1
|
Gao J, Lu C, Wei Y, Xie Q, Jin J, Li J, Yang F, Zhu G. Phosphorylation of 399S at CsHsp70 of Cymbidium sinense is essential to maintain chlorophyll stability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108518. [PMID: 38744085 DOI: 10.1016/j.plaphy.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 05/16/2024]
Abstract
The Chinese orchids symbolise nobility and gentility in China, and the variation of leaf color makes Cymbidium sinense more diversified and valuable. However, its color variations especially at the protein level still remain largely unexplored. In this study, the proteomics and phosphoproteomics of Cymbidium sinense leaf color variation mutants were studied. A total of 1059 differentially abundant proteins (DAPs) and 1127 differentially abundant phosphorylation sites belonging to 644 phosphoproteins (DAPPs) were identified in the yellow section of leaf variegation mutant of Cymbidium sinense (MY) compared with the green section (MG). Moreover, 349 co-expressing proteins were found in both omics' datasets, while only 26 proteins showed the same expression patterns in the two omics. The interaction network analysis of kinases and phosphatases showed that DAPs and DAPPs in photosynthesis, response to hormones, pigment metabolic process, phosphorylation, glucose metabolic process, and dephosphorylation might contribute to leaf color variation. The abundance of 28 Hsps and 28 phosphorylation sites belonging to 10 Hsps showed significant differences between MG and MY. CsHsp70 was selected to explore the function in Cymbidium sinense leaf variegation. The results showed CsHsp70 is essential for maintaining photosynthetic pigment content and the 399S phosphorylation site is crucial to the function of CsHsp70. Collectively, our findings construct a comprehensive coverage of protein and protein phosphorylation in leaf variegation of C. sinense, providing valuable insights into its formation mechanisms.
Collapse
Affiliation(s)
- Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jie Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
2
|
Zhang Y, Wang J, Ma W, Lu N, Fu P, Yang Y, Zhao L, Hu J, Qu G, Wang N. Transcriptome-wide m6A methylation in natural yellow leaf of Catalpa fargesii. FRONTIERS IN PLANT SCIENCE 2023; 14:1167789. [PMID: 37404531 PMCID: PMC10315917 DOI: 10.3389/fpls.2023.1167789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic messenger RNA, and involved in various biological processes in plants. However, the distribution features and functions of mRNA m6A methylation have been poorly explored in woody perennial plants. In this study, a new natural variety with yellow-green leaves, named Maiyuanjinqiu, was screened from the seedlings of Catalpa fargesii. Based on the preliminary experiment, the m6A methylation levels in the leaves of Maiyuanjinqiu were significantly higher than those in C. fargesii. Furthermore, a parallel analysis of m6A-seq and RNA-seq was carried out in different leaf color sectors. The result showed that m6A modification were mostly identified around the 3'-untranslated regions (3'-UTR), which was slightly negatively correlated with the mRNA abundance. KEGG and GO analyses showed that m6A methylation genes were associated with photosynthesis, pigments biosynthesis and metabolism, oxidation-reduction and response to stress, etc. The overall increase of m6A methylation levels in yellow-green leaves might be associated with the decreased the expression of RNA demethylase gene CfALKBH5. The silencing of CfALKBH5 caused a chlorotic phenotype and increased m6A methylation level, which further confirmed our hypothesis. Our results suggested that mRNA m6A methylation could be considered as a vital epigenomic mark and contribute to the natural variations in plants.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry and Northeast Forestry University, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry and Northeast Forestry University, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry and Northeast Forestry University, Beijing, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry and Northeast Forestry University, Beijing, China
| | - Pengyue Fu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry and Northeast Forestry University, Beijing, China
| | - Yingying Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry and Northeast Forestry University, Beijing, China
| | - Linjiao Zhao
- Hekou Yao Autonomous County Forestry and Grassland Bureau, Hekou, China
| | - Jiwen Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry and Northeast Forestry University, Beijing, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry and Northeast Forestry University, Beijing, China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry and Northeast Forestry University, Beijing, China
| |
Collapse
|
3
|
Yang Y, Zhao L, Wang J, Lu N, Ma W, Ma J, Zhang Y, Fu P, Yao C, Hu J, Wang N. Genome-wide identification of DnaJ gene family in Catalpa bungei and functional analysis of CbuDnaJ49 in leaf color formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1116063. [PMID: 36968394 PMCID: PMC10038198 DOI: 10.3389/fpls.2023.1116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
DnaJs are the common molecular chaperone proteins with strong structural and functional diversity. In recent years, only several DnaJ family members have been found to be able to regulate leaf color, and it remains to be explored whether there are other potential members that also regulate this character. Here, we identified 88 putative DnaJ proteins from Catalpa bungei, and classified them into four types according to their domain. Gene-structure analysis revealed that each member of CbuDnaJ family had same or similar exon-intron structure. Chromosome mapping and collinearity analysis showed that tandem and fragment duplication occurred in the process of evolution. Promoter analyses suggested that CbuDnaJs might be involved in a variety of biological processes. The expression levels of DnaJ family members in different color leaves of Maiyuanjinqiu were respectively extracted from the differential transcriptome. Among these, CbuDnaJ49 was the largest differentially expressed gene between the green and yellow sectors. Ectopic overexpression of CbuDnaJ49 in tobacco showed that the positive transgenic seedlings exhibited albino leaves, and the contents of chlorophyll and carotenoid were significantly reduced compared with those of wild type. The results suggested that CbuDnaJ49 played an important role in regulating leaf color. This study not only identified a novel gene of DnaJ family members regulating leaf color, but also provided new germplasm for landscaping.
