1
|
Zhang SH, Shen Y, Lin LF, Tang SL, Liu CX, Fang XH, Guo ZP, Wang YY, Zhu YC. Effects of bamboo biochar on soil physicochemical properties and microbial diversity in tea gardens. PeerJ 2024; 12:e18642. [PMID: 39650556 PMCID: PMC11625445 DOI: 10.7717/peerj.18642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
Biochar, a carbon-rich material that has attracted considerable interest in interdisciplinary research, is produced through a process known as pyrolysis, which involves the thermal decomposition of organic material in the absence of oxygen. Bamboo biochar is a specific type of biochar, manufactured from bamboo straw through carbonisation at 800 °C and subsequent filtration through a 100-mesh sieve. There is currently a lack of research into the potential benefits of bamboo biochar in improving soil quality in tea gardens. The aim of this study was to investigate the effect of bamboo biochar on the physicochemical properties, enzymatic activity, and microbial community structure of tea garden soils. The results demonstrate that the integration of bamboo biochar into the soil significantly enhanced the soil pH, total nitrogen, available nitrogen, total phosphorus, available phosphorus, available potassium, and slowly available potassium by 15.3%, 52.0%, 91.5%, 91%, 48.4%, 94.2%, and 107.7%, respectively. In addition, soil acid phosphatase activity decreased significantly by 52.5%. In contrast, the activities of sucrase, catalase, and β-glucosidase increased substantially by 54.0%, 68.7%, and 68.4%, respectively, when organic fertilizer and bamboo biochar were applied concurrently. Additionally, the Shannon, Simpson, and Pielou diversity indices of the microbial communities were significantly enhanced. Following the incorporation of bamboo biochar in the soil samples, the relative abundance of Proteobacteria increased significantly, whereas that of Acidobacteria decreased. Various concentrations of bamboo biochar markedly influenced microbial markers in the soil. The results of this study suggest that the application of bamboo biochar to soil may modestly improve its physicochemical properties, enzyme activity, and microbial community structure. These findings provide a foundation for future investigations on soil ecological restoration.
Collapse
Affiliation(s)
- Si-Hai Zhang
- College of Liangshan, Lishui University, Lishui, Zhejiang Province, China
| | - Yi Shen
- College of Liangshan, Lishui University, Lishui, Zhejiang Province, China
| | - Le-Feng Lin
- College of Liangshan, Lishui University, Lishui, Zhejiang Province, China
| | - Su-Lei Tang
- College of Ecology, Lishui University, Lishui, Zhejiang Province, China
| | - Chun-Xiao Liu
- College of Liangshan, Lishui University, Lishui, Zhejiang Province, China
| | - Xiang-Hua Fang
- Forestry Science and Technology College, Lishui Vocational and Technical College, Lishui, Zhejiang Province, China
| | - Zhi-Ping Guo
- College of Ecology, Lishui University, Lishui, Zhejiang Province, China
| | - Ying-Ying Wang
- College of Liangshan, Lishui University, Lishui, Zhejiang Province, China
| | - Yang-Chun Zhu
- College of Ecology, Lishui University, Lishui, Zhejiang Province, China
| |
Collapse
|
2
|
Cao Y, Ghani MI, Ahmad N, Bibi N, Ghafoor A, Liu J, Gou J, Zou X. Garlic stalk waste and arbuscular mycorrhizae mitigate challenges in continuously monocropping eggplant obstacles by modulating physiochemical properties and fungal community structure. BMC PLANT BIOLOGY 2024; 24:1065. [PMID: 39528940 PMCID: PMC11555963 DOI: 10.1186/s12870-024-05710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS Continuous vegetable production under plastic tunnels faces challenges like soil degradation, increased soil-borne pathogens, and diminished eggplant yield. These factors collectively threaten the long-term sustainability of food security by diminishing the productivity and resilience of agricultural soils. This research examined the use of raw garlic stalk (RGS) waste and arbuscular mycorrhizal fungi (AMF) as a sustainable solution for these issues in eggplant monoculture. We hypothesized that the combined application of RGS waste and AMF would improve soil physicochemical properties compared to untreated soil in eggplant monoculture. The combined use of RGS and AMF was expected to suppress soil-borne pathogens, increase the abundance of soil beneficial microorganisms and alter fungal community structure. The combined application of RGS and AMF will significantly enhance eggplant yield compared to untreated plots. This study aimed to determine whether AMF and RGS, individually or in combination, can ameliorate the adverse effects of monoculture on eggplant soil. We also investigated whether these treatments could enhance eggplant yield. METHODS The experiment was arranged in a completely