1
|
Fahad M, Tariq L, Li W, Wu L. MicroRNA gatekeepers: Orchestrating rhizospheric dynamics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:845-876. [PMID: 39981727 PMCID: PMC11951408 DOI: 10.1111/jipb.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
The rhizosphere plays a crucial role in plant growth and resilience to biotic and abiotic stresses, highlighting the complex communication between plants and their dynamic rhizosphere environment. Plants produce a wide range of signaling molecules that facilitate communication with various rhizosphere factors, yet our understanding of these mechanisms remains elusive. In addition to protein-coding genes, increasing evidence underscores the critical role of microRNAs (miRNAs), a class of non-coding single-stranded RNA molecules, in regulating plant growth, development, and responses to rhizosphere stresses under diverse biotic and abiotic factors. In this review, we explore the crosstalk between miRNAs and their target mRNAs, which influence the development of key plant structures shaped by the belowground environment. Moving forward, more focused studies are needed to clarify the functions and expression patterns of miRNAs, to uncover the common regulatory mechanisms that mediate plant tolerance to rhizosphere dynamics. Beyond that, we propose that using artificial miRNAs and manipulating the expression of miRNAs and their targets through overexpression or knockout/knockdown approaches could effectively investigate their roles in plant responses to rhizosphere stresses, offering significant potential for advancing crop engineering.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Yazhou Bay Seed Laboratory, Hainan InstituteZhejiang UniversitySanya572000China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhou310058China
| | - Wanchang Li
- Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan InstituteZhejiang UniversitySanya572000China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| |
Collapse
|
2
|
Li H, Yu J, Qin J, Zhao H, Zhang K, Ge W. Regulatory mechanisms of miR171d-SCL6 module in the rooting process of Acer rubrum L. PLANTA 2024; 260:109. [PMID: 39340535 DOI: 10.1007/s00425-024-04539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
MAIN CONCLUSION MiR171d and SCL6 are induced by the plant hormone auxin. MiR171d negatively regulates the expression of SCL6, thereby regulating the growth and development of plant adventitious roots. Under natural conditions, it is difficult to induce rooting in the process of propagating Acer rubrum L. via branches, which seriously limits its wide application in landscaping construction. In this study, the expression of Ar-miR171d was downregulated and the expression of ArSCL6 was upregulated after 300 mg/L indole-3-butyric acid (IBA) treatment. The transient interaction of Ar-miR171d and ArSCL6 in tobacco cells further confirmed their cleavage activity. Transgenic function verification confirmed that OE-Ar-miR171d inhibited adventitious root (AR) development, while OE-ArSCL6 promoted AR development. Tissue-specific expression verification of the ArSCL6 promoter demonstrated that it was specifically expressed in the plant root and leaf organs. Subcellular localization and transcriptional activation assays revealed that both ArSCL6 and ArbHLH089 were located in the nucleus and exhibited transcriptional activation activity. The interaction between the two was verified by bimolecular fluorescence complementarity (BIFC) experiments. These results help elucidate the regulatory mechanisms of the Ar-miR171d-ArSCL6 module during the propagation of A. rubrum and provide a molecular basis for the rooting of branches.
Collapse
Affiliation(s)
- Huiju Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| | - Jiayu Yu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| | - Jiaming Qin
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Hewen Zhao
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China.
| | - Wei Ge
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, China.
| |
Collapse
|
3
|
Luo Z, Zhang L, Hu W, Wang Y, Tao J, Jia Y, Miao R, Chen LS, Guo J. Excessive boron fertilization-induced toxicity is related to boron transport in field-grown pomelo trees. FRONTIERS IN PLANT SCIENCE 2024; 15:1438664. [PMID: 39319002 PMCID: PMC11420558 DOI: 10.3389/fpls.2024.1438664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Boron (B) is an essential micronutrient for plant growth and development; however, the process of B toxicity in citrus production is still poorly understood. We proposed a hypothesis that B toxicity in citrus trees is related to the characteristics of B transport from soil to leaf or fruit. For this, a field experiment was conducted for two treatments, control (B free or without B) and B fertilizer treatment (100 g Na2B4O7·10H2O plant-1), to investigate the effects on plant growth, nutrient uptake, fruit yield and quality, and B transport in 10-year-old pomelo trees [Citrus grandis (L.) Osbeck cv. Guanximiyou]. Our results showed that excess B fertilization directly led to B toxicity in pomelo trees by dramatically increasing soil total B and water-soluble B contents. B toxicity induced interveinal chlorosis in leaves and decreased leaf biomass and function, resulting in a decreased 45.3% fruit yield by reducing 30.6% fruit load and 21.4% single fruit weight. Also, B toxicity induced changes in mineral elements between leaf positions and fruit parts, in which the concentrations of B, potassium, and magnesium were increased while those of nitrogen and iron were decreased. Under B toxicity conditions, fruit quality parameters of total soluble solids (TSS), TSS/titratable acidity (TA), total soluble sugar, sucrose, pH, vitamin C, and total phenol contents decreased, which were regulated by the lower carbohydrate production in new leaves and the lower transport capacity in old leaves. Moreover, B toxicity significantly increased the transfer factor and bio-concentration factor of B in pomelo plants, with higher levels in leaf organs than in fruit organs. Taken together, excess B fertilization-induced B toxicity in pomelo trees, with induced growth inhibition and nutrient disorder, results in reduced fruit yield and quality, which are related to B transport from soil to organs. The findings of this study highlight the understanding of B toxicity in citrus plants and strengthen B management in pomelo production for high yield and high quality.
