1
|
Xu S, Chen J, Xu C, Xu Y, Xu L, Zhao M, Xu T, Cao Y, Li P, Han Z. 2-BFI protects against ischemic stroke by selectively acting on NR2B-containing NMDA receptors. Brain Res 2024; 1845:149284. [PMID: 39423961 DOI: 10.1016/j.brainres.2024.149284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND AND PURPOSE The intricate roles of NMDA receptors, specifically those containing the NR2A or NR2B subunit, in ischemic stroke pathology necessitate targeted therapeutic investigations. Building on our prior discovery showcasing the neuroprotective potential of 2-(benzofuran-2-yl)-2-imidazoline (2-BFI), an imidazoline I2 receptor ligand, in inhibiting NMDA receptor currents during ischemic stroke, this study aims to elucidate the specific impact of 2-BFI on NR2A- and NR2B-containing NMDARs. EXPERIMENTAL APPROACH Through whole-cell patch-clamp techniques, we observed an inhibition by 2-BFI on NR2A-containing NMDAR currents (IC50 = 238.6 μM) and NR2B-containing NMDAR currents (IC50 = 18.47 μM). Experiments with HEK293 cells expressing exogenous receptor subunits revealed a significantly higher affinity of 2-BFI towards NR2B-containing NMDARs. In vivo studies involved the co-administration of 2-BFI and the NR2A subunit antagonist NVP-AAM077 in rats subjected to transient middle cerebral artery occlusion (tMCAO). Key results 2-BFI exhibited a pronounced preference for inhibiting NR2B-containing NMDAR currents, leading to a notable mitigation of cerebral ischemic injury when administered in conjunction with NVP-AAM077 in the tMCAO rat model. Furthermore, alterations in the expression of downstream proteins specific to NR2B-containing NMDA receptors were observed, suggesting targeted molecular effects. Conclusion and implications This study unveils the neuroprotective potential of 2-BFI in ischemic stroke by selectively inhibiting NR2B-containing NMDA receptors. These findings lay the foundation for precise therapeutic strategies, showcasing the differential roles of NR2A and NR2B subunits and paving the way for advancements in targeted interventions for ischemic stroke treatment.
Collapse
Affiliation(s)
- Shasha Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Jiaou Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunfei Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ye Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meiqi Zhao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tong Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peijun Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhao Han
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Chen X, Wang J, Le A, Wang J, Li Z, Wang J, Wang W. Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cell Mol Neurobiol 2022; 42:621-646. [PMID: 33125600 PMCID: PMC11441267 DOI: 10.1007/s10571-020-00985-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Hemorrhagic transformation (HT) is a common complication after thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) in ischemic stroke. In this article, recent research progress of HT in vivo and in vitro studies was reviewed. We have discussed new potential mechanisms and possible experimental models of HT development, as well as possible biomarkers and treatment methods. Meanwhile, we compared and analyzed rodent models, large animal models and in vitro BBB models of HT, and the limitations of these models were discussed. The molecular mechanism of HT was investigated in terms of BBB disruption, rt-PA neurotoxicity and the effect of neuroinflammation, matrix metalloproteinases, reactive oxygen species. The clinical features to predict HT were represented including blood biomarkers and clinical factors. Recent progress in neuroprotective strategies to improve HT after stroke treated with rt-PA is outlined. Further efforts need to be made to reduce the risk of HT after rt-PA therapy and improve the clinical prognosis of patients with ischemic stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shanshan Sun
- Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tianyu Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Anh Le
- Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhanfei Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
3
|
Chen X, Sun W, Zhong P, Wu D. Colony-Stimulating Factors on Mobilizing CD34 + Cells and Improving Neurological Functions in Patients With Stroke: A Meta-Analysis and a Systematic Review. Front Pharmacol 2021; 12:704509. [PMID: 34366857 PMCID: PMC8339259 DOI: 10.3389/fphar.2021.704509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: CSF therapy is considered a promising therapeutic approach for stroke. We performed a meta-analysis to explore the safety and efficacy of CSF in published clinical stroke studies. Methods: We searched articles online and manually. Two reviewers selected studies independently, selecting data based on study quality, characteristics of intervention (administration time, observation time, type, dose, and injection approach of CSF), and the baseline characteristics of patients (age, sex, hypertension, diabetes, smoker, and lipids) were extracted. Main prognosis outcomes were measured as all-cause death in severe adverse events (SAE) and recurrent stroke in SAE. Secondary outcomes were measured as CD34+ cell counts in periphery blood at day 5, National Institutes of Health Stroke Scale (NIHSS), and Barthel index (BI), Side effects of CSF were taken as the indicator of safety. STATA13 software was used to perform the meta-analysis.Keywords: Stroke, Colony-stimulating factor, Meta-analysis, therapy, Neurological Diseases Results: This meta-analysis involved 485 patients from eight studies. Among them, 475 patients from seven studies were gauged SAE (all-cause death), 393 patients from six studies were checked SAE (recurrent stroke); 137 patients from three studies underwent CD34+ measurement, 389 patients from six studies were tested NIHSS and 307 patients from five studies accessed BI. Compared with the control group, both all-causes death (RR= 1.73, 95%CI= (0.61, 4.92), P=0.735, I2=0.0%) and recurrent stroke (RR= 0.43, 95%CI= (0.14, 1.32), P=0.214, I2=33.1%) present no statistical differences, indicating that the application of CSF does not statistically alter the prognosis of patients with stroke. The application of CSF effectively enhanced CD34+ cell counts in periphery blood at day 5 (SMD= 1.23, 95%CI= (0.54, 1.92), P=0.04, I2=69.0%) but did not statistically impact NIHSS (SMD= -0.40, 95%CI= (-0.93, 0.13), P ≤ 0.001, I2=79.7%) or BI (SMD= 0.04, 95%CI= (-0.38, 0.46), P=0.068, I2=54.3%). Conclusion: Our study consolidates the security of CSF administration for its exerting no effect on detrimental outcomes. It has proven to be effective in elevating CD34+ cell counts in periphery blood at day 5, indicating CSF may participate in stroke recovery, but its efficacy in stroke recovery remains detected.
