050107 Bucharest , Romania
| | - Camelia Bala
- Laboratory for Quality Control and Process Monitoring , University of Bucharest , 030018 Bucharest , Romania.,Department of Analytical Chemistry , University of Bucharest , 030018 Bucharest , Romania
| |
Collapse
|
10
|
Torres-Fuentes C, Golubeva AV, Zhdanov AV, Wallace S, Arboleya S, Papkovsky DB, El Aidy S, Ross P, Roy BL, Stanton C, Dinan TG, Cryan JF, Schellekens H. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB J 2019; 33:13546-13559. [DOI: 10.1096/fj.201901433r] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cristina Torres-Fuentes
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Shauna Wallace
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Silvia Arboleya
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | | | - Sahar El Aidy
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul Ross
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Harriet Schellekens
- Alimentary Pharmabiotic Centre (APC) Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|