Collapse
Affiliation(s)
- Ziwei Luo
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijun Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Wenlang Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuwen Wang
- Forestry Science and Technology Test Center of Fujian Province, Zhangzhou, China
| | - Jingxia Tao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yamin Jia
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Guangxi University, Nanning, China
| | - Ruizhen Miao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Song Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiuxin Guo
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Li S, Yan L, Venuste M, Xu F, Shi L, White PJ, Wang X, Ding G. A critical review of plant adaptation to environmental boron stress: Uptake, utilization, and interplay with other abiotic and biotic factors. CHEMOSPHERE 2023; 338:139474. [PMID: 37442392 DOI: 10.1016/j.chemosphere.2023.139474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Boron (B) is an indispensable mineral nutrient for plants and is primarily taken up by roots mainly in the form of boric acid (H3BO3). Recently, research shows that B has a significant impact on plant growth and productivity due to its narrow range between deficiency and toxicity. Fertilization and other procedures to address B stress (deficiency and toxicity) in soils are generally expensive and time-consuming. Over the past 20 years, substantial studies have been conducted to investigate the mechanisms underlying B acquisition and the molecular regulation of B stress in plants. In this review, we discuss the effects of B stress on plant growth, physiology, and biochemistry, and finding on enhancing plant tolerance from the perspective of plant B uptake, transport, and utilization. We also refer to recent results demonstrating the interactions among B and other biological and abiotic factors, including nitrogen, phosphorus, aluminum, and microorganisms. Finally, emerging trends in this field are discussed.
Collapse
Affiliation(s)
- Shuang Li
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China.
| | - Munyaneza Venuste
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Fangsen Xu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Lei Shi
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, China.
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
5
|
Lv X, Tian S, Huang S, Wei J, Han D, Li J, Guo D, Zhou Y. Genome-wide identification of the longan R2R3-MYB gene family and its role in primary and lateral root. BMC PLANT BIOLOGY 2023; 23:448. [PMID: 37741992 PMCID: PMC10517564 DOI: 10.1186/s12870-023-04464-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
R2R3-MYB is an important transcription factor family that regulates plant growth and development. Root development directly affects the absorption of water and nutrients by plants. Therefore, to understand the regulatory role of R2R3-MYB transcription factor family in root development of longan, this study identified the R2R3-MYB gene family members at the genome-wide level, and analyzed their phylogenetic characteristics, physical and chemical properties, gene structure, chromosome location and tissue expression. The analysis identified 124 R2R3-MYB family members in the longan genome. Phylogenetic analysis divided these members into 22 subfamilies, and the members of the unified subfamily had similar motifs and gene structures. The result of qRT-PCR showed that expression levels of DlMYB33, DlMYB34, DlMYB59, and DlMYB77 were significantly higher in main roots than in lateral as opposed to those of DlMYB35, DlMYB69, DlMYB70, and DlMYB83, which were significantly lower. SapBase database prediction and miRNAs sequencing results showed that 34 longan miRNAs could cleave R2R3-MYB, including 17 novel miRNAs unique to longan. The qRT-PCR and subcellular localization experiments of DlMYB92 and DlMYB98 showed that DlMYB92 is a key factor that regulates transcription in the nucleus and participates in the regulation of longan lateral root development. Longan also has a conserved miRNA-MYB-lateral root development regulation mechanism. This study provides a reference for further research on the transcriptional regulation of the miRNA-R2R3-MYB module in the root development of longan.
Collapse
Affiliation(s)
- Xinmin Lv
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shichang Tian
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shilian Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junbin Wei
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dongmei Han
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianguang Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dongliang Guo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China.
