1
|
Zhang H, Sun C, Xia Q, Li P, Liu K, Zhang Y. Brevianamide F Exerts Antithrombotic Effects by Modulating the MAPK Signaling Pathway and Coagulation Cascade. Mar Drugs 2024; 22:439. [PMID: 39452847 PMCID: PMC11509512 DOI: 10.3390/md22100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Existing antithrombotic drugs have side effects such as bleeding, and there is an urgent need to discover antithrombotic drugs with better efficacy and fewer side effects. In this study, a zebrafish thrombosis model was used to evaluate the antithrombotic activity and mechanism of Brevianamide F, a deep-sea natural product, with transcriptome sequencing analysis, RT-qPCR analysis, and molecular docking. The results revealed that Brevianamide F significantly attenuated the degree of platelet aggregation in the thrombus model zebrafish, leading to an increase in the number of circulating platelets, an augmentation in the return of blood to the heart, an elevated heart rate, and a significant restoration of caudal blood flow velocity. Transcriptome sequencing and RT-qPCR validation revealed that Brevianamide F may exert antithrombotic effects through the modulation of the MAPK signaling pathway and the coagulation cascade reaction. Molecular docking analysis further confirmed this result. This study provides a reference for the development of therapeutic drugs for thrombosis.
Collapse
Affiliation(s)
- Huiwen Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| |
Collapse
|
2
|
Giri H, Biswas I, Rezaie AR. Thrombomodulin: a multifunctional receptor modulating the endothelial quiescence. J Thromb Haemost 2024; 22:905-914. [PMID: 38266676 PMCID: PMC10960680 DOI: 10.1016/j.jtha.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Thrombomodulin (TM) is a type 1 receptor best known for its function as an anticoagulant cofactor for thrombin activation of protein C on the surface of vascular endothelial cells. In addition to its anticoagulant cofactor function, TM also regulates fibrinolysis, complement, and inflammatory pathways. TM is a multidomain receptor protein with a lectin-like domain at its N-terminus that has been shown to exhibit direct anti-inflammatory functions. This domain is followed by 6 epidermal growth factor-like domains that support the interaction of TM with thrombin. The interaction inhibits the procoagulant function of thrombin and enables the protease to regulate the anticoagulant and fibrinolytic pathways by activating protein C and thrombin-activatable fibrinolysis inhibitor. TM has a Thr/Ser-rich region immediately above the membrane surface that harbors chondroitin sulfate glycosaminoglycans, and this region is followed by a single-spanning transmembrane and a C-terminal cytoplasmic domain. The structure and physiological function of the extracellular domains of TM have been extensively studied, and numerous excellent review articles have been published. However, the physiological function of the cytoplasmic domain of TM has remained poorly understood. Recent data from our laboratory suggest that intracellular signaling by the cytoplasmic domain of TM plays key roles in maintaining quiescence by modulating phosphatase and tensin homolog signaling in endothelial cells. This article briefly reviews the structure and function of extracellular domains of TM and focuses on the mechanism and possible physiological importance of the cytoplasmic domain of TM in modulating phosphatase and tensin homolog signaling in endothelial cells.
Collapse
Affiliation(s)
- Hemant Giri
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
3
|
Pan CC, Maeso-Díaz R, Lewis TR, Xiang K, Tan L, Liang Y, Wang L, Yang F, Yin T, Wang C, Du K, Huang D, Oh SH, Wang E, Lim BJW, Chong M, Alexander PB, Yao X, Arshavsky VY, Li QJ, Diehl AM, Wang XF. Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing. Cell Res 2023; 33:516-532. [PMID: 37169907 PMCID: PMC10313785 DOI: 10.1038/s41422-023-00820-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.