randomized design with four treatments: AMF, RGS, and a combined treatment of AMF + RGS (ARGS), along with a control. Each treatment was replicated three times, Eggplant seedlings inoculated with AMF and treated with RGS amendments, both individually and combined. The effects on root traits, soil physicochemical properties, soil enzyme activity, and fungal community structure were investigated. RESULTS RGS amendments and AMF inoculation improved root length, volume, and mycorrhizal colonization. The combined treatment showed the most significant improvement. RGS and AMF application increased soil nutrient availability (N, P, K) and organic matter content. Enzyme activities also increased with RGS and AMF treatments, with the combined application showing the highest activity. Soil electrical conductivity (EC) increased, while soil pH decreased with RGS and AMF amendments. Sequencing revealed a shift in the fungal community structure. Ascomycota abundance decreased, while Basidiomycota abundance increased with RGS and AMF application. The combined treatment reduced the abundance of pathogenic genera (Fusarium) and enriched beneficial taxa (Chaetomium, Coprinellus, Aspergillus). Pearson correlations supported the hypothesis that soil physicochemical properties influence fungal community composition. CONCLUSIONS This study demonstrates the potential of co-applying RGS and AMF in continuous cropping systems. It enhances soil physicochemical properties, reduces soil-borne pathogens, and promotes beneficial microbial communities and eggplant yield. This combined approach offers a sustainable strategy to address the challenges associated with eggplant monoculture under plastic tunnels.
Collapse
Affiliation(s)
- Yahan Cao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Muhammad Imran Ghani
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
- College of Agriculture, Guizhou University, Guiyang, 552500, China
| | - Nazeer Ahmad
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Nabila Bibi
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Abdul Ghafoor
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Jing Liu
- Guizhou Provincial Tobacco Company, Zunyi branch, Zunyi, Guizhou, 563000, China
| | - Jianyu Gou
- Guizhou Provincial Tobacco Company, Zunyi branch, Zunyi, Guizhou, 563000, China.
| | - Xiao Zou
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
3
|
Ghani MI, Ahanger MA, Sial TA, Haider S, Siddique JA, Fan R, Liu Y, Ali EF, Kumar M, Yang X, Rinklebe J, Chen X, Lee SS, Shaheen SM. Almond shell-derived biochar decreased toxic metals bioavailability and uptake by tomato and enhanced the antioxidant system and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172632. [PMID: 38653412 DOI: 10.1016/j.scitotenv.2024.172632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The effectiveness of almond shell-derived biochar (ASB) in immobilizing soil heavy metals (HMs) and its impact on soil microbial activity and diversity have not been sufficiently studied. Hence, a pot study was carried out to investigate the effectiveness of ASB addition at 2, 4, and 6 % (w/w) on soil biochemical characteristics and the bioavailability of Cd, Cu, Pb, and Zn to tomato (Solanum lycopersicum L.) plants, as compared to the control (contaminated soil without ASB addition). The addition of ASB promoted plant growth (up to two-fold) and restored the damage to the ultrastructure of chloroplast organelles. In addition, ASB mitigated the adverse effects of HMs toxicity by decreasing oxidative damage, regulating the antioxidant system, improving soil physicochemical properties, and enhancing enzymatic activities. At the phylum level, ASB addition enhanced the relative abundance of Actinobacteriota, Acidobacteriota, and Firmicutes while decreasing the relative abundance of Proteobacteria and Bacteroidota. Furthermore, ASB application increased the relative abundance of several fungal taxa (Ascomycota and Mortierellomycota) while reducing the relative abundance of Basidiomycota in the soil. The ASB-induced improvement in soil properties, microbial community, and diversity led to a significant decrease in the DTPA-extractable HMs down to 41.0 %, 51.0 %, 52.0 %, and 35.0 % for Cd, Cu, Pb, and Zn, respectively, as compared to the control. The highest doses of ASB (ASB6) significantly reduced the metals content by 26.0 % for Cd, 78.0 % for Cu, 38.0 % for Pb, and 20.0 % for Zn in the roots, and 72.0 % for Cd, 67.0 % for Cu, 46.0 % for Pb, and 35.0 % for Zn in the shoots, as compared to the control. The structural equation model predicts that soil pH and organic matter are driving factors in reducing the availability and uptake of HMs. ASB could be used as a sustainable trial for remediation of HMs polluted soils and reducing metal content in edible plants.