Collapse
Affiliation(s)
- Xiuqi Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wenbo Sun
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ping Zhong
- Department of Neurology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Lian L, Zhang Y, Liu L, Yang L, Cai Y, Zhang J, Xu S. Neuroinflammation in Ischemic Stroke: Focus on MicroRNA-mediated Polarization of Microglia. Front Mol Neurosci 2021; 13:612439. [PMID: 33488360 PMCID: PMC7817943 DOI: 10.3389/fnmol.2020.612439] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke is one of the most common causes of death and disability worldwide. Neuroinflammation is a major pathological event involved in the process of ischemic injury and repair. In particular, microglia play a dual role in neuroinflammation. During the acute phase of stroke onset, M2 microglia are the dominant phenotype and exert protective effects on neuronal cells, whereas permanent M1 microglia contribute to prolonged inflammation and are detrimental to brain tissue. Emerging evidence indicates that microRNAs (miRNAs) may have regulatory effects on microglia-associated inflammation. Thus, we briefly reviewed the dynamic response of microglia after a stroke and assessed how specific miRNAs affect the behavior of reactive microglia. We concluded that miRNAs may be useful novel therapeutic targets to improve stroke outcomes and modulate neuroinflammation.
Collapse
Affiliation(s)
- Lu Lian
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Liu
- Binhai New Area Hospital of TCM. Tian Jin, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liji Yang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yichen Cai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
5
|
Diabetes Mellitus/Poststroke Hyperglycemia: a Detrimental Factor for tPA Thrombolytic Stroke Therapy. Transl Stroke Res 2020; 12:416-427. [PMID: 33140258 DOI: 10.1007/s12975-020-00872-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Intravenous administration of tissue-type plasminogen activator (IV tPA) therapy has long been considered a mainstay in ischemic stroke management. However, patients respond to IV tPA therapy unequally with some subsets of patients having worsened outcomes after treatment. In particular, diabetes mellitus (DM) is recognized as a clinically important vascular comorbidity that leads to lower recanalization rates and increased risks of hemorrhagic transformation (HT). In this short-review, we summarize the recent advances in understanding of the underlying mechanisms involved in post-IV tPA worsening of outcome in diabetic stroke. Potential pathologic factors that are related to the suboptimal tPA recanalization in diabetic stroke include higher plasma plasminogen activator inhibitor (PAI)-1 level, diabetic atherogenic vascular damage, glycation of the tPA receptor annexin A2, and alterations in fibrin clot density. While factors contributing to the exacerbation of HT in diabetic stroke include hyperglycemia, vascular oxidative stress, and inflammation, tPA neurovascular toxicity and imbalance in extracellular proteolysis are discussed. Besides, impaired collaterals in DM also compromise the efficacy of IV tPA therapy. Additionally, several tPA combination approaches developed from experimental studies that may help to optimize IV tPA therapy are also briefly summarized. In summary, more research efforts are needed to improve the safety and efficacy of IV tPA therapy in ischemic stroke patients with DM/poststroke hyperglycemia.