Collapse
Affiliation(s)
- Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Raquel Maeso-Díaz
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Tylor R Lewis
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Fengrui Yang
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Calvin Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vadim Y Arshavsky
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Marzoog BA. Tree of life: endothelial cell in norm and disease, the good guy is a partner in crime! Anat Cell Biol 2023; 56:166-178. [PMID: 36879408 PMCID: PMC10319484 DOI: 10.5115/acb.22.190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 03/08/2023] Open
Abstract
Undeniably, endothelial cells (EC) contribute to the maintenance of the homeostasis of the organism through modulating cellular physiology, including signaling pathways, through the release of highly active molecules as well as the response to a myriad of extrinsic and intrinsic signaling factors. Review the data from the current literature on the EC role in norm and disease. Endothelium maintains a precise balance between the released molecules, where EC dysfunction arises when the endothelium actions shift toward vasoconstriction, the proinflammatory, prothrombic properties after the alteration of nitric oxide (NO) production and oxidative stress. The functions of the EC are regulated by the negative/positive feedback from the organism, through EC surface receptors, and the crosstalk between NO, adrenergic receptors, and oxidative stress. More than a hundred substances can interact with EC. The EC dysfunction is a hallmark in the emergence and progression of vascular-related pathologies. The paper concisely reviews recent advances in EC (patho) physiology. Grasping EC physiology is crucial to gauge their potential clinical utility and optimize the current therapies as well as to establish novel nanotherapeutic molecular targets include; endothelial receptors, cell adhesion molecules, integrins, signaling pathways, enzymes; peptidases.
Collapse
|
5
|
Al‐kuraishy HM, Al‐Gareeb AI, Kaushik A, Kujawska M, Batiha GE. Ginkgo biloba in the management of the COVID-19 severity. Arch Pharm (Weinheim) 2022; 355:e2200188. [PMID: 35672257 PMCID: PMC9348126 DOI: 10.1002/ardp.202200188] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/18/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is linked with inflammatory disorders and the development of oxidative stress in extreme cases. Therefore, anti-inflammatory and antioxidant drugs may alleviate these complications. Ginkgo biloba L. folium extract (EGb) is a herbal medicine containing various active constituents. This review aims to provide a critical discussion on the potential role of EGb in the management of coronavirus disease 2019 (COVID-19). The antiviral effect of EGb is mediated by different mechanisms, including blocking SARS-CoV-2 3-chymotrypsin-like protease that provides trans-variant effectiveness. Moreover, EGb impedes the development of pulmonary inflammatory disorders through the diminution of neutrophil elastase activity, the release of proinflammatory cytokines, platelet aggregation, and thrombosis. Thus, EGb can attenuate the acute lung injury and acute respiratory distress syndrome in COVID-19. In conclusion, EGb offers the potential of being used as adjuvant antiviral and symptomatic therapy. Nanosystems enabling targeted delivery, personalization, and booster of effects provide the opportunity for the use of EGb in modern phytotherapy.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental EngineeringFlorida Polytechnic UniversityLakelandFloridaUSA
| | | | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
6
|
Chen S, Zhang L, Feng B, Wang W, Liu D, Zhao X, Yu C, Wang X, Gao Y. MiR-550a-3p restores damaged vascular smooth muscle cells by inhibiting thrombomodulin in an <em>in vitro</em> atherosclerosis model. Eur J Histochem 2022; 66. [PMID: 35855629 PMCID: PMC9335314 DOI: 10.4081/ejh.2022.3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Thrombomodulin (TM) is involved in the pathological process of atherosclerosis; however, the underlying mechanism remains unclear. Oxidised low-density lipoprotein (Ox-LDL; 100 μg/mL) was used to induce human vascular smooth muscle cells (HVSMCs) into a stable atherosclerotic cell model. The expression levels of miR-550a-3p and TM were detected by real-time reverse transcription-polymerase chain reaction. Cell proliferation was estimated using CCK8 and EDU assays. Wound scratch and transwell assays were used to measure the ability of cells to invade and migrate. Propidium iodide fluorescence-activated cell sorting was used to detect apoptosis and cell cycle changes. A dual-luciferase reporter assay was performed to determine the binding of miR-550a-3p to TM. Our results suggested the successful development of a cellular atherosclerosis model. Our data revealed that TM overexpression significantly promoted the proliferation, invasion, migration, and apoptosis of HVSMCs as well as cell cycle changes. Upregulation of miR-550a-3p inhibited the growth and metastasis of HVSMCs. Furthermore, miR-550a-3p was confirmed to be a direct target of TM. Restoration of miR-550a-3p expression rescued the effects of TM overexpression. Thus, miR-550a-3p might play a role in atherosclerosis and, for the first time, normalised the function of injured vascular endothelial cells by simultaneous transfection of TM and miR-550a-3p. These results suggest that the miR-550a-3p/TM axis is a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Shiyuan Chen
- The First Clinical College, Jinan University, Guangzhou, Guangdong; Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Longfei Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Benchi Feng
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Wei Wang
- Department of Oncological Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Delang Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Xinyu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Chaowen Yu
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Xiaogao Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| | - Yong Gao
- The First Clinical College, Jinan University, Guangzhou, Guangdong; Department of Vascular Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui.
