1
|
Li X, Chen X, Yang FY, Shu T, Jiang L, He B, Tang M, Li X, Fang D, Jose PA, Han Y, Yang Y, Zeng C. Effect of mitochondrial translocator protein TSPO on LPS-induced cardiac dysfunction. J Adv Res 2024:S2090-1232(24)00437-5. [PMID: 39389308 DOI: 10.1016/j.jare.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION Sepsis-induced cardiac dysfunction is one of the most serious complications of sepsis. The mitochondrial translocator protein (TSPO), a mitochondrial outer membrane protein, is widely used as a diagnostic marker of inflammation-related diseases and can also lead to the release of inflammatory components. However, whether TSPO has a therapeutic effect on sepsis-induced cardiac dysfunction is unclear. OBJECTIVES The aim of this study is to investigate the involvement of TSPO in the pathogenesis of sepsis-induced cardiac dysfunction and elucidate its underlying mechanism, as well as develop therapeutic strategies targeting TSPO for the prevention and treatment of sepsis-induced cardiac dysfunction. METHODS The sepsis-induced cardiac dysfunction model was established by intraperitoneal injection of lipopolysaccharide (LPS) in C57BL/6 mice (LPS-induced cardiac dysfunction, LICD). TSPO knockout mice were constructed,and the effects of TSPO was detected by survival rate, echocardiography, HE staining, mitochondrial electron microscopy, TUNEL staining. TSPO-binding proteins were identified by co-immunoprecipitation and mass spectrometry. The mechanisms underlying between TSPO and voltage-dependent anion channel (VDAC) was studied through western blot and immunofluorescence. Proteolysis-Targeting Chimeras (PROTAC) technology was used to construct TSPO-PROTAC molecules that can degrade TSPO. RESULTS Our present study found that LPS increased cardiac TSPO expression. Knockout of TSPO in C57BL/6 mice with LICD attenuated the cardiac pathology, mitochondrial dysfunction, and apoptosis of cardiomyocytes and significantly improved cardiac function and survival rate. Co-immunoprecipitation and mass spectrometry identified VDAC as a TSPO binding protein.Down-regulation of TSPO reduced PKA-mediated VDAC phosphorylation and VDAC oligomerization, ameliorated mitochondrial function, and reduced cardiomyocyte apoptosis. The study has clinical translational potential, because administration of TSPO-PROTAC to degrade TSPO improved cardiac function in mice with LICD. CONCLUSION This study elucidated the effect of TSPO in LICD, providing a new therapeutic strategy to down-regulate TSPO by administration of TSPO-PROTAC for the prevention and treatment of LICD.
Collapse
Affiliation(s)
- Xingyue Li
- School of Materials Science and Engineering,SouthwestJiaotong University, Chengdu Sichuan, PR China; Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Xiao Chen
- Department of Geriatrics, General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Feng-Yuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Tingting Shu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Lintao Jiang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Bo He
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Ming Tang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Xingbing Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Dandong Fang
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, PR China
| | - Pedro A Jose
- The George Washington University School of Medicine & Health Sciences
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China.
| | - Yongjian Yang
- School of Materials Science and Engineering,SouthwestJiaotong University, Chengdu Sichuan, PR China; Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University,Chongqing, PR China.
| |
Collapse
|
2
|
Knyzeliene A, MacAskill MG, Alcaide-Corral CJ, Morgan TEF, Henry MC, Lucatelli C, Pimlott SL, Sutherland A, Tavares AAS. [ 18F]LW223 has low non-displaceable binding in murine brain, enabling high sensitivity TSPO PET imaging. J Cereb Blood Flow Metab 2024; 44:397-406. [PMID: 37795635 PMCID: PMC10870961 DOI: 10.1177/0271678x231205661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023]
Abstract
Neuroinflammation is associated with a number of brain diseases, making it a common feature of cerebral pathology. Among the best-known biomarkers for neuroinflammation in Positron Emission Tomography (PET) research is the 18 kDa translocator protein (TSPO). This study aims to investigate the binding kinetics of a novel TSPO PET radiotracer, [18F]LW223, in mice and specifically assess its volume of non-displaceable binding (VND) in brain as well as investigate the use of simplified analysis approaches for quantification of [18F]LW223 PET data. Adult male mice were injected with [18F]LW223 and varying concentrations of LW223 (0.003-0.55 mg/kg) to estimate VND of [18F]LW223. Dynamic PET imaging with arterial input function studies and radiometabolite studies were conducted. Simplified quantification methods, standard uptake values (SUV) and apparent volume of distribution (VTapp), were investigated. [18F]LW223 had low VND in the brain (<10% of total binding) and low radiometabolism (∼15-20%). The 2-tissue compartment model provided the best fit for [18F]LW223 PET data, although its correlation with SUV90-120min or VTapp allowed for [18F]LW223 brain PET data quantification in healthy animals while using simpler experimental and analytical approaches. [18F]LW223 has the required properties to become a successful TSPO PET radiotracer.