Collapse
Affiliation(s)
- Muhammad Imran Ghani
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Geo-resources and Environment, College of Resources and Environmental Engineering, Guizhou University, Guiyang, China; College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | | | - Tanveer Ali Sial
- Department of Soil Science, Sindh Agriculture University Tandojam, Sindh 70060, Pakistan
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Junaid Ali Siddique
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Ruidong Fan
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yanjiang Liu
- College of Ecology and Environment, Tibet University, Lhasa 850012, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, 11099, Taif 21944, Saudi Arabia
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Xiaoyulong Chen
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Geo-resources and Environment, College of Resources and Environmental Engineering, Guizhou University, Guiyang, China; College of Ecology and Environment, Tibet University, Lhasa 850012, China.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| |
Collapse
|
4
|
Ghani MI, Ali A, Atif MJ, Ali M, Ahanger MA, Chen X, Cheng Z. Different leafy vegetable cropping systems regulate growth, photosynthesis, and PSII functioning in mono-cropped eggplant by altering chemical properties and upregulating the antioxidant system. FRONTIERS IN PLANT SCIENCE 2023; 14:1132861. [PMID: 37143885 PMCID: PMC10151761 DOI: 10.3389/fpls.2023.1132861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/20/2023] [Indexed: 05/06/2023]
Abstract
Continuous cropping of eggplant threatened regional ecological sustainability by facilitating replanting problems under mono-cropping conditions. Therefore, alternative agronomic and management practices are required to improve crop productivity at low environmental cost for the development of sustainable agricultural systems in different regions. This study examined changes in soil chemical properties, eggplant photosynthesis, and antioxidant functioning in five different vegetable cropping systems over a 2-year period., 2017 and 2018. The results showed that welsh onion-eggplant (WOE), celery-eggplant (CE), non-heading Chinese cabbage-eggplant (NCCE), and leafy lettuce-eggplant (LLE) rotation systems significantly impacted growth, biomass accumulation, and yield than fallow-eggplant (FE). In addition, various leafy vegetable cropping systems, WOE, CE, NCCE, and LLT induced significant increases in soil organic matter (SOM), available nutrients (N, P, and K), and eggplant growth by affecting the photosynthesis and related gas exchange parameters with much evident effect due to CE and NCCE. Moreover, eggplant raised with different leafy vegetable rotation systems showed higher activity of antioxidant enzymes, resulting in lower accumulation of hydrogen peroxide and hence reduced oxidative damage to membranes. In addition, fresh and dry plant biomass was significantly increased due to crop rotation with leafy vegetables. Therefore, we concluded that leafy vegetable crop rotation is a beneficial management practice to improve the growth and yield of eggplant.
Collapse
Affiliation(s)
- Muhammad Imran Ghani
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Ahmad Ali
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Muhammad Jawaad Atif
- College of Horticulture, Northwest A&F University, Yangling, China
- Horticultural Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, China
| | | | - Xiaoyulong Chen
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- College of Ecology and Environment, Tibet University, Lhasa, Tibet, China
- *Correspondence: Xiaoyulong Chen, ; Zhihui Cheng,
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, China
- *Correspondence: Xiaoyulong Chen, ; Zhihui Cheng,
| |
Collapse
|
5
|
Rai S, Omar AF, Rehan M, Al-Turki A, Sagar A, Ilyas N, Sayyed RZ, Hasanuzzaman M. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture. PLANTA 2022; 257:27. [PMID: 36583789 DOI: 10.1007/s00425-022-04052-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
This review is an effort to provide in-depth knowledge of microbe's interaction and its role in crop microbiome using combination of advanced molecular and OMICS technology to translate this information for the sustenance of agriculture. Increasing population, climate change and exhaustive agricultural practices either influenced nutrient inputs of soil or generating biological and physico-chemical deterioration of the soils and affecting the agricultural productivity and agro-ecosystems. Alarming concerns toward food security and crop production claim for renewed attention in microbe-based farming practices. Microbes are omnipresent (soil, water, and air) and their close association with plants would help to accomplish sustainable agriculture goals. In the last few decades, the search for beneficial microbes in crop production, soil fertilization, disease management, and plant growth promotion is the thirst for eco-friendly agriculture. The crop microbiome opens new paths to utilize beneficial microbes and manage pathogenic microbes through integrated advanced biotechnology. The crop microbiome helps plants acquire nutrients, growth, resilience against phytopathogens, and tolerance to abiotic stresses, such as heat, drought, and salinity. Despite the emergent functionality of the crop microbiome as a complicated constituent of the plant fitness, our understanding of how the functionality of microbiome influenced by numerous factors including genotype of host, climatic conditions, mobilization of minerals, soil