| |
Collapse
|
7
|
Yang Y, Hu Y, Wu M, Xiang Z. Changes of new coagulation markers in healthy pregnant women and establishment of reference intervals in Changsha. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:469-478. [PMID: 35545342 PMCID: PMC10930166 DOI: 10.11817/j.issn.1672-7347.2022.210536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES There is a high coagulation state in pregnant women, which is prone to coagulation and fibrinolysis system dysfunction. This study aims to explore the latest coagulation markers-thrombomodulin (TM), thrombin-antithrombin complex (TAT), plasmin-α2 plasmin inhibitor complex (PIC), and tissue plasminogen activator/plasminogen activator inhibitor compound (tPAI-C) in different stages of pregnancy, establish reference intervals (RIs) for healthy pregnant women of Chinese population, and to provide an effective and reliable reference for clinicians. METHODS A total of 492 healthy pregnant women, who underwent pregnancy examination and delivery in the Department of Obstetrics, Second Xiangya Hospital of Central South University from October 2019 to October 2020, were enrolled for this study. They were assigned into the first trimester group, the second trimester group, the third trimester group, and the puerperium group according to the pregnancy period, and 123 healthy non-pregnant women were selected as the controls. Plasma levels of TM, TAT, PIC and tPAI-C were analyzed by automatic chemiluminescence immunoassay analyzer. The RIs for TM, TAT, PIC, and tPAI-C were defined using non-parametric 95% intervals, determined following Clinical and Laboratory Standards Institute Document C28-A3c (CLSI C28-A3c), and Formulation of Reference Intervals for the Clinical Laboratory Test Items (WS/T402-2012). RESULTS TM and TAT levels increased gradually in the first, second, and third trimester women and decreased in the puerperium women (P<0.05 or P<0.01). PIC level of healthy non-pregnant women was lower than that of pregnant women (P<0.05 or P<0.01), but PIC level of pregnant and puerperium women did not differ significantly (P>0.05). tPAI-C level in healthy non-pregnant women was lower than that of pregnant women (P<0.05 or P<0.01), and tPAI-C level was significantly decreases in the puerperium women (P<0.01). The RIs for TM were as follows: Healthy non-pregnant women at 3.20-4.60 TU/mL, the first and second trimester at 3.12-7.90 TU/mL, the third trimester at 3.42-8.29 TU/mL, puerperium at 2.70-6.40 TU/mL. The RIs for TAT were as follows: Healthy non-pregnant women at 0.50-1.64 ng/mL, the first and second trimester at 0.52-6.91 ng/mL, the third trimester at 0.96-12.92 ng/mL, puerperium at 0.82-3.75 ng/mL. The RIs for PIC were as follows: Healthy non-pregnant women at 0.160-0.519 ng/mL, pregnant women at 0.162-0.770 μg/mL. The RIs for tPAI-C were as follows: Healthy non-pregnant women at 1.90-4.80 ng/mL, the first and second trimester at 2.03-9.33 ng/mL, the third trimester at 2.80-14.20 ng/mL, puerperium at 1.10-8.40 ng/mL. CONCLUSIONS The levels of 4 new coagulation markers TM, TAT, PIC, and tPAI-C in pregnant women are increased significantly during pregnancy and gradually return to normal after delivery. The RIs for TM, TAT, PIC, and tPAI-C in pregnant women by trimester are established according to CLSI C28-A3c, thus providing a clinical reference for clinician in judgement of thrombotic risk.