Collapse
Affiliation(s)
- Yingying Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
- Biotechnology Research Center of China Three Gorges University, Yichang, China
| | - Linjiao Zhao
- Hekou Yao Autonomous County Forestry and Grassland Bureau, Hekou, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| | - Jiang Ma
- Biotechnology Research Center of China Three Gorges University, Yichang, China
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| | - Pengyue Fu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chengcheng Yao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| | - Jiwen Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Beijing, China
| |
Collapse
|
4
|
Qiao Q, Wu C, Cheng TT, Yan Y, Zhang L, Wan YL, Wang JW, Liu QZ, Feng Z, Liu Y. Comparative Analysis of the Metabolome and Transcriptome between the Green and Yellow-Green Regions of Variegated Leaves in a Mutant Variety of the Tree Species Pteroceltis tatarinowii. Int J Mol Sci 2022; 23:ijms23094950. [PMID: 35563341 PMCID: PMC9101679 DOI: 10.3390/ijms23094950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
In nature, many different factors cause plants to develop variegated leaves. To explore the mechanism of variegated leaf formation in Pteroceltis tatarinowii, a mutant variety ('Jinyuyuan'), which was induced by ethylmethylsulfone, was selected, and its morphological structure, physiology, biochemistry, transcription and metabolism were analysed. According to differences in colour values, the colours were divided into two regions: a green region and a yellow-green region. The chlorophyll content of the two regions was significantly different. Moreover, the yellow-green regions of the leaves were significantly thinner than the green regions. The chloroplast ultrastructure in the yellow-green region revealed small chloroplasts, large vacuoles, small starch grains, obviously increased numbers of osmophilic grains, loose lamellae of the inner capsule and thin lamellae. Moreover, the yellow-green region was accompanied by oxidative stress, and the activity of the oxidative phosphorylation pathway related to oxidative activity in the transcriptome showed an upward trend. Vitamin B6 and proline contents also increased, indicating that the antioxidant activity of cells in the yellow-green region increased. Transcriptomic and metabolomic analysis showed that the differentially expressed genes (DEGs) related to chlorophyll synthesis and metabolism led to a decrease in the photosynthesis and then a decrease in the assimilation ability and contents of sucrose, starch and other assimilates. Amino acid synthesis and metabolism, lipid synthesis and the activity of metabolic pathways were obviously downregulated, and the contents of differentially accumulated metabolites associated with amino acids and lipids were also reduced. At the same time, 31 out of 32 DEGs involved in the flavonoid synthesis pathway were downregulated, which affected leaf colour. We hypothesized that the variegated leaves of P. tatarinowii 'Jinyuyuan' are caused by transcriptional and post-transcriptional regulation. Mutations in pigment and flavonoid synthesis pathway genes and transcription factor genes directly affect both pigment and flavonoid synthesis and degradation rate, which in turn affect carbon assimilation, carbon fixation, related protein synthesis and enzyme activity, lipid synthesis and degradation and the activity of other metabolic pathways, eventually leading to the formation of different colour regions.