composition, nutrient availability, interaction between nexus of microbes, and interactions with other external microbiomes is partially understood. However, the structure, composition, dynamics, and functional contribution of such cultured and uncultured crop microbiome are least explored. The advanced biotechnological approaches are efficient tools for acquiring the information required to investigate the microbiome and extract data to develop high yield producing and resistant variety crops. This knowledge fills the fundamental gap between the theoretical concepts and the operational use of these advanced tools in crop microbiome studies. Here, we review (1) structure and composition of crop microbiome, (2) microbiome-mediated role associated with crops fitness, (3) Molecular and -omics techniques for exploration of crop microbiome, and (4) current approaches and future prospectives of crop microbiome and its exploitation for sustainable agriculture. Recent -omic approaches are influential tool for mapping, monitoring, modeling, and management of crops microbiome. Identification of crop microbiome, using system biology and rhizho-engineering, can help to develop future bioformulations for disease management, reclamation of stressed agro-ecosystems, and improved productivity of crops. Nano-system approaches combined with triggering molecules of crop microbiome can help in designing of nano-biofertilizers and nano-biopesticides. This combination has numerous merits over the traditional bioinoculants. They stimulate various defense mechanisms in plants facing stress conditions; provide bioavailability of nutrients in the soil, helps mitigate stress conditions; and enhance chances of crops establishment.
Collapse
Affiliation(s)
- Shalini Rai
- Department of Biotechnology, SHEPA, Varanasi, India.
| | - Ayman F Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia.
- Department of Plant Pathology, Plant Pathology and Biotechnology Laboratory and EPCRS Excellence Center, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Alka Sagar
- Department of Microbiology, MIET, Meerut, India
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - R Z Sayyed
- Asian PGPR Society, Auburn Venture, Auburn, AL, USA.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-E-Bangla Agricultural University (SAU), Sher-E-Bangla Nagar, Dhaka, 1207, Bangladesh
| |
Collapse
|
6
|
RasI/R Quorum Sensing System Controls the Virulence of Ralstonia solanacearum Strain EP1. Appl Environ Microbiol 2022; 88:e0032522. [PMID: 35876567 PMCID: PMC9361817 DOI: 10.1128/aem.00325-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Quorum sensing (QS) is a widely conserved bacterial regulatory mechanism that relies on production and perception of autoinducing chemical signals to coordinate diverse cooperative activities, such as virulence, exoenzyme secretion, and biofilm formation. In Ralstonia solanacearum, a phytopathogen causing severe bacterial wilt diseases in many plant species, previous studies identified the PhcBSR QS system, which plays a key role in regulation of its physiology and virulence. In this study, we found that R. solanacearum strain EP1 contains the genes encoding uncharacterized LuxI/LuxR (LuxI/R) QS homologues (RasI/RasR [designated RasI/R here]). To determine the roles of the RasI/R system in strain EP1, we constructed a specific reporter for the signals catalyzed by RasI. Chromatography separation and structural analysis showed that RasI synthesized primarily N-(3-hydroxydodecanoyl)-homoserine lactone (3-OH-C12-HSL). In addition, we showed that the transcriptional expression of rasI is regulated by RasR in response to 3-OH-C12-HSL. Phenotype analysis unveiled that the RasI/R system plays a critical role in modulation of cellulase production, motility, biofilm formation, oxidative stress response, and virulence of R. solanacearum EP1. We then further characterized this system by determining the RasI/R regulon using transcriptome sequencing (RNA-seq) analysis, which showed that this newly identified QS system regulates the transcriptional expression of over 154 genes associated with bacterial physiology and pathogenic properties. Taken together, the findings from this study present an essential new QS system in regulation of R. solanacearum physiology and virulence and provide new insight into the complicated regulatory mechanisms and networks in this important plant pathogen. IMPORTANCE Quorum sensing (QS) is a key regulator of virulence factors in many plant-pathogenic bacteria. Previous studies unveiled two QS systems (i.e., PhcBSR and SolI/R) in several R. solanacearum strains. The PhcBSR QS system is known for its key roles in regulation of bacterial virulence, and the LuxI/LuxR (SolI/R) QS system appears dispensable for pathogenicity in a number of R. solanacearum strains. In this study, a new functional QS system (i.e., RasI/R) was identified and characterized in R. solanacearum strain EP1 isolated from infected eggplants. Phenotype analyses showed that the RasI/R system plays an important role in regulation of a range of biological activities associated with bacterial virulence. This QS system produces and responds to the QS signal 3-OH-C12-HSL and hence regulates critical bacterial abilities in survival and infection. To date, multiple QS signaling circuits in R. solanacearum strains are still not well understood. Our findings from this study provide new insight into the complicated QS regulatory networks that govern the physiology and virulence of R. solanacearum and present a valid target and clues for the control and prevention of bacterial wilt diseases.