Collapse
Affiliation(s)
- Yanyi Yang
- Heath Management Center, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Yun Hu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Mingyang Wu
- Xiangya School of Medicine, Central South University, Changsha 410013
| | - Zhongyuan Xiang
- Department of Laboratory Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
8
|
Cai X, Panicker SR, Biswas I, Giri H, Rezaie AR. Protective Role of Activated Protein C against Viral Mimetic Poly(I:C)-Induced Inflammation. Thromb Haemost 2021; 121:1448-1463. [PMID: 33706396 DOI: 10.1055/s-0041-1726093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activated protein C (APC) is an anticoagulant plasma serine protease which exhibits potent cytoprotective and anti-inflammatory activities. Here, we studied protective effects of APC on the proinflammatory function of polyinosinic:polycytidylic acid [poly(I:C)], a synthetic analog of viral double-stranded RNA, in cellular and animal models. Poly(I:C) induced histone H3 extranuclear translocation via interaction with toll-like receptor 3 in two established endothelial cell lines. Furthermore, poly(I:C) induced histone H3 extranuclear translocation in J774A.1 macrophages and human neutrophils and formation of macrophage and neutrophil extracellular traps (ETs). Mechanistically, poly(I:C) was found to upregulate expression of peptidylarginine deiminase 4 and enhance its interaction with histone H3, thereby leading to increased histone citrullination and neutrophil ET formation. Poly(I:C) elicited proinflammatory signaling responses by inducing nuclear factor kappa B activation and disrupting endothelial cell permeability. In vivo, poly(I:C) enhanced cell surface expression of Mac-1 on neutrophils in mice and facilitated their infiltration to lung tissues. Poly(I:C) also downregulated thrombomodulin expression in mouse tissues and reduced its circulating soluble level in plasma. We demonstrate in this study that APC and a signaling-selective mutant of APC effectively inhibit proinflammatory signaling effects of poly(I:C) in both cellular and animal models. We further demonstrate that unlike the requirement for endothelial protein C receptor on endothelial cells, the integrin Mac-1 is involved in the protease-activated receptor 1-dependent APC inhibition of macrophage ET formation in J774A.1 cells. Taken together, these results support a key role for APC signaling in inhibiting the viral mimetic-induced proinflammatory signaling responses and histone translocation-associated formation of ETs by innate immune cells.
Collapse
Affiliation(s)
- Xiaofeng Cai
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Sumith R Panicker
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Hemant Giri
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
9
|
Malami I, Bunza AM, Alhassan AM, Muhammad A, Abubakar IB, Yunusa A, Waziri PM, Etti IC. Dihydroartemisinin as a potential drug candidate for cancer therapy: a structural-based virtual screening for multitarget profiling. J Biomol Struct Dyn 2020; 40:1347-1362. [PMID: 32964804 DOI: 10.1080/07391102.2020.1824811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer is a rapidly growing non-communicable disease worldwide that is responsible for high mortality rates, which account for 9.6 million death in 2018. Dihydroartemisinin (DHA) is an active metabolite of artemisinin, an active principle present in the Chinese medicinal plant Artemisia annua used for malaria treatment. Dihydroartemisinin possesses remarkable and selective anticancer properties however the underlying mechanism of the antitumor effects of DHA from the structural point of view is still not yet elucidated. In the present study, we employed molecular docking simulation techniques using Autodock suits to access the binding properties of dihydroartemisinin to multiple protein targets implicated in cancer pathogenesis. Its potential targets with comprehensive pharmacophore were predicted using a PharmMapper database. The co-crystallised structures of the protein were obtained from a Protein Data Bank and prepared for molecular docking simulation. Out of the 24 selected protein targets, DHA has shown about 29% excellent binding to the targets compared to their co-crystallised ligand. Additionally, 75% of the targets identified for dihydroartemisinin binding are protein kinases, and 25% are non-protein kinases. Hydroxyl functional group of dihydroartemisinin contributed to 58.5% of the total hydrogen interactions, while pyran (12.2%), endoperoxide (9.8%), and oxepane (19.5%) contributed to the remaining hydrogen bonding. The present findings have elucidated the possible antitumor properties of dihydroartemisinin through the structural-based virtual studies, which provides a lead to a safe and effective anticancer agent useful for cancer therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.,Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aisha Muktar Bunza
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | - Abdulmajeed Yunusa
- Department of Pharmacology and Therapeutics, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Peter M Waziri
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Imaobong C Etti
- Department of Pharmacology and Toxicology, University of Uyo, Uyo, Nigeria
| |
Collapse
|
10
|
Rafiq M, Liaquat A, Saeed N, Shamshad GU, Mumtaz S, Khan MJ. Gene expression of thrombomodulin, TNF-α and NF-KB in coronary artery disease patients of Pakistan. Mol Biol Rep 2020; 47:7575-7582. [PMID: 32930934 DOI: 10.1007/s11033-020-05824-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022]
Abstract
Thrombomodulin (THBD) is an endothelial surface glycoprotein receptor, having a pivotal role in maintaining laminar blood flow. It functions to protect endothelial integrity by exhibiting anti-coagulation and anti-inflammatory properties thereby playing a key role in cardiovascular disease (CVD) pathology. Cholesterol lowering drugs have shown to alter the anti-inflammatory effects of cytokines. Understanding the molecular aspects of THBD gene and its relation to inflammatory cytokines is important to identify new prognostic and therapeutic targets for the CVD treatments. The present study was conducted to measure the expression of THBD, TNF-α and NF-kB genes in coronary artery disease patients (CAD) in Pakistani population. Lipid profile and BMI was compared both on fifty CAD patients and fifty healthy individuals. Expression analysis for THBD, TNF-α and NF-kB was carried out using real time PCR. The effect of lipid lowering drugs on cardiometabolic risk variables especially gene expression was analyzed. Our results indicated that the difference in BMI was marginal; however LDL-cholesterol and triglycerides levels in CAD patients were significantly higher than healthy individuals. THBD gene was significantly up-regulated whereas TNF-α and NF-kB were significantly down regulated in CAD individuals. Further exploration revealed that these variations were accounted to the use of statins by the patients. The use of statins by CAD patients up-regulated the mRNA expression of THBD by down-regulation of inflammatory mediators. The enhanced expression of endothelial THBD in response to cholesterol lowering drugs establishes a novel pleiotropic target that can be of clinical significance in thromboembolic and inflammatory disorders.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan.,Shifa College of Medicine, Shifa Tameer-E-Millat University, Islamabad, 45550, Pakistan
| | - Afrose Liaquat
- Shifa College of Medicine, Shifa Tameer-E-Millat University, Islamabad, 45550, Pakistan.