Collapse
Affiliation(s)
- Agne Knyzeliene
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Mark G MacAskill
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Carlos J Alcaide-Corral
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Timaeus EF Morgan
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | | | | | - Sally L Pimlott
- West of Scotland PET Centre, Greater Glasgow and Clyde NHS Trust, Glasgow, UK
| | | | - Adriana AS Tavares
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Moras M, Hattab C, Gonzalez-Menendez P, Martino S, Larghero J, Le Van Kim C, Kinet S, Taylor N, Lefevre SD, Ostuni MA. Downregulation of Mitochondrial TSPO Inhibits Mitophagy and Reduces Enucleation during Human Terminal Erythropoiesis. Int J Mol Sci 2020; 21:ijms21239066. [PMID: 33260618 PMCID: PMC7730461 DOI: 10.3390/ijms21239066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Translocator protein (TSPO) and voltage dependent anion channels (VDAC) are two proteins forming a macromolecular complex in the outer mitochondrial membrane that is involved in pleiotropic functions. Specifically, these proteins were described to regulate the clearance of damaged mitochondria by selective mitophagy in non-erythroid immortalized cell lines. Although it is well established that erythroblast maturation in mammals depends on organelle clearance, less is known about mechanisms regulating this clearance throughout terminal erythropoiesis. Here, we studied the effect of TSPO1 downregulation and the action of Ro5-4864, a drug ligand known to bind to the TSPO/VDAC complex interface, in ex vivo human terminal erythropoiesis. We found that both treatments delay mitochondrial clearance, a process associated with reduced levels of the PINK1 protein, which is a key protein triggering canonical mitophagy. We also observed that TSPO1 downregulation blocks erythroblast maturation at the orthochromatic stage, decreases the enucleation rate, and increases cell death. Interestingly, TSPO1 downregulation does not modify reactive oxygen species (ROS) production nor intracellular adenosine triphosphate (ATP) levels. Ro5-4864 treatment recapitulates these phenotypes, strongly suggesting an active role of the TSPO/VDAC complex in selective mitophagy throughout human erythropoiesis. The present study links the function of the TSPO/VDAC complex to the PINK1/Parkin-dependent mitophagy induction during terminal erythropoiesis, leading to the proper completion of erythroid maturation.
Collapse
Affiliation(s)
- Martina Moras
- Inserm, BIGR, UMR_S1134, Université de Paris, F-75015 Paris, France; (M.M.); (C.H.); (S.M.); (C.L.V.K.); (S.D.L.)
- Institut National de Transfusion Sanguine, F-75015 Paris, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, F-34293 Montpellier, France; (P.G.-M.); (S.K.); (N.T.)
| | - Claude Hattab
- Inserm, BIGR, UMR_S1134, Université de Paris, F-75015 Paris, France; (M.M.); (C.H.); (S.M.); (C.L.V.K.); (S.D.L.)
- Institut National de Transfusion Sanguine, F-75015 Paris, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, F-34293 Montpellier, France; (P.G.-M.); (S.K.); (N.T.)
| | - Pedro Gonzalez-Menendez
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, F-34293 Montpellier, France; (P.G.-M.); (S.K.); (N.T.)
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France
| | - Suella Martino
- Inserm, BIGR, UMR_S1134, Université de Paris, F-75015 Paris, France; (M.M.); (C.H.); (S.M.); (C.L.V.K.); (S.D.L.)
- Institut National de Transfusion Sanguine, F-75015 Paris, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, F-34293 Montpellier, France; (P.G.-M.); (S.K.); (N.T.)
| | - Jerome Larghero
- Unité de Thérapie cellulaire, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France;
| | - Caroline Le Van Kim
- Inserm, BIGR, UMR_S1134, Université de Paris, F-75015 Paris, France; (M.M.); (C.H.); (S.M.); (C.L.V.K.); (S.D.L.)
- Institut National de Transfusion Sanguine, F-75015 Paris, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, F-34293 Montpellier, France; (P.G.-M.); (S.K.); (N.T.)
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, F-34293 Montpellier, France; (P.G.-M.); (S.K.); (N.T.)
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, F-34293 Montpellier, France; (P.G.-M.); (S.K.); (N.T.)