Collapse
|
7
|
Ghani MI, Ali A, Atif MJ, Ali M, Amin B, Cheng Z. Arbuscular Mycorrhizal Fungi and Dry Raw Garlic Stalk Amendment Alleviate Continuous Monocropping Growth and Photosynthetic Declines in Eggplant by Bolstering Its Antioxidant System and Accumulation of Osmolytes and Secondary Metabolites. FRONTIERS IN PLANT SCIENCE 2022; 13:849521. [PMID: 35432401 PMCID: PMC9008779 DOI: 10.3389/fpls.2022.849521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/14/2022] [Indexed: 05/03/2023]
Abstract
Vegetable production under plastic sheds severely threatens regional eco-sustainability via anthropogenic activities (excessive use of agrochemicals, pesticides) and problems associated with replanting. Long-term successive cropping across growing seasons induces continuous cropping stress, whose effects manifest as diminished plant growth. Therefore, it is imperative that we develop environmentally sustainable approaches, such as replacing agrochemicals with vegetable waste like dry raw garlic stalk (DRGS) or use biofertilizers like arbuscular mycorrhizal fungi (AMF) (e.g., Diversispora epigaea). In this study, the influence of AMF on the growth, biochemical attributes, antioxidant defense system, phytohormones, accumulation of osmolytes, phenols, and mineral elements in eggplant grown on DRGS-amended soils under continuous monocropping (CMC) was studied. The results showed that inoculation with AMF or the DRGS amendment could improve the pigments' content, photosynthesis, and antioxidant defense system; augmented phytohormones synthesis (except for ABA), and increased the leaves' mineral nutrients. These parameters were enhanced most by the combined application of AMF and DRGS, which also increased the concentration of osmolytes, including proline, sugars, and free amino acids in eggplant when compared with the control. Furthermore, either AMF and DRGS alone, or in combination, ameliorated the induced stress from continuous cropping by reducing the incidence of Fusarium wilt and production of ROS (reactive oxygen species); lipid peroxidation underwent maximal reduction in plants grown under the combined treatments. The AMF, DRGS, and AMF + DRGS exhibited a lower disease severity index (33.46, 36.42, and 43.01%), respectively, over control. Hence, inoculation with AMF coupled with DRGS amendment alters the photosynthetic attributes in eggplant through the upregulation of its antioxidant system and greater accumulation of osmolytes, which led to the improved growth and yield of eggplant.
Collapse
Affiliation(s)
| | - Ahmad Ali
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Muhammad Jawaad Atif
- College of Horticulture, Northwest A&F University, Xianyang, China
- Horticultural Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Bakht Amin
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Xianyang, China
| |
Collapse
|
8
|
Malviya MK, Solanki MK, Li CN, Wang Z, Zeng Y, Verma KK, Singh RK, Singh P, Huang HR, Yang LT, Song XP, Li YR. Sugarcane-Legume Intercropping Can Enrich the Soil Microbiome and Plant Growth. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.606595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soil microbes have a direct impact on plant metabolism and health. The current study investigates the comparative rhizobiome between sugarcane monoculture and sugarcane–soybean intercropping. A greenhouse experiment was performed with two treatments: (1) sugarcane monoculture and (2) sugarcane–soybean intercropped. We used a high-throughput sequencing (HTS) platform to analyze the microbial community. We used the 16S rRNA gene and internal transcribed spacer region primers to identify the microbial diversity. HTS results revealed that a total of 2,979 and 124 bacterial and fungal operational taxonomic units (OTUs) were observed, respectively. Microbial diversity results concluded that the intercropping system has a beneficial impact on soil microbes. The highest numbers of bacterial and fungal OTUs were found in the intercropping system, and these results also collaborated with quantitative PCR results. Additionally, intercropped sugarcane plants showed a higher weight of above- and below-ground parts than the monoculture. Soil chemical analysis results also complemented that the intercropping system nourished organic carbon, total nitrogen, and soil enzyme activities. Correlation analysis of the diversity index and abundance concluded that soil nutrient content positively influenced the microbial abundance that improves plant growth. The present study frames out the profound insights of microbial community interaction under the sugarcane–soybean intercropping system. This information could help improve or increase the sugarcane crop production without causing any negative impact on sugarcane plant growth and development.
