1
|
Yu J, Sciolino N, Breindel L, Lin Q, Burz DS, Shekhtman A. In Vivo Ribosome-Amplified MetaBOlism, RAMBO, Effect Observed by Real Time Pulse Chase, RTPC, NMR Spectroscopy. Biochemistry 2025. [PMID: 40420686 DOI: 10.1021/acs.biochem.5c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Quinary interactions between proteins and ribosomes play an important role in regulating biological activity through a phenomenon termed the Ribosome-Amplified MetaBOlism, RAMBO, effect. This effect has been documented in vitro but not in vivo. Real time pulse chase, RTPC, NMR spectroscopy, coupled with isotopic flux analysis in Escherichia coli was used to validate the RAMBO effect in vivo. The ribosomal-targeting antibiotic chloramphenicol was employed to disrupt the quinary structure of pyruvate kinase, the final enzyme in glycolysis. Kinetic flux profiling demonstrated that the in vitro deactivation of the RAMBO effect by chloramphenicol was also observed in vivo, thereby confirming the potential role of ribosomes in regulating glycolysis. The noninvasive modular design of the RTPC-NMR platform allows for high-resolution metabolic monitoring across different cell types, providing broad applicability for studying the real-time metabolic responses to external stimuli in living cells.
Collapse
Affiliation(s)
- Jianchao Yu
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Nicholas Sciolino
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Leonard Breindel
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Qishan Lin
- RNA Epitranscriptomics & Proteomics Resource, University at Albany, State University of New York, Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
2
|
Blechar J, de Jesus V, Fürtig B, Hengesbach M, Schwalbe H. Shine-Dalgarno Accessibility Governs Ribosome Binding to the Adenine Riboswitch. ACS Chem Biol 2024; 19:607-618. [PMID: 38412235 DOI: 10.1021/acschembio.3c00435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Translational riboswitches located in the 5' UTR of the messenger RNA (mRNA) regulate translation through variation of the accessibility of the ribosome binding site (RBS). These are the result of conformational changes in the riboswitch RNA governed by ligand binding. Here, we use a combination of single-molecule colocalization techniques (Single-Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS) and Single-Molecule Kinetic Analysis of Ribosome Binding (SiM-KARB)) and microscale thermophoresis (MST) to investigate the adenine-sensing riboswitch in Vibrio vulnificus, focusing on the changes of accessibility between the ligand-free and ligand-bound states. We show that both methods faithfully report on the accessibility of the RBS within the riboswitch and that both methods identify an increase in accessibility upon adenine binding. Expanding on the regulatory context, we show the impact of the ribosomal protein S1 on the unwinding of the RNA secondary structure, thereby favoring ribosome binding even for the apo state. The determined rate constants suggest that binding of the ribosome is faster than the time required to change from the ON state to the OFF state, a prerequisite for efficient regulation decision.
Collapse
Affiliation(s)
- Julius Blechar
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Katti SS, Igumenova TI. Protein-Cadmium Interactions in Crowded Biomolecular Environments Probed by In-cell and Lysate NMR Spectroscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565546. [PMID: 38405767 PMCID: PMC10888879 DOI: 10.1101/2023.11.03.565546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
One of the mechanisms by which toxic metal ions interfere with cellular functions is ionic mimicry, where they bind to protein sites in lieu of native metals Ca 2+ and Zn 2+ . The influence of crowded intracellular environments on these interactions is not well understood. Here, we demonstrate the application of in-cell and lysate NMR spectroscopy to obtain atomic-level information on how a potent environmental toxin cadmium interacts with its protein targets. The experiments, conducted in intact E. coli cells and their lysates, revealed that Cd 2+ can profoundly affect the quinary interactions of its protein partners, and can replace Zn 2+ in both labile and non-labile protein structural sites without significant perturbation of the membrane binding function. Surprisingly, in crowded molecular environments Cd 2+ can effectively target not only all-sulfur and mixed sulfur/nitrogen but also all-oxygen coordination sites. The sulfur-rich coordination environments show significant promise for bioremedial applications, as demonstrated by the ability of the designed protein scaffold α 3 DIV to sequester intracellular cadmium. Our data suggests that in-cell NMR spectroscopy is a powerful tool for probing interactions of toxic metal ions with their potential protein targets, and for the assessment of potency of sequestering agents.