| |
Collapse
|
6
|
Lou X, Hu Y, Ruan R, Jin Q. Resveratrol promotes mitochondrial energy metabolism in exercise-induced fatigued rats. Nutr Res Pract 2023; 17:660-669. [PMID: 37529270 PMCID: PMC10375326 DOI: 10.4162/nrp.2023.17.4.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES To investigate the effect and regulatory mechanism of resveratrol supplementation on the mitochondrial energy metabolism of rats with exercise-induced fatigue. MATERIALS/METHODS Forty-eight Sprague-Dawley male rats were divided randomly into a blank control group (C), resveratrol group (R), exercise group (E), and exercise and resveratrol group (ER), with 12 rats in each group. Group ER and group E performed 6-wk swimming training with 5% wt-bearing, 60 min each time, 6 days a wk. Group ER was given resveratrol 50 mg/kg by gavage one hour after exercise; group R was only given resveratrol 50 mg/kg by gavage; group C and group E were fed normally. The same volume of solvent was given by gavage every day. RESULTS Resveratrol supplementation could reduce the plasma blood urea nitrogen content, creatine kinase activity, and malondialdehyde content in the skeletal muscle, increase the total superoxide dismutase activity in the skeletal muscle, and improve the fatigue state. Resveratrol supplementation could improve the activities of Ca2+-Mg2+-ATPase, Na+-K+-ATPase, succinate dehydrogenase, and citrate synthase in the skeletal muscle. Furthermore, resveratrol supplementation could up-regulate the sirtuin 1 (SIRT1)-proliferator-activated receptor gamma coactivator-1α (PGC-1α)-nuclear respiratory factor 1 pathway. CONCLUSIONS Resveratrol supplementation could promote mitochondrial biosynthesis via the SIRT1/PGC-1α pathway, increase the activity of the mitochondrial energy metabolism-related enzymes, improve the antioxidant capacity of the body, and promote recovery from exercise-induced fatigue.
Collapse
Affiliation(s)
- Xujia Lou
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
| | - Yulong Hu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
| | - Rong Ruan
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
| | - Qiguan Jin
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
7
|
Pei LL, Zhang LL, Liu X, Jiang J. Role of microRNA miR171 in plant development. PeerJ 2023; 11:e15632. [PMID: 37456878 PMCID: PMC10340099 DOI: 10.7717/peerj.15632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNA with 19-24 nucleotides (nts) in length, which play an essential role in regulating gene expression at the post-transcriptional level. As one of the first miRNAs found in plants, miR171 is a typical class of conserved miRNAs. The miR171 sequences among different species are highly similar, and the vast majority of them have both "GAGCCG" and "CAAUAU" fragments. In addition to being involved in plant growth and development, hormone signaling and stress response, miR171 also plays multiple and important roles in plants through interactions with microbe and other small-RNAs. The miRNA functions by regulating the expression of target genes. Most of miR171's target genes are in the GRAS gene family, but also include some NSP, miRNAs, lncRNAs, and other genes. This review is intended to summarize recent updates on miR171 regarding its function in plant life and hopefully provide new ideas for understanding miR171 function and regulatory mechanisms.
Collapse
Affiliation(s)
- Ling Ling Pei
- College of Horticulture, Shenyang Agricultural University, Shenyang, Shenhe District, China
| | - Ling Ling Zhang
- College of Horticulture, Shenyang Agriculture University, Shenyang, Shenhe District, China
| | - Xin Liu
- Horticulture Department, Shenyang Agricultural University, Shenyang, Shenhe District, China
| | - Jing Jiang
- Horticulture Department, Shenyang Agricultural University, Shenyang, Shenhe District, China
| |
Collapse
|
8
|
Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp. PLANT, CELL & ENVIRONMENT 2023; 46:1749-1773. [PMID: 36942358 DOI: 10.1111/pce.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
Cotton (Gossypium spp.) is the most important fibre crop, with desirable characteristics preferred for textile production. Cotton fibre output relies heavily on nitrate as the most important source of inorganic nitrogen (N). However, nitrogen dynamics in extreme environments limit plant growth and lead to yield loss and pollution. Therefore, nitrogen use efficiency (NUE), which involves the utilisation of the 'right rate', 'right source', 'right time', and 'right place' (4Rs), is key for efficient N management. Recent omics techniques have genetically improved NUE in crops. We herein highlight the mechanisms of N uptake and assimilation in the vegetative and reproductive branches of the cotton plant while considering the known and unknown regulatory factors. The phylogenetic relationships among N transporters in four Gossypium spp. have been reviewed. Further, the N regulatory genes that participate in xylem transport and phloem loading are also discussed. In addition, the functions of microRNAs and transcription factors in modulating the expression of target N regulatory genes are highlighted. Overall, this review provides a detailed perspective on the complex N regulatory mechanism in cotton, which would accelerate the research toward improving NUE in crops.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
9
|
Bolaños L, Abreu I, Bonilla I, Camacho-Cristóbal JJ, Reguera M. What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation? PLANTS (BASEL, SWITZERLAND) 2023; 12:777. [PMID: 36840125 PMCID: PMC9963425 DOI: 10.3390/plants12040777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
On the eve of the 100th anniversary of Dr. Warington's discovery of boron (B) as a nutrient essential for higher plants, "boronists" have struggled to demonstrate a role beyond its structural function in cell walls dimerizing pectin molecules of rhamnogalacturonan II (RGII). In this regard, B deficiency has been associated with a plethora of symptoms in plants that include macroscopic symptoms like growth arrest and cell death and biochemical or molecular symptoms that include changes in cell wall pore size, apoplast acidification, or a steep ROS production that leads to an oxidative burst. Aiming to shed light on B functions in plant biology, we proposed here a unifying model integrating the current knowledge about B function(s) in plants to explain why B deficiency can cause such remarkable effects on plant growth and development, impacting crop productivity. In addition, based on recent experimental evidence that suggests the existence of different B ligands other than RGII in plant cells, namely glycolipids, and glycoproteins, we proposed an experimental pipeline to identify putative missing ligands and to determine how they would integrate into the above-mentioned model.