Collapse
|
9
|
Colonization of Listeria monocytogenes in potting soils as affected by bacterial community composition, storage temperature, and natural amendment. Food Sci Biotechnol 2021; 30:869-880. [PMID: 34249393 DOI: 10.1007/s10068-021-00925-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Abstract
This study aimed to characterize the bacterial community of commercial potting soils with or without Listeria monocytogenes inoculation at 5-35 °C using 16S metagenomic sequencing and evaluate the effect of natural amendments on the reduction L. monocytogenes in non-sterile potting soils. An increase in the expected operational taxonomic units of each sample with or without L. monocytogenes was proportional to the increasing storage temperatures after 5 days. Biodiversity was distinct among all potting soils for Shannon and inverse Simpson indices, with the highest diversity being observed in a soil sample stored at 35 °C for 5 days with L. monocytogenes. An increase in richness and diversity of soil bacterial community structure positively correlated with less survival of the invading L. monocytogenes. Particularly, garlic extract was demonstrated as a promising soil-amendment substrate, reducing L. monocytogenes by ≥ 4.50 log CFU/g in potting soils stored at 35 °C. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00925-9.
Collapse
|
10
|
Shar AG, Peng JY, Tian X, Siyal TA, Shar AH, Yuhan J, Datta R, Hessini K. Contrasting effects of maize residue, coal gas residue and their biochars on nutrient mineralization, enzyme activities and CO 2 emissions in sandy loess soil. Saudi J Biol Sci 2021; 28:4155-4163. [PMID: 34354395 PMCID: PMC8324933 DOI: 10.1016/j.sjbs.2021.04.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
Mismanagement of crop straw and coal gas residue threatens the atmosphere and the economy. Nevertheless, thermal-pyrolysis is an option for management that turns bio-waste into biochar; its viability and adoption by the public as soil amendments is dependent on the agronomic and environmental values compared between biochar and the raw materials. We undertook a 60-day short-term analysis to assess the impact of various wastes and biochars, as well as inorganic nutrients (N), on carbon dioxide (CO2) fluxes, soil enzyme activities, soil fertility status, and microbial activities. There were eight treatments of soil amendments: without an amendment (CK), Nutrients (N), straw + nutrients (S+N), straw biochar + nutrients (SB+N), coal gas residue + nutrients (C+N), coal gas residue biochar + nutrients (CB+N), straw + straw biochar + nutrients (S+SB+N) and coal gas residue waste + coal gas residue biochar + nutrients (C+ CB +N). The results indicated that soil EC, pH, nitrate N (NO3–- N), SOC, TN and available K were significantly (p < 0.05) increased coal gas residue biochar and combined with coal fly ash as compared to maize straw biochar and combined with maize straw and N treatments. The higher concentrations of soil MBC and MBN activities were increased in the maize straw application, while higher soil enzyme activity such as, invertase, urease and catalase were enhanced in the coal fly ash derived biochar treatments. The higher cumulative CO2 emissions were recorded in the combined applications of maize straw and its biochar as well as coal gas residue and its biochar treatment. Our study concludes, that maize straw and coal fly ash wastes were converted into biochar product could be a feasible substitute way of discarding, since land amendment and decreased CO2 fluxes and positive changes in soil microbial, and chemical properties, and can be confirmed under long-term conditions for reduction of economical and environment issues.