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sophie D. Lefevre
- Inserm, BIGR, UMR_S1134, Université de Paris, F-75015 Paris, France; (M.M.); (C.H.); (S.M.); (C.L.V.K.); (S.D.L.)
- Institut National de Transfusion Sanguine, F-75015 Paris, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, F-34293 Montpellier, France; (P.G.-M.); (S.K.); (N.T.)
| | - Mariano A. Ostuni
- Inserm, BIGR, UMR_S1134, Université de Paris, F-75015 Paris, France; (M.M.); (C.H.); (S.M.); (C.L.V.K.); (S.D.L.)
- Institut National de Transfusion Sanguine, F-75015 Paris, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, F-34293 Montpellier, France; (P.G.-M.); (S.K.); (N.T.)
- Correspondence: ; Tel.: +33‐1‐4449‐3135
| |
Collapse
|
4
|
Zeineh N, Denora N, Laquintana V, Franco M, Weizman A, Gavish M. Efficaciousness of Low Affinity Compared to High Affinity TSPO Ligands in the Inhibition of Hypoxic Mitochondrial Cellular Damage Induced by Cobalt Chloride in Human Lung H1299 Cells. Biomedicines 2020; 8:biomedicines8050106. [PMID: 32370132 PMCID: PMC7277862 DOI: 10.3390/biomedicines8050106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022] Open
Abstract
The 18 kDa translocator protein (TSPO) plays an important role in apoptotic cell death, including apoptosis induced by the hypoxia mimicking agent cobalt chloride (CoCl2). In this study, the protective effects of a high (CB86; Ki = 1.6 nM) and a low (CB204; Ki = 117.7 nM) affinity TSPO ligands were investigated in H1299 lung cancer cell line exposed to CoCl2. The lung cell line H1299 was chosen in the present study since they express TSPO and able to undergo programmed cell death. The examined cell death markers included: ATP synthase reversal, reactive oxygen species (ROS) generation, mitochondrial membrane potential (Δψm) depolarization, cellular toxicity, and cellular viability. Pretreatment of the cells with the low affinity ligand CB204 at a concentration of 100 µM suppressed significantly (p < 0.05 for all) CoCl2-induced cellular cytotoxicity (100%), ATP synthase reversal (67%), ROS generation (82%), Δψm depolarization (100%), reduction in cellular density (97%), and also increased cell viability (85%). Furthermore, the low affinity TSPO ligand CB204, was harmless when given by itself at 100 µM. In contrast, the high affinity ligand (CB86) was significantly effective only in the prevention of CoCl2–induced ROS generation (39%, p < 0.001), and showed significant cytotoxic effects when given alone at 100 µM, as reflected in alterations in ADP/ATP ratio, oxidative stress, mitochondrial membrane potential depolarization and cell death. It appears that similar to previous studies on brain-derived cells, the relatively low affinity for the TSPO target enhances the potency of TSPO ligands in the protection from hypoxic cell death. Moreover, the high affinity TSPO ligand CB86, but not the low affinity ligand CB204, was lethal to the lung cells at high concentration (100 µM). The low affinity TSPO ligand CB204 may be a candidate for the treatment of pulmonary diseases related to hypoxia, such as pulmonary ischemia and chronic obstructive pulmonary disease COPD.
Collapse
Affiliation(s)
- Nidal Zeineh
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel;
| | - Nunzio Denora
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (N.D.); (V.L.); (M.F.)
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (N.D.); (V.L.); (M.F.)
| | - Massimo Franco
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (N.D.); (V.L.); (M.F.)