Collapse
Affiliation(s)
- Luis Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isidro Abreu
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ildefonso Bonilla
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan J. Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - María Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Lin B, Ma H, Zhang K, Cui J. Regulatory mechanisms and metabolic changes of miRNA during leaf color change in the bud mutation branches of Acer pictum subsp. mono. FRONTIERS IN PLANT SCIENCE 2023; 13:1047452. [PMID: 36714704 PMCID: PMC9879609 DOI: 10.3389/fpls.2022.1047452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Acer pictum subsp. mono is a colorful tree species with considerable ornamental and economic value. However, little is known about the metabolism and regulatory mechanism of leaf color change in A. p. subsp. mono. To reveal the molecular mechanism of leaf color change in A. p. subsp. mono, the present study examined the bud mutation branches and compared the metabolites of the red leaves (AR) of the bud mutation branches of A. p. subsp. mono with those of the green leaves (AG) of the wild-type branches. It was found that the chlorophyll and carotenoids content of the red leaves decreased significantly, while anthocyanins, and various antioxidant enzymes increased significantly compared with the green leaves. The glycosides cyanidin, pelargonidin, malvidin, petunidin, delphinidin, and peonidin were detected in AR by liquid chromatography-mass spectrometry. The cyanidin glycosides increased, and cyanidin 3-O-glycoside was significantly upregulated. We analyzed the transcriptome and small RNA of A. p. subsp. mono leaves and detected 4061 differentially expressed mRNAs and 116 differentially expressed miRNAs. Through miRNA-mRNA association analysis, five differentially expressed modules were found; one miRNA targeted three genes, and four miRNAs targeted a single gene. Among them, miR160b, miR6300, and miR396g were found to be the key miRNAs regulating stable anthocyanin accumulation in A. p. subsp. mono leaves. By revealing the physiological response of leaf color change and the molecular regulatory mechanism of the miRNA, this study provides new insight into the molecular regulatory mechanism of leaf color change, thereby offering a foundation for future studies.
Collapse
Affiliation(s)
- Baoli Lin
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - He Ma
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Laboratory of Urban and Rural Ecological Environment, Beijing University of Agriculture, Beijing, China
| | - Jinteng Cui
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Laboratory of Urban and Rural Ecological Environment, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
11
|
Zhang C, Shen J, Wang C, Wang Z, Guo L, Hou X. Characterization of PsmiR319 during flower development in early- and late-flowering tree peonies cultivars. PLANT SIGNALING & BEHAVIOR 2022; 17:2120303. [PMID: 36200538 PMCID: PMC9542857 DOI: 10.1080/15592324.2022.2120303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
The flowering period is the most important ornamental trait of tree peony, while industrial development of tree peony has been limited by short flowering period. miR319 plays an important regulatory role in plant flowering. In the current study, the expression characteristics and evolution of PsmiR319 in tree peony flowering was explored using 'Feng Dan' and 'Lian He', which are early-flowering and late-flowering varieties of tree peony, respectively. The structure, evolution, and target(s) of PsmiR319 were analyzed by bioinformatics. Evolution analysis showed that pre-PsmiR319 was distributed in 41 plant species, among which the length of the precursor sequence exhibited marked differences (between 52 and 308 bp). Pre-PsmiR319 of tree peony was located close to the corresponding sequences of Linum usitatissimum and Picea abies in the phylogenetic tree, and in addition, could form a typical hairpin structure including a mature body with a length of 20 bp located on the 3p arm and part of the loop sequence. The mature sequence of miR319 was highly conserved among different species. Target genes of PsmiR319 include MYB-related transcription factor in tree peony. Expression of PsmiR319, assayed by qRT-PCR, differed between 'Feng Dan' and 'Lian He' during different flower development periods. PsmiR319 and its target gene showed a negative expression regulation relationship during the periods of CE (color exposure), BS (blooming stage), IF (initial flowering), and HO (half opening) in the early-flowering 'Feng Dan', and the same in FB (Full blooming) periods of late-flowering 'Lian He'. Findings from this study provide a reference for further investigation into the mechanism of miR319 in the development of different varieties of tree peony.