Collapse
Affiliation(s)
- Qian Qiao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Q.Q.); (Y.-L.W.)
| | - Chong Wu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an 271000, China; (C.W.); (J.-W.W.); (Q.-Z.L.)
| | - Tian-Tian Cheng
- Taishan Forestry Science Institute, Tai’an 271018, China; (T.-T.C.); (Y.Y.); (L.Z.)
| | - Yu Yan
- Taishan Forestry Science Institute, Tai’an 271018, China; (T.-T.C.); (Y.Y.); (L.Z.)
| | - Lin Zhang
- Taishan Forestry Science Institute, Tai’an 271018, China; (T.-T.C.); (Y.Y.); (L.Z.)
| | - Ying-Lin Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Q.Q.); (Y.-L.W.)
| | - Jia-Wei Wang
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an 271000, China; (C.W.); (J.-W.W.); (Q.-Z.L.)
| | - Qing-Zhong Liu
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an 271000, China; (C.W.); (J.-W.W.); (Q.-Z.L.)
| | - Zhen Feng
- Department of Forestry, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (Z.F.); (Y.L.)
| | - Yan Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Q.Q.); (Y.-L.W.)
- Correspondence: (Z.F.); (Y.L.)
| |
Collapse
|
5
|
Yun T, Hua J, Ye W, Ni Z, Chen L, Zhang C. The phosphoproteomic responses of duck (Cairna moschata) to classical/novel duck reovirus infections in the spleen tissue. Sci Rep 2020; 10:15315. [PMID: 32943705 PMCID: PMC7499213 DOI: 10.1038/s41598-020-72311-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Duck reovirus (DRV) is a fatal member of the genus Orthoreovirus in the family Reoviridae. The disease caused by DRV leads to huge economic losses to the duck industry. Post-translational modification is an efficient strategy to enhance the immune responses to virus infection. However, the roles of protein phosphorylation in the responses of ducklings to Classic/Novel DRV (C/NDRV) infections are largely unknown. Using a high-resolution LC–MS/MS integrated to highly sensitive immune-affinity antibody method, phosphoproteomes of Cairna moschata spleen tissues under the C/NDRV infections were analyzed, producing a total of 8,504 phosphorylation sites on 2,853 proteins. After normalization with proteomic data, 392 sites on 288 proteins and 484 sites on 342 proteins were significantly changed under the C/NDRV infections, respectively. To characterize the differentially phosphorylated proteins (DPPs), a systematic bioinformatics analyses including Gene Ontology annotation, domain annotation, subcellular localization, and Kyoto Encyclopedia of Genes and Genomes pathway annotation were performed. Two important serine protease system-related proteins, coagulation factor X and fibrinogen α-chain, were identified as phosphorylated proteins, suggesting an involvement of blood coagulation under the C/NDRV infections. Furthermore, 16 proteins involving the intracellular signaling pathways of pattern-recognition receptors were identified as phosphorylated proteins. Changes in the phosphorylation levels of MyD88, NF-κB, RIP1, MDA5 and IRF7 suggested a crucial role of protein phosphorylation in host immune responses of C. moschata. Our study provides new insights into the responses of ducklings to the C/NDRV infections at PTM level.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
6
|
Han R, Wei Y, Xie Y, Liu L, Jiang C, Yu Y. Quantitative phosphoproteomic analysis provides insights into the aluminum-responsiveness of Tamba black soybean. PLoS One 2020; 15:e0237845. [PMID: 32813721 PMCID: PMC7437914 DOI: 10.1371/journal.pone.0237845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
Aluminum (Al3+) toxicity is one of the most important limitations to agricultural production worldwide. The overall response of plants to Al3+ stress has been documented, but the contribution of protein phosphorylation to Al3+ detoxicity and tolerance in plants is unclear. Using a combination of tandem mass tag (TMT) labeling, immobilized metal affinity chromatography (IMAC) enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS), Al3+-induced phosphoproteomic changes in roots of Tamba black soybean (TBS) were investigated in this study. The Data collected in this study are available via ProteomeXchange with the identifier PXD019807. After the Al3+ treatment, 189 proteins harboring 278 phosphosites were significantly changed (fold change > 1.2 or < 0.83, p < 0.05), with 88 upregulated, 96 downregulated and 5 up-/downregulated. Enrichment and protein interaction analyses revealed that differentially phosphorylated proteins (DPPs) under the Al3+ treatment were mainly related to G-protein-mediated signaling, transcription and translation, transporters and carbohydrate metabolism. Particularly, DPPs associated with root growth inhibition or citric acid synthesis were identified. The results of this study provide novel insights into the molecular mechanisms of TBS post-translational modifications in response to Al3+ stress.
Collapse
Affiliation(s)
- Rongrong Han
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Yunmin Wei
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Yonghong Xie
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Lusheng Liu
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Caode Jiang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| | - Yongxiong Yu
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, China
| |
Collapse
|