| | - Nadia Saeed
- Shifa College of Medicine, Shifa Tameer-E-Millat University, Islamabad, 45550, Pakistan
| | | | - Sana Mumtaz
- Shifa College of Medicine, Shifa Tameer-E-Millat University, Islamabad, 45550, Pakistan.,Department of Psychosomatic Medicine and Psychotherapy, University Medical Center, 37075, Gottingen, Germany
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan.
| |
Collapse
|
11
|
Okamoto T, Kawamoto E, Usuda H, Tanaka T, Nikai T, Asanuma K, Suzuki K, Shimaoka M, Wada K. Recombinant Human Soluble Thrombomodulin Suppresses Monocyte Adhesion by Reducing Lipopolysaccharide-Induced Endothelial Cellular Stiffening. Cells 2020; 9:cells9081811. [PMID: 32751580 PMCID: PMC7463703 DOI: 10.3390/cells9081811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/24/2022] Open
Abstract
Endothelial cellular stiffening has been observed not only in inflamed cultured endothelial cells but also in the endothelium of atherosclerotic regions, which is an underlying cause of monocyte adhesion and accumulation. Although recombinant soluble thrombomodulin (rsTM) has been reported to suppress the inflammatory response of endothelial cells, its role in regulating endothelial cellular stiffness remains unclear. The purpose of this study was to investigate the impact of anticoagulant rsTM on lipopolysaccharide (LPS)-induced endothelial cellular stiffening. We show that LPS increases endothelial cellular stiffness by using atomic force microscopy and that rsTM reduces LPS-induced cellular stiffening not only through the attenuation of actin fiber and focal adhesion formation but also via the improvement of gap junction functionality. Moreover, post-administration of rsTM, after LPS stimulation, attenuated LPS-induced cellular stiffening. We also found that endothelial cells regulate leukocyte adhesion in a substrate- and cellular stiffness-dependent manner. Our result show that LPS-induced cellular stiffening enhances monocytic THP-1 cell line adhesion, whereas rsTM suppresses THP-1 cell adhesion to inflamed endothelial cells by reducing cellular stiffness. Endothelial cells increase cellular stiffness in reaction to inflammation, thereby promoting monocyte adhesion. Treatment of rsTM reduced LPS-induced cellular stiffening and suppressed monocyte adhesion in a cellular stiffness-dependent manner.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan; (H.U.); (T.T.); (K.W.)
- Correspondence: ; Tel.: +81-853-20-2132
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; (E.K.); (M.S.)
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Haruki Usuda
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan; (H.U.); (T.T.); (K.W.)
| | - Tetsuya Tanaka
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan; (H.U.); (T.T.); (K.W.)
- Department of Human Nutrition, Faculty of Contemporary Life Science, Chugoku Gakuen University, 83 Niwase, Kita-ku, Okayama-city, Okayama 701-0197, Japan
| | - Tetsuro Nikai
- Department of Anesthesiology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan;
| | - Kunihiro Asanuma
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan;
| | - Koji Suzuki
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki-cho, Suzuka-city, Mie 513-8679, Japan;
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; (E.K.); (M.S.)
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan; (H.U.); (T.T.); (K.W.)
| |
Collapse
|