Collapse
Affiliation(s)
- Chenjie Zhang
- College of Agriculture/Tree Peony, Henan University of Science and Technology, LuoyangChina
| | - Jiajia Shen
- College of Agriculture/Tree Peony, Henan University of Science and Technology, LuoyangChina
| | - Can Wang
- College of Agriculture/Tree Peony, Henan University of Science and Technology, LuoyangChina
| | - Zhanying Wang
- Peony Research Institute, Luoyang Academy of Agricultural and Forestry Sciences, LuoyangChina
| | - Lili Guo
- College of Agriculture/Tree Peony, Henan University of Science and Technology, LuoyangChina
| | - Xiaogai Hou
- College of Agriculture/Tree Peony, Henan University of Science and Technology, LuoyangChina
| |
Collapse
|
12
|
Xing Z, Huang T, Zhao K, Meng L, Song H, Zhang Z, Xu X, Liu S. Silencing of Sly-miR171d increased the expression of GRAS24 and enhanced postharvest chilling tolerance of tomato fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:1006940. [PMID: 36161008 PMCID: PMC9500411 DOI: 10.3389/fpls.2022.1006940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The role of Sly-miR171d on tomato fruit chilling injury (CI) was investigated. The results showed that silencing the endogenous Sly-miR171d effectively delayed the increase of CI and electrolyte leakage (EL) in tomato fruit, and maintained fruit firmness and quality. After low temperature storage, the expression of target gene GRAS24 increased in STTM-miR171d tomato fruit, the level of GA3 anabolism and the expression of CBF1, an important regulator of cold resistance, both increased in STTM-miR171d tomato fruit, indicated that silencing the Sly-miR171d can improve the resistance ability of postharvest tomato fruit to chilling tolerance.
Collapse
Affiliation(s)
- Zengting Xing
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Taishan Huang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Keyan Zhao
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Hongmiao Song
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiangbin Xu
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Songbai Liu
- School of Food Science and Engineering, Hainan University, Haikou, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| |
Collapse
|
13
|
Zhang F, Yang J, Zhang N, Wu J, Si H. Roles of microRNAs in abiotic stress response and characteristics regulation of plant. FRONTIERS IN PLANT SCIENCE 2022; 13:919243. [PMID: 36092392 PMCID: PMC9459240 DOI: 10.3389/fpls.2022.919243] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/08/2022] [Indexed: 05/27/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding endogenous small RNAs (long 20-24 nucleotides) that negatively regulate eukaryotes gene expression at post-transcriptional level via cleavage or/and translational inhibition of targeting mRNA. Based on the diverse roles of miRNA in regulating eukaryotes gene expression, research on the identification of miRNA target genes has been carried out, and a growing body of research has demonstrated that miRNAs act on target genes and are involved in various biological functions of plants. It has an important influence on plant growth and development, morphogenesis, and stress response. Recent case studies indicate that miRNA-mediated regulation pattern may improve agronomic properties and confer abiotic stress resistance of plants, so as to ensure sustainable agricultural production. In this regard, we focus on the recent updates on miRNAs and their targets involved in responding to abiotic stress including low temperature, high temperature, drought, soil salinity, and heavy metals, as well as plant-growing development. In particular, this review highlights the diverse functions of miRNAs on achieving the desirable agronomic traits in important crops. Herein, the main research strategies of miRNAs involved in abiotic stress resistance and crop traits improvement were summarized. Furthermore, the miRNA-related challenges and future perspectives of plants have been discussed. miRNA-based research lays the foundation for exploring miRNA regulatory mechanism, which aims to provide insights into a potential form of crop improvement and stress resistance breeding.
Collapse
Affiliation(s)
- Feiyan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Plant Genomics/Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics/Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
14
|
Yang Q, Li B, Rizwan HM, Sun K, Zeng J, Shi M, Guo T, Chen F. Genome-wide identification and comprehensive analyses of NAC transcription factor gene family and expression analysis under Fusarium kyushuense and drought stress conditions in Passiflora edulis. FRONTIERS IN PLANT SCIENCE 2022; 13:972734. [PMID: 36092439 PMCID: PMC9453495 DOI: 10.3389/fpls.2022.972734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 05/07/2023]
Abstract
The NAC gene family is one of the largest plant transcription factors (TFs) families and plays important roles in plant growth, development, metabolism, and biotic and abiotic stresses. However, NAC gene family has not been reported in passion fruit (Passiflora edulis). In this study, a total of 105 NAC genes were identified in the passion fruit genome and were unevenly distributed across all nine-passion fruit chromomere, with a maximum of 48 PeNAC genes on chromosome one. The physicochemical features of all 105 PeNAC genes varied including 120 to 3,052 amino acids, 3 to 8 conserved motifs, and 1 to 3 introns. The PeNAC genes were named (PeNAC001-PeNAC105) according to their chromosomal locations and phylogenetically grouped into 15 clades (NAC-a to NAC-o). Most PeNAC proteins were predicted to be localized in the nucleus. The cis-element analysis indicated the possible roles of PeNAC genes in plant growth, development, light, hormones, and stress responsiveness. Moreover, the PeNAC gene duplications including tandem (11 gene pairs) and segmental (12 gene pairs) were identified and subjected to purifying selection. All PeNAC proteins exhibited similar 3D structures, and a protein-protein interaction network analysis with known Arabidopsis proteins was predicted. Furthermore, 17 putative ped-miRNAs were identified to target 25 PeNAC genes. Potential TFs including ERF, BBR-BPC, Dof, and bZIP were identified in promoter region of all 105 PeNAC genes and visualized in a TF regulatory network. GO and KEGG annotation analysis exposed that PeNAC genes were related to different biological, molecular, and cellular terms. The qRT-PCR expression analysis discovered that most of the PeNAC genes including PeNAC001, PeNAC003, PeNAC008, PeNAC028, PeNAC033, PeNAC058, PeNAC063, and PeNAC077 were significantly upregulated under Fusarium kyushuense and drought stress conditions compared to controls. In conclusion, these findings lay the foundation for further functional studies of PeNAC genes to facilitate the genetic improvement of plants to stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Unravelling lncRNA mediated gene expression as potential mechanism for regulating secondary metabolism in Citrus limon. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
MicroRNA Mediated Plant Responses to Nutrient Stress. Int J Mol Sci 2022; 23:ijms23052562. [PMID: 35269700 PMCID: PMC8910084 DOI: 10.3390/ijms23052562] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/18/2023] Open
Abstract
To complete their life cycles, plants require several minerals that are found in soil. Plant growth and development can be affected by nutrient shortages or high nutrient availability. Several adaptations and evolutionary changes have enabled plants to cope with inappropriate growth conditions and low or high nutrient levels. MicroRNAs (miRNAs) have been recognized for transcript cleavage and translational reduction, and can be used for post-transcriptional regulation. Aside from regulating plant growth and development, miRNAs play a crucial role in regulating plant’s adaptations to adverse environmental conditions. Additionally, miRNAs are involved in plants’ sensory functions, nutrient uptake, long-distance root transport, and physiological functions related to nutrients. It may be possible to develop crops that can be cultivated in soils that are either deficient in nutrients or have extreme nutrient supplies by understanding how plant miRNAs are associated with nutrient stress. In this review, an overview is presented regarding recent advances in the understanding of plants’ responses to nitrogen, phosphorus, potassium, sulfur, copper, iron, boron, magnesium, manganese, zinc, and calcium deficiencies via miRNA regulation. We conclude with future research directions emphasizing the modification of crops for improving future food security.
Collapse
|
17
|
Huang J, Zhang L, Lin X, Gao Y, Zhang J, Huang W, Zhao D, Ferrarezi RS, Fan G, Chen L. CsiLAC4 modulates boron flow in Arabidopsis and Citrus via high-boron-dependent lignification of cell walls. THE NEW PHYTOLOGIST 2022; 233:1257-1273. [PMID: 34775618 PMCID: PMC9299972 DOI: 10.1111/nph.17861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
The mechanisms underlying plant tolerance to boron (B) excess are far from fully understood. Here we characterized the role of the miR397-CsiLAC4/CsiLAC17 (from Citrus sinensis) module in regulation of B flow. Live-cell imaging techniques were used in localization studies. A tobacco transient expression system tested modulations of CsiLAC4 and CsiLAC17 by miR397. Transgenic Arabidopsis were generated to analyze the biological functions of CsiLAC4 and CsiLAC17. CsiLAC4's role in xylem lignification was determined by mRNA hybridization and cytochemistry. In situ B distribution was analyzed by laser ablation inductively coupled plasma mass spectrometry. CsiLAC4 and CsiLAC17 are predominantly localized in the apoplast of tobacco epidermal cells. Overexpression of CsiLAC4 in Arabidopsis improves the plants' tolerance to boric acid excess by triggering high-B-dependent lignification of the vascular system's cell wall and reducing free B content in roots and shoots. In Citrus, CsiLAC4 is expressed explicitly in the xylem parenchyma and is modulated by B-responsive miR397. Upregulation of CsiLAC4 in Citrus results in lignification of the xylem cell walls, restricting B flow from xylem vessels to the phloem. CsiLAC4 contributes to plant tolerance to boric acid excess via high-B-dependent lignification of cell walls, which set up a 'physical barrier' preventing B flow.