| | - Abraham Weizman
- Research Unit at Geha Mental Health Center and Laboratory of Biological Psychiatry at Felsenstein Medical Research Center, Petah Tikva 4910002, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moshe Gavish
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel;
- Correspondence: ; Tel.: +972-4829-5275; Fax: +972-4829-5330
| |
Collapse
|
5
|
Leal Denis MF, Lefevre SD, Alvarez CL, Lauri N, Enrique N, Rinaldi DE, Gonzalez-Lebrero R, Vecchio LE, Espelt MV, Stringa P, Muñoz-Garay C, Milesi V, Ostuni MA, Herlax V, Schwarzbaum PJ. Regulation of extracellular ATP of human erythrocytes treated with α-hemolysin. Effects of cell volume, morphology, rheology and hemolysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:896-915. [PMID: 30726708 DOI: 10.1016/j.bbamcr.2019.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/10/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
Alpha-hemolysin (HlyA) of uropathogenic strains of Escherichia coli irreversibly binds to human erythrocytes (RBCs) and triggers activation of ATP release and metabolic changes ultimately leading to hemolysis. We studied the regulation of extracellular ATP (ATPe) of RBCs exposed to HlyA. Luminometry was used to assess ATP release and ATPe hydrolysis, whereas changes in cell volume and morphology were determined by electrical impedance, ektacytometry and aggregometry. Exposure of RBCs to HlyA induced a strong increase of [ATPe] (3-36-fold) and hemolysis (1-44-fold), partially compensated by [ATPe] hydrolysis by ectoATPases and intracellular ATPases released by dead cells. Carbenoxolone, a pannexin 1 inhibitor, partially inhibited ATP release (43-67%). The un-acylated toxin ProHlyA and the deletion analog HlyA∆914-936 were unable to induce ATP release or hemolysis. For HlyA treated RBCs, a data driven mathematical model showed that simultaneous lytic and non-lytic release mainly governed ATPe kinetics, while ATPe hydrolysis became important after prolonged toxin exposure. HlyA induced a 1.5-fold swelling, while blocking this swelling reduced ATP release by 77%. Blocking ATPe activation of purinergic P2X receptors reduced swelling by 60-80%. HlyA-RBCs showed an acute 1.3-2.2-fold increase of Ca2+i, increased crenation and externalization of phosphatidylserine. Perfusion of HlyA-RBCs through adhesion platforms showed strong adhesion to activated HMEC cells, followed by rapid detachment. HlyA exposed RBCs exhibited increased sphericity under osmotic stress, reduced elongation under shear stress, and very low aggregation in viscous media. Overall results showed that HlyA-RBCs displayed activated ATP release, high but weak adhesivity, low deformability and aggregability and high sphericity.
Collapse
Affiliation(s)
- M F Leal Denis
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica, Cátedra de Química Química Analítica y Fisicoquímica, Junín 956 Buenos Aires, Argentina
| | - S D Lefevre
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.; Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France
| | - C L Alvarez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160 Buenos Aires, Argentina
| | - N Lauri
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Superior, Junín 956 Buenos Aires, Argentina
| | - N Enrique
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Calle 47 y 115 La Plata, Argentina.; Universidad Nacional de la Plata, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Calle 47, Casco Urbano, La Plata, Argentina
| | - D E Rinaldi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956 Buenos Aires, Argentina
| | - R Gonzalez-Lebrero
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956 Buenos Aires, Argentina
| | - L E Vecchio
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Calle 47 y 115 La Plata, Argentina.; Universidad Nacional de la Plata, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Calle 47, Casco Urbano, La Plata, Argentina
| | - M V Espelt
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Superior, Junín 956 Buenos Aires, Argentina
| | - P Stringa
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Calle 47 y 115 La Plata, Argentina.; Universidad Favaloro, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB), Av. Entre Ríos 495, Buenos Aires, Argentina.; Universidad Nacional de La Plata, Laboratorio de Trasplante de Órganos y Tejidos, Facultad de Ciencias, Calle 60 y 120, La Plata, Argentina
| | - C Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad s/n, Cuernavaca, Mexico
| | - V Milesi
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Calle 47 y 115 La Plata, Argentina.; Universidad Nacional de la Plata, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Calle 47, Casco Urbano, La Plata, Argentina
| | - M A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.; Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France
| | - V Herlax
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina.; Universidad Nacional de La Plata, Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina
| | - P J Schwarzbaum
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Superior, Junín 956 Buenos Aires, Argentina..
| |
Collapse
|
6
|
Lauri N, Bazzi Z, Alvarez CL, Leal Denis MF, Schachter J, Herlax V, Ostuni MA, Schwarzbaum PJ. ATPe Dynamics in Protozoan Parasites. Adapt or Perish. Genes (Basel) 2018; 10:E16. [PMID: 30591699 PMCID: PMC6356682 DOI: 10.3390/genes10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
Collapse
Affiliation(s)
- Natalia Lauri
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Zaher Bazzi
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Cora L Alvarez
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Intendente Güiraldes, Buenos Aires 2160, Argentina.
| | - María F Leal Denis
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Chair of Analytical Chemistry and Physicochemistry, Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Julieta Schachter
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Vanesa Herlax
- Biochemistry Research Institute of La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Faculty of Medical Sciences, National University of La Plata, National Scientific and Technical Research Council, Av. 60 y Av. 120 La Plata, Argentina.
- National University of La Plata, Faculty of Medical Sciences, Av. 60 y Av. 120 La Plata, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Paris Diderot University, Sorbonne Paris Cité, University of La Réunion, University of Antilles, F-75015 Paris, France.
- National Institute of Blood Transfusion (INTS), Laboratory of Excellence GR-Ex, F-75015 Paris, France.
| | - Pablo J Schwarzbaum
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| |
Collapse
|