Collapse
|
6
|
Peyravian N, Dikici E, Deo S, Toborek M, Daunert S. Opioid antagonists as potential therapeutics for ischemic stroke. Prog Neurobiol 2019; 182:101679. [PMID: 31398359 PMCID: PMC6814577 DOI: 10.1016/j.pneurobio.2019.101679] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023]
Abstract
Chronic use of prescription opioids exacerbates risk and severity of ischemic stroke. Annually, 6 million people die from stroke worldwide and there are no neuroprotective or neurorestorative agents to improve stroke outcomes and promote recovery. Prescribed opioids such as morphine have been shown to alter tight junction protein expression, resulting in the disruption of the blood brain barrier (BBB), ultimately leading to stroke pathogenesis. Consequently, protection of the BBB has been proposed as a therapeutic strategy for ischemic stroke. This perspective addresses the deficiency in stroke pharmacological options and examines a novel application and repurposing of FDA-approved opioid antagonists as a prospective neuroprotective therapeutic strategy to minimize BBB damage, reduce stroke severity, and promote neural recovery. Future directions discuss potential drug design and delivery methods to enhance these novel therapeutic targets.
Collapse
Affiliation(s)
- Nadia Peyravian
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, USA; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, USA; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, USA; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, USA; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, USA.
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, USA; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, USA; University of Miami Clinical and Translational Science Institute, USA.
| |
Collapse
|
7
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
8
|
Kim JS. tPA Helpers in the Treatment of Acute Ischemic Stroke: Are They Ready for Clinical Use? J Stroke 2019; 21:160-174. [PMID: 31161761 PMCID: PMC6549064 DOI: 10.5853/jos.2019.00584] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Tissue plasminogen activator (tPA) is the only therapeutic agent approved to treat patients with acute ischemic stroke. The clinical benefits of tPA manifest when the agent is administered within 4.5 hours of stroke onset. However, tPA administration, especially delayed administration, is associated with increased intracranial hemorrhage (ICH), hemorrhagic transformation (HT), and mortality. In the ischemic brain, vascular remodeling factors are upregulated and microvascular structures are destabilized. These factors disrupt the blood brain barrier (BBB). Delayed recanalization of the vessels in the presence of relatively matured infarction appears to damage the BBB, resulting in HT or ICH, also known as reperfusion injury. Moreover, tPA itself activates matrix metalloproteases, further aggravating BBB disruption. Therefore, attenuation of edema, HT, or ICH after tPA treatment is an important therapeutic strategy that may enable clinicians to extend therapeutic time and increase the probability of excellent outcomes. Recently, numerous agents with various mechanisms have been developed to interfere with various steps of ischemia/ reperfusion injuries or BBB destabilization. These agents successfully reduce infarct volume and decrease the incidence of ICH and HT after delayed tPA treatment in various animal stroke models. However, only some have entered into clinical trials; the results have been intriguing yet unsatisfactory. In this narrative review, I describe such drugs and discuss the problems and future directions. These “tPA helpers” may be clinically used in the future to increase the efficacy of tPA in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Jong S Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Incontri Abraham D, Gonzales M, Ibarra A, Borlongan CV. Stand alone or join forces? Stem cell therapy for stroke. Expert Opin Biol Ther 2018; 19:25-33. [PMID: 30477353 DOI: 10.1080/14712598.2019.1551872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Stroke is a major cause of mortality and disability with a narrow therapeutic window. Stem cell therapy may enhance the stroke recovery. AREAS COVERE Regenerative medicine via stem cells stands as a novel therapy for stroke. In particular, bone marrow-derived mesenchymal stem cells (MSCs) have neuroprotective and anti-inflammatory properties that improve brain function after stroke. Here, we discuss the safety, efficacy, and mechanism of action underlying the therapeutic effects of bone marrow-derived MSCs. We also examine the discrepant transplant protocols between preclinical studies and clinical trials. Laboratory studies show the safety and efficacy of bone marrow-derived MSCs in stroke models. However, while safe, MSCs remain to be fully evaluated as effective in clinical trials. Furthermore, recognizing the multiple cell death processes associated with stroke, we next discuss the potential therapeutic benefits of a combination therapy. With preliminary results and on-going clinical trials, a careful assessment of dosing, timing, and delivery route regimens will further direct the future of stem cell therapy for neurological disorders, including stroke. EXPERT OPINION Bone marrow-derived MSCs appear to be the optimal stem cell source for stroke therapy. Optimizing dosing, timing, and delivery route should guide the clinical application of bone marrow-derived MSCs.
Collapse
Affiliation(s)
- Diego Incontri Abraham
- a Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA.,b Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud , Universidad Anáhuac México Campus Norte , Huixquilucan, Edo. de Mexico , México
| | - Melissa Gonzales
- a Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | - Antonio Ibarra
- b Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud , Universidad Anáhuac México Campus Norte , Huixquilucan, Edo. de Mexico , México.,c Faculty of Health Sciences , Proyecto CAMINA A.C , Ciudad de México , México
| | - Cesar V Borlongan
- a Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| |
Collapse
|