Collapse
Affiliation(s)
- Jing‐Hao Huang
- Pomological InstituteFujian Academy of Agricultural SciencesFuzhou350013China
- Institute of Plant Nutritional Physiology and Molecular BiologyCollege of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Ling‐Yuan Zhang
- Fujian University of Traditional Chinese MedicineFuzhou350122China
| | - Xiong‐Jie Lin
- Pomological InstituteFujian Academy of Agricultural SciencesFuzhou350013China
| | - Yuan Gao
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Jiang Zhang
- Institute of Plant Nutritional Physiology and Molecular BiologyCollege of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Wei‐Lin Huang
- Pomological InstituteFujian Academy of Agricultural SciencesFuzhou350013China
| | - Daqiu Zhao
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225009China
| | | | - Guo‐Cheng Fan
- Pomological InstituteFujian Academy of Agricultural SciencesFuzhou350013China
- Institute of Plant ProtectionFujian Academy of Agricultural SciencesFuzhou350013China
| | - Li‐Song Chen
- Institute of Plant Nutritional Physiology and Molecular BiologyCollege of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou350002China
- Fujian Provincial Key Laboratory of Soil Environmental Health and RegulationCollege of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou350002China
| |
Collapse
|
18
|
Sharma SS, Kumar V, Dietz KJ. Emerging Trends in Metalloid-Dependent Signaling in Plants. TRENDS IN PLANT SCIENCE 2021; 26:452-471. [PMID: 33257259 DOI: 10.1016/j.tplants.2020.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Metalloids are semiconducting elements that constitute a small group in the periodic table of elements. Their occurrence in nature either poses an environmental threat or benefit to plants. The precise mechanisms or manner of crosstalk of metalloid interference and sensing remain open questions. Standard plant nutrient solutions contain the metalloid boron (B) as a micronutrient, while silicon (Si) is considered a beneficial element routinely supplied only to some plants such as grasses. By contrast, arsenic (As) is a severe environmental hazard to most organisms, including plants, while the less abundant metalloids germanium (Ge), antimony (Sb), and tellurium (Te) display variable degrees of toxicity. Here we review the molecular events and mechanisms that could explain the contrasting (or overlapping) action of metalloids on the cell and cell signaling.
Collapse
Affiliation(s)
- Shanti S Sharma
- Department of Botany, School of Life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Vijay Kumar
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany; Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany.
| |
Collapse
|
19
|
Dang T, Lavagi-Craddock I, Bodaghi S, Vidalakis G. Next-Generation Sequencing Identification and Characterization of MicroRNAs in Dwarfed Citrus Trees Infected With Citrus Dwarfing Viroid in High-Density Plantings. Front Microbiol 2021; 12:646273. [PMID: 33995303 PMCID: PMC8121382 DOI: 10.3389/fmicb.2021.646273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Citrus dwarfing viroid (CDVd) induces stunting on sweet orange trees [Citrus sinensis (L.) Osbeck], propagated on trifoliate orange rootstock [Citrus trifoliata (L.), syn. Poncirus trifoliata (L.) Raf.]. MicroRNAs (miRNAs) are a class of non-coding small RNAs (sRNAs) that play important roles in the regulation of tree gene expression. To identify miRNAs in dwarfed citrus trees, grown in high-density plantings, and their response to CDVd infection, sRNA next-generation sequencing was performed on CDVd-infected and non-infected controls. A total of 1,290 and 628 miRNAs were identified in stem and root tissues, respectively, and among those, 60 were conserved in each of these two tissue types. Three conserved miRNAs (csi-miR479, csi-miR171b, and csi-miR156) were significantly downregulated (adjusted p-value < 0.05) in the stems of CDVd-infected trees compared to the non-infected controls. The three stem downregulated miRNAs are known to be involved in various physiological and developmental processes some of which may be related to the characteristic dwarfed phenotype displayed by CDVd-infected C. sinensis on C. trifoliata rootstock field trees. Only one miRNA (csi-miR535) was significantly downregulated in CDVd-infected roots and it was predicted to target genes controlling a wide range of cellular functions. Reverse transcription quantitative polymerase chain reaction analysis performed on selected miRNA targets validated the negative correlation between the expression levels of these targets and their corresponding miRNAs in CDVd-infected trees. Our results indicate that CDVd-responsive plant miRNAs play a role in regulating important citrus growth and developmental processes that may participate in the cellular changes leading to the observed citrus dwarf phenotype.
Collapse
Affiliation(s)
| | | | | | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
20
|
Wang Y, Feng C, Zhai Z, Peng X, Wang Y, Sun Y, Li J, Shen X, Xiao Y, Zhu S, Huang X, Li T. The Apple microR171i-SCARECROW-LIKE PROTEINS26.1 Module Enhances Drought Stress Tolerance by Integrating Ascorbic Acid Metabolism. PLANT PHYSIOLOGY 2020; 184:194-211. [PMID: 32680976 PMCID: PMC7479918 DOI: 10.1104/pp.20.00476] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/07/2020] [Indexed: 05/17/2023]
Abstract
Drought stress severely restricts crop yield and quality. Small noncoding RNAs play critical roles in plant growth, development, and stress responses by regulating target gene expression, but their roles in drought stress tolerance in apple (Malus domestica) are poorly understood. Here, we identified various small noncoding RNAs and their targets from the wild apple species Malus sieversii via high-throughput sequencing and degradome analysis. Forty known microRNAs (miRNAs) and eight new small noncoding RNAs were differentially expressed in response to 2 or 4 h of drought stress treatment. We experimentally verified the expression patterns of five selected miRNAs and their targets. We established that one miRNA, mdm-miR171i, specifically targeted and degraded SCARECROW-LIKE PROTEINS26 1 (MsSCL26 1) transcripts. Both knockout of mdm-miR171i and overexpression of MsSCL26 1 improved drought stress tolerance in the cultivated apple line 'GL-3' by regulating the expression of antioxidant enzyme genes, especially that of MONODEHYDROASCORBATE REDUCTASE, which functions in metabolism under drought stress. Transient expression analysis demonstrated that MsSCL26.1 activates MsMDHAR transcription by positively regulating the activity of the P1 region in its promoter. Therefore, the miR171i-SCL26 1 module enhances drought stress tolerance in apple by regulating antioxidant gene expression and ascorbic acid metabolism.
Collapse
Affiliation(s)
- Yantao Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chen Feng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zefeng Zhai
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiang Peng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanyan Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yueting Sun
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jian Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaoshuai Shen
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yuqin Xiao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shengjiao Zhu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuewang Huang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Tianhong Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
González-Fontes A, Fujiwara T. Advances in Plant Boron. Int J Mol Sci 2020; 21:ijms21114107. [PMID: 32526846 PMCID: PMC7312592 DOI: 10.3390/ijms21114107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022] Open
Abstract
Although very recently, David H [...].
Collapse
Affiliation(s)
- Agustín González-Fontes
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, E-41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954348522
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan;
| |
Collapse
|
22
|
Pandey A, Khan MK, Hakki EE, Gezgin S, Hamurcu M. Combined Boron Toxicity and Salinity Stress-An Insight into Its Interaction in Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E364. [PMID: 31547605 PMCID: PMC6843824 DOI: 10.3390/plants8100364] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
The continuously changing environment has intensified the occurrence of abiotic stress conditions. Individually, boron (B) toxicity and salinity stress are well recognized as severe stress conditions for plants. However, their coexistence in arid and semi-arid agricultural regions has shown ambiguous effects on plant growth and development. Few studies have reported that combined boron toxicity and high salinity stress have more damaging effects on plant growth than individual B and salt stress, while other studies have highlighted less damaging effects of the combined stress. Hence, it is interesting to understand the positive interaction of this combined stress so that it can be effectively employed for the improvement of crops that generally show the negative effects of this combined stress. In this review, we discussed the possible processes that occur in plants in response to this combined stress condition. We highly suggest that the combined B and salinity stress condition should be considered as a novel stress condition by researchers; hence, we recommend the name "BorSal" for this combined boron toxicity and high salinity state in the soil. Membrane-bound activities, mobility of ions, water transport, pH changes, transpiration, photosynthesis, antioxidant activities, and different molecular transporters are involved in the effects of BorSal interaction in plants. The discussed mechanisms indicate that the BorSal stress state should be studied in light of the involved physiological and molecular processes that occur after B and salt interaction in plants.
Collapse
Affiliation(s)
- Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Mohd Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Erdogan Esref Hakki
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Sait Gezgin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey.
| |
Collapse
|
23
|
Singh K, Dardick C, Kumar Kundu J. RNAi-Mediated Resistance Against Viruses in Perennial Fruit Plants. PLANTS 2019; 8:plants8100359. [PMID: 31546695 PMCID: PMC6843808 DOI: 10.3390/plants8100359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/02/2022]
Abstract
Small RNAs (sRNAs) are 20–30-nucleotide-long, regulatory, noncoding RNAs that induce silencing of target genes at the transcriptional and posttranscriptional levels. They are key components for cellular functions during plant development, hormone signaling, and stress responses. Generated from the cleavage of double-stranded RNAs (dsRNAs) or RNAs with hairpin structures by Dicer-like proteins (DCLs), they are loaded onto Argonaute (AGO) protein complexes to induce gene silencing of their complementary targets by promoting messenger RNA (mRNA) cleavage or degradation, translation inhibition, DNA methylation, and/or histone modifications. This mechanism of regulating RNA activity, collectively referred to as RNA interference (RNAi), which is an evolutionarily conserved process in eukaryotes. Plant RNAi pathways play a fundamental role in plant immunity against viruses and have been exploited via genetic engineering to control disease. Plant viruses of RNA origin that contain double-stranded RNA are targeted by the RNA-silencing machinery to produce virus-derived small RNAs (vsRNAs). Some vsRNAs serve as an effector to repress host immunity by capturing host RNAi pathways. High-throughput sequencing (HTS) strategies have been used to identify endogenous sRNA profiles, the “sRNAome”, and analyze expression in various perennial plants. Therefore, the review examines the current knowledge of sRNAs in perennial plants and fruits, describes the development and implementation of RNA interference (RNAi) in providing resistance against economically important viruses, and explores sRNA targets that are important in regulating a variety of biological processes.
Collapse
Affiliation(s)
- Khushwant Singh
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague 161 06, Czech Republic.
| | - Chris Dardick
- United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV 25430, USA.
| | - Jiban Kumar Kundu
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague 161 06, Czech Republic.
| |
Collapse
|