Collapse
|
4
|
Vallina Estrada E, Zhang N, Wennerström H, Danielsson J, Oliveberg M. Diffusive intracellular interactions: On the role of protein net charge and functional adaptation. Curr Opin Struct Biol 2023; 81:102625. [PMID: 37331204 DOI: 10.1016/j.sbi.2023.102625] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
A striking feature of nucleic acids and lipid membranes is that they all carry net negative charge and so is true for the majority of intracellular proteins. It is suggested that the role of this negative charge is to assure a basal intermolecular repulsion that keeps the cytosolic content suitably 'fluid' for function. We focus in this review on the experimental, theoretical and genetic findings which serve to underpin this idea and the new questions they raise. Unlike the situation in test tubes, any functional protein-protein interaction in the cytosol is subject to competition from the densely crowded background, i.e. surrounding stickiness. At the nonspecific limit of this stickiness is the 'random' protein-protein association, maintaining profuse populations of transient and constantly interconverting complexes at physiological protein concentrations. The phenomenon is readily quantified in studies of the protein rotational diffusion, showing that the more net negatively charged a protein is the less it is retarded by clustering. It is further evident that this dynamic protein-protein interplay is under evolutionary control and finely tuned across organisms to maintain optimal physicochemical conditions for the cellular processes. The emerging picture is then that specific cellular function relies on close competition between numerous weak and strong interactions, and where all parts of the protein surfaces are involved. The outstanding challenge is now to decipher the very basics of this many-body system: how the detailed patterns of charged, polar and hydrophobic side chains not only control protein-protein interactions at close- and long-range but also the collective properties of the cellular interior as a whole.
Collapse
Affiliation(s)
- Eloy Vallina Estrada
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Nannan Zhang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Håkan Wennerström
- Division of Physical Chemistry, Department of Chemistry, Lund University, Box 124, 22100 Lund, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
5
|
Gerez JA, Prymaczok NC, Kadavath H, Ghosh D, Bütikofer M, Fleischmann Y, Güntert P, Riek R. Protein structure determination in human cells by in-cell NMR and a reporter system to optimize protein delivery or transexpression. Commun Biol 2022; 5:1322. [PMID: 36460747 PMCID: PMC9718737 DOI: 10.1038/s42003-022-04251-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Most experimental methods for structural biology proceed in vitro and therefore the contribution of the intracellular environment on protein structure and dynamics is absent. Studying proteins at atomic resolution in living mammalian cells has been elusive due to the lack of methodologies. In-cell nuclear magnetic resonance spectroscopy (in-cell NMR) is an emerging technique with the power to do so. Here, we improved current methods of in-cell NMR by the development of a reporter system that allows monitoring the delivery of exogenous proteins into mammalian cells, a process that we called here "transexpression". The reporter system was used to develop an efficient protocol for in-cell NMR which enables spectral acquisition with higher quality for both disordered and folded proteins. With this method, the 3D atomic resolution structure of the model protein GB1 in human cells was determined with a backbone root-mean-square deviation (RMSD) of 1.1 Å.
Collapse
Affiliation(s)
- Juan A Gerez
- Laboratory of Physical Chemistry, ETH Zürich, 8093, Zürich, Switzerland.
| | | | | | - Dhiman Ghosh
- Laboratory of Physical Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | | | | | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, 8093, Zürich, Switzerland
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, 192-0397, Tokyo, Japan
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
6
|
Leeb S, Yang F, Oliveberg M, Danielsson J. Connecting Longitudinal and Transverse Relaxation Rates in Live-Cell NMR. J Phys Chem B 2020; 124:10698-10707. [PMID: 33179918 PMCID: PMC7735724 DOI: 10.1021/acs.jpcb.0c08274] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Indexed: 12/26/2022]
Abstract
In the cytosolic environment, protein crowding and Brownian motions result in numerous transient encounters. Each such encounter event increases the apparent size of the interacting molecules, leading to slower rotational tumbling. The extent of transient protein complexes formed in live cells can conveniently be quantified by an apparent viscosity, based on NMR-detected spin-relaxation measurements, that is, the longitudinal (T1) and transverse (T2) relaxation. From combined analysis of three different proteins and surface mutations thereof, we find that T2 implies significantly higher apparent viscosity than T1. At first sight, the effect on T1 and T2 seems thus nonunifiable, consistent with previous reports on other proteins. We show here that the T1 and T2 deviation is actually not a inconsistency but an expected feature of a system with fast exchange between free monomers and transient complexes. In this case, the deviation is basically reconciled by a model with fast exchange between the free-tumbling reporter protein and a transient complex with a uniform 143 kDa partner. The analysis is then taken one step further by accounting for the fact that the cytosolic content is by no means uniform but comprises a wide range of molecular sizes. Integrating over the complete size distribution of the cytosolic interaction ensemble enables us to predict both T1 and T2 from a single binding model. The result yields a bound population for each protein variant and provides a quantification of the transient interactions. We finally extend the approach to obtain a correction term for the shape of a database-derived mass distribution of the interactome in the mammalian cytosol, in good accord with the existing data of the cellular composition.
Collapse
Affiliation(s)
- Sarah Leeb
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm 106 91, Sweden
| | - Fan Yang
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm 106 91, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm 106 91, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|