Collapse
Affiliation(s)
- Abdul Ghaffar Shar
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Ya Peng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohong Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tanveer Ahmed Siyal
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Akhtar Hussain Shar
- Department of Molecular Biology & Genetics, faculty of science & technology, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, Pakistan
| | - Jiang Yuhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
11
|
Garlic Substrate Induces Cucumber Growth Development and Decreases Fusarium Wilt through Regulation of Soil Microbial Community Structure and Diversity in Replanted Disturbed Soil. Int J Mol Sci 2020; 21:ijms21176008. [PMID: 32825476 PMCID: PMC7504009 DOI: 10.3390/ijms21176008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
Garlic substrate could influence plant growth through affecting soil microbiome structure. The relationship mechanism between changes in soil microbial communities, disease suppression and plant development, however, remains unclear, particularly in the degraded soil micro-ecological environment. In this study, garlic substrates as a soil amendment were incorporated with different ratios (1:100, 3:100 and 5:100 g/100 g of soil) in a replanted disturbed soil of long-term cucumber monoculture (annual double cropping system in a greenhouse). The results indicated that higher amount of C-amended garlic substrate significantly induced soil suppressiveness (35.9% greater than control (CK) against the foliar disease incidence rate. This inhibitory effect consequently improved the cucumber growth performance and fruit yield to 20% higher than the non-amended soil. Short-term garlic substrate addition modified the soil quality through an increase in soil organic matter (SOM), nutrient availability and enzymatic activities. Illumina MiSeq sequencing analysis revealed that soil bacterial and fungal communities in the garlic amendment were significantly different from the control. Species richness and diversity indices significantly increased under treated soil. The correlation-based heat map analysis suggested that soil OM, nutrient contents and biological activators were the primary drivers reshaping the microbial community structure. Furthermore, garlic substrate inhibited soil-borne pathogen taxa (Fusarium and Nematoda), and their reduced abundances, significantly affecting the crop yield. In addition, the host plant recruited certain plant-beneficial microbes due to substrate addition that could directly contribute to plant–pathogen inhibition and crop biomass production. For example, abundant Acidobacteria, Ascomycota and Glomeromycota taxa were significantly associated with cucumber yield promotion. Firmicutes, Actinobacteria, Bacteroidetes, Basidiomycota and Glomeromycota were the associated microbial taxa that possibly performed as antagonists of Fusarium wilt, with plant pathogen suppression potential in monocropped cucumber-planted soil.
Collapse
|
12
|
Ntalli N, Adamski Z, Doula M, Monokrousos N. Nematicidal Amendments and Soil Remediation. PLANTS (BASEL, SWITZERLAND) 2020; 9:E429. [PMID: 32244565 PMCID: PMC7238745 DOI: 10.3390/plants9040429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/03/2020] [Accepted: 03/21/2020] [Indexed: 12/20/2022]
Abstract
The intensification of agriculture has created concerns about soil degradation and toxicity of agricultural chemicals to non-target organisms. As a result, there is great urgency for discovering new ecofriendly tools for pest management and plant nutrition. Botanical matrices and their extracts and purified secondary metabolites have received much research interest, but time-consuming registration issues have slowed their adoption. In contrast, cultural practices such as use of plant matrices as soil amendments could be immediately used as plant protectants or organic fertilizers. Herein, we focus on some types of soil amendments of botanical origin and their utilization for nematicidal activity and enhancement of plant nutrition. The mode of action is discussed in terms of parasite control as well as plant growth stimulation.
Collapse
Affiliation(s)
- Nikoletta Ntalli
- Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 S. Delta Str., 14561 Athens, Greece
| | - Zbigniew Adamski
- Electron and Confocal Microscope Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland;
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Maria Doula
- Laboratory of Non-Parasitic Diseases, Benaki Phytopathological Institute, 8 S. Delta Str., 14561 Athens, Greece;
| | - Nikolaos Monokrousos
- Laboratory of Molecular Ecology, International Hellenic University, 57001 Thessaloniki, Greece;
| |
Collapse
|
13
|
Biochar Suppresses Bacterial Wilt of Tomato by Improving Soil Chemical Properties and Shifting Soil Microbial Community. Microorganisms 2019; 7:microorganisms7120676. [PMID: 31835630 PMCID: PMC6955753 DOI: 10.3390/microorganisms7120676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/22/2019] [Accepted: 12/07/2019] [Indexed: 12/22/2022] Open
Abstract
The role of biochar amendments in enhancing plant disease resistance has been well documented, but its mechanism is not yet fully understood. In the present study, 2% biochar made from wheat straw was added to the soil of tomato infected by Ralstonia solanacearum to explore the interrelation among biochar, tomