1
|
Wang L, Yang W, Ran Y, Song H, Yan X, Guo J. An Improved Method for Extracting Rat Cerebrospinal Fluid with Repeatable Large-Scale Collection. Vet Sci 2025; 12:58. [PMID: 39852933 PMCID: PMC11769370 DOI: 10.3390/vetsci12010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
The aim of this study was to explore an improved method for extracting rat cerebrospinal fluid (CSF), observing the impact on animal health under conditions of large-scale CSF collection and evaluating the feasibility of repeated collections. A total of 20 rats were anesthetized and fixed in a stereotactic frame. A 26G scalp needle, combined with a 1 mL syringe, was used to puncture the atlanto-occipital membrane and collect approximately 170 μL of CSF. CSF was collected twice within 14 days. During the study, animals were monitored daily for food intake, body weight, and hematological parameters, and at the end of the study, histopathological examination was performed. The health of the animals remained good, and repeated CSF collections were feasible. The success rate of the procedure was 100%, with blood contamination in the CSF decreasing from 70% in the first collection to 35% in the second. This technique is convenient, accurate, and suitable for widespread applications.
Collapse
Affiliation(s)
- Limei Wang
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, TCM Non-Clinic Evaluation Branch of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
| | - Wei Yang
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, TCM Non-Clinic Evaluation Branch of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yanhong Ran
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, TCM Non-Clinic Evaluation Branch of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
| | - Hui Song
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, TCM Non-Clinic Evaluation Branch of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
| | - Xinxin Yan
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, TCM Non-Clinic Evaluation Branch of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
| | - Jianmin Guo
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, TCM Non-Clinic Evaluation Branch of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou 510990, China
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong 999077, China
| |
Collapse
|
2
|
Lu VM, Shah AH, González MM. The Potential of Liquorpheresis to Treat Leptomeningeal Disease. World Neurosurg 2024; 187:93-98. [PMID: 38636632 DOI: 10.1016/j.wneu.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Leptomeningeal disease (LMD) is a devastating sequela of many cancers, with an extremely poor prognosis. Barriers to improving outcomes are related to the inability of many traditional therapies to effectively reach the cerebrospinal fluid (CSF) space within the central nervous system. Liquorpheresis is an emerging treatment modality specific to CSF diseases, the primary mechanism of action of which is direct targeted filtration of CSF content by neurosurgical access. In this review, we highlight the principles of liquorpheresis and detail how LMD can be amenable to this treatment. Further, we summarize the current in vitro and in vivo evidence supporting liquorpheresis as a feasible method to treat LMD and other central nervous system diseases as well as describe its conceivable limitations.
Collapse
Affiliation(s)
- Victor M Lu
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA.
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Manuel Menéndez González
- Department of Medicine, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
3
|
Radoszkiewicz K, Bzinkowska A, Chodkowska M, Rybkowska P, Sypecka M, Zembrzuska-Kaska I, Sarnowska A. Deciphering the impact of cerebrospinal fluid on stem cell fate as a new mechanism to enhance clinical therapy development. Front Neurosci 2024; 17:1332751. [PMID: 38282622 PMCID: PMC10811009 DOI: 10.3389/fnins.2023.1332751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Neural stem cells (NSCs) hold a very significant promise as candidates for cell therapy due to their robust neuroprotective and regenerative properties. Preclinical studies using NSCs have shown enough encouraging results to perform deeper investigations into more potential clinical applications. Nevertheless, our knowledge regarding neurogenesis and its underlying mechanisms remains incomplete. To understand them better, it seems necessary to characterize all components of neural stem cell niche and discover their role in physiology and pathology. Using NSCs in vivo brings challenges including limited cell survival and still inadequate integration within host tissue. Identifying overlooked factors that might influence these outcomes becomes pivotal. In this review, we take a deeper examination of the influence of a fundamental element that is present in the brain, the cerebrospinal fluid (CSF), which still remains relatively unexplored. Its role in neurogenesis could be instrumental to help find novel therapeutic solutions for neurological disorders, eventually advancing our knowledge on central nervous system (CNS) regeneration and repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Dufwenberg MA, Garfinkel AR, Greenhill M, Garewal A, Larson MC. Cerebrospinal fluid flushing as a means of neuroprotection. Front Neurosci 2023; 17:1288790. [PMID: 38192514 PMCID: PMC10773678 DOI: 10.3389/fnins.2023.1288790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
Central nervous system (CNS) injury or disease states are often difficult to treat due to the closed system of the dura mater/blood-brain barrier and the bony skull and vertebrae. The closed system results in at least partial containment of any pro-inflammatory molecules, pathogens, or toxic byproducts in the case of brain or spinal cord lesions, which can result in a destructive feedback loop. Cervical-approach access techniques (lateral C1-C2, suboccipital and lateral atlanto-occipital space punctures) are less-common methods of cerebrospinal fluid (CSF) sampling due to the relative ease and safety of lumbar spinal taps. However, with improved image-guidance, these cervical-level CSF access points are still useful when there are certain contraindications and difficulties when attempting to sample the CSF via the typical lumbar spinal approach. With the advent of microcatheters and minimally invasive techniques, combined with body fluid filtration technology, the question arises: could dual microcatheters be introduced for inflow and outflow of purified or artificial CSF to break the destructive feedback loop and thus diminish CNS damage?. We hypothesize that intrathecal spinal catheters could be placed in 2 positions (e.g., via a cervical route and the typical lumbar spinal route) to allow for both an input and output to more effectively filter or "flush" the CSF. This could have broad implications in the treatment of strokes, traumatic brain or spinal cord injury, infections, autoimmune diseases, and even malignancies within the CNS-in short, any disease with abnormalities detectable in the CSF.
Collapse
Affiliation(s)
| | - Alec R. Garfinkel
- Department of Radiology, California Northstate University, Elk Grove, CA, United States
- HCA Florida Brandon Hospital, Brandon, FL, United States
| | - Mark Greenhill
- Department of Radiology, University of Arizona, Tucson, AZ, United States
| | - Armand Garewal
- Department of Radiology, University of California, Davis, Davis, CA, United States
| | - Michael Craig Larson
- Department of Radiology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
Menéndez González M. Mechanical filtration of the cerebrospinal fluid: procedures, systems, and applications. Expert Rev Med Devices 2023; 20:199-207. [PMID: 36799735 DOI: 10.1080/17434440.2023.2181695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
INTRODUCTION Mechanical methods aimed at the filtration of the cerebrospinal fluid (CSF) are a group of therapies that have been proposed to treat neurological conditions where pathogens are present in the CSF. Even though the industry of medical devices has not been very active in this field, there is a lack of systematization of the different systems and procedures that can be applied. AREAS COVERED First, we systematize the classification and definitions of procedures and systems for mechanical filtration of the CSF. Then, we made a literature review in search of clinical or preclinical studies where any system of mechanical CSF clearance was proposed or applied. EXPERT OPINION We found mechanical filtration of the CSF has been explored in subarachnoid hemorrhage, CNS infections (bacterial, viral, and fungal), meningeal carcinomatosis, multiple sclerosis, autoimmune encephalitis, and polyradiculomyelitis. Brain aging and neurodegenerative diseases are additional potential conditions of interest. While there is some preliminary positive evidence for many of these conditions, more advanced systems, detailed descriptions of procedures, and rigorous validations are needed to make these therapies a reality in the next decades.
Collapse
Affiliation(s)
- Manuel Menéndez González
- Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain.,Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Grupo de Investigación Clínica-Básica en Neurología, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
6
|
Salwierak-Głośna K, Piątek P, Domowicz M, Świderek-Matysiak M. Effect of Multiple Sclerosis Cerebrospinal Fluid and Oligodendroglia Cell Line Environment on Human Wharton's Jelly Mesenchymal Stem Cells Secretome. Int J Mol Sci 2022; 23:ijms23042177. [PMID: 35216294 PMCID: PMC8878514 DOI: 10.3390/ijms23042177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a neurological disorder of autoimmune aetiology. Experimental therapies with the use of mesenchymal stem cells (MSCs) have emerged as a response to the unmet need for new treatment options. The unique immunomodulatory features of stem cells obtained from Wharton’s jelly (WJ-MSCs) make them an interesting research and therapeutic model. Most WJ-MSCs transplants for multiple sclerosis use intrathecal administration. We studied the effect of cerebrospinal fluid (CSF) obtained from MS patients on the secretory activity of WJ-MSCs and broaden this observation with WJ-MSCs interactions with human oligodendroglia cell line (OLs). Analysis of the WJ-MSCs secretory activity with use of Bio-Plex Pro™ Human Cytokine confirmed significant and diverse immunomodulatory potential. Our data reveal rich WJ-MSCs secretome with markedly increased levels of IL-6, IL-8, IP-10 and MCP-1 synthesis and a favourable profile of growth factors. The addition of MS CSF to the WJ-MSCs culture caused depletion of most proteins measured, only IL-12, RANTES and GM-CSF levels were increased. Most cytokines and chemokines decreased their concentrations in WJ-MSCs co-cultured with OLs, only eotaxin and RANTES levels were slightly increased. These results emphasize the spectrum of the immunomodulatory properties of WJ-MSCs and show how those effects can be modulated depending on the transplantation milieu.
Collapse
Affiliation(s)
| | - Paweł Piątek
- Department of Neurology, Medical University of Lodz, 90-419 Lodz, Poland; (K.S.-G.); (P.P.); (M.D.)
- Department of Immunogenetics, Medical University of Lodz, 90-419 Lodz, Poland
| | - Małgorzata Domowicz
- Department of Neurology, Medical University of Lodz, 90-419 Lodz, Poland; (K.S.-G.); (P.P.); (M.D.)
| | - Mariola Świderek-Matysiak
- Department of Neurology, Medical University of Lodz, 90-419 Lodz, Poland; (K.S.-G.); (P.P.); (M.D.)
- Correspondence:
| |
Collapse
|
7
|
Benhamron S, Nitzan K, Valitsky M, Lax N, Karussis D, Kassis I, Rosenmann H. Cerebrospinal Fluid (CSF) Exchange Therapy with Artificial CSF Enriched with Mesenchymal Stem Cell Secretions Ameliorates Cognitive Deficits and Brain Pathology in Alzheimer's Disease Mice. J Alzheimers Dis 2021; 76:369-385. [PMID: 32474465 DOI: 10.3233/jad-191219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The high complexity of neurodegenerative diseases, including Alzheimer's disease (AD), and the lack of effective treatments point to the need for a broader therapeutic approach to target multiple components involved in the disease pathogenesis. OBJECTIVE To test the efficacy of 'cerebrospinal fluid (CSF) exchange therapy' in AD-mice. This novel therapeutic approach we recently proposed is based on the exchange of the endogenous pathogenic CSF with a new and healthy one by drainage of the endogenous CSF and its continuous replacement with artificial CSF (aCSF) enriched with secretions from human mesenchymal stem cells (MSCs). METHODS We treated AD-mice (amyloid-beta injected) with MSC secretions-enriched-aCSF using an intracerebroventricular CSF exchange procedure. Cognitive and histological analysis were performed. RESULTS We show that the MSC secretions enriched CSF exchange therapy improved cognitive performance, paralleled with increased neuronal counts (NeuN positive cells), reduced astrocytic burden (GFAP positive cells), and increased cell proliferation and neurogenesis (Ki67 positive cells and DCX positive cells) in the hippocampus. This beneficial effect was noted on days 5-10 following 3-consecutive daily exchange treatments (3 hours a day). A stronger effect was noted using a more prolonged CSF exchange protocol (3-consecutive daily exchange treatments with 3 additional treatments twice weekly), with cognitive follow-up performed as early as 2-3 days after treatment. Some increase in hippocampal cell proliferation, but no change in the other histological parameters, was noticed when performing CSF exchange therapy using unenriched aCSF relative to untreated AD-mice, yet smaller than with the enriched aCSF treatment. CONCLUSION These findings point to the therapeutic potential of the CSF exchange therapy using MSC secretions-enriched aCSF in AD, and might be applied to other neurodegenerative and dementia diseases.
Collapse
Affiliation(s)
- Sandrine Benhamron
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Keren Nitzan
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Michael Valitsky
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Neta Lax
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dimitrios Karussis
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ibrahim Kassis
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Hanna Rosenmann
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
8
|
Zhang Z, Sheng H, Liao L, Xu C, Zhang A, Yang Y, Zhao L, Duan L, Chen H, Zhang B. Mesenchymal Stem Cell-Conditioned Medium Improves Mitochondrial Dysfunction and Suppresses Apoptosis in Okadaic Acid-Treated SH-SY5Y Cells by Extracellular Vesicle Mitochondrial Transfer. J Alzheimers Dis 2020; 78:1161-1176. [PMID: 33104031 DOI: 10.3233/jad-200686] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mesenchymal stem cells-conditioned medium (MSC-CM) provides a promising cell-free therapy for Alzheimer's disease (AD) mainly due to the paracrine of MSCs, but the precise mechanisms remain unclear. Studies suggests that mitochondrial dysfunction precedes the accumulation of amyloid-β plaques and neurofibrillary tangles, and involves in the onset and development of AD. OBJECTIVE In the present study, we evaluated the protective effects and explored the related-mitochondrial mechanisms of human umbilical cord derived MSC-CM (hucMSC-CM) in an AD model in vitro. METHODS To this end, an AD cellular model was firstly established by okadaic acid (OA)-treated SH-SY5Y cells, and then treated by hucMSC-CM to assess the oxidative stress, mitochondrial function, apoptosis, AD-related genes, and signaling pathways. RESULTS hucMSC-CM significantly deceased tau phosphorylated at Thr181 (p181-tau) level, which was increased in AD. hucMSC-CM also alleviated intracellular and mitochondrial oxidative stress in OA-treated SH-SY5Y cells. In addition, hucMSC-CM suppressed apoptosis and improved mitochondrial function in OA-treated SH-SY5Y cells. Flow cytometric analysis indicated that hucMSC-CM exerted the protective effects relying on or partly extracellular vesicle (EV) mitochondrial transfer from hucMSCs to OA-treated SH-SY5Y cells. Moreover, RNA sequencing data further demonstrated that hucMSC-CM regulated many AD-related genes, signaling pathways and mitochondrial function. CONCLUSION These results indicated that MSC-CM or MSC-EVs containing abundant mitochondria may provide a novel potential therapeutic approach for AD.
Collapse
Affiliation(s)
- Zhihua Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Hongxia Sheng
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Li Liao
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Chen Xu
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Ang Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Yang Yang
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Long Zhao
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Lian Duan
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| | - Bin Zhang
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Stem Cell Therapy and Transformation Research, Beijing, China
| |
Collapse
|
9
|
Fame RM, Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261-275. [PMID: 32049038 DOI: 10.1016/j.devcel.2020.01.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
We summarize recent work illuminating how cerebrospinal fluid (CSF) regulates brain function. More than a protective fluid cushion and sink for waste, the CSF is an integral CNS component with dynamic and diverse roles emerging in parallel with the developing CNS. This review examines the current understanding about early CSF and its maturation and roles during CNS development and discusses open questions in the field. We focus on developmental changes in the ventricular system and CSF sources (including neural progenitors and choroid plexus). We also discuss concepts related to the development of fluid dynamics including flow, perivascular transport, drainage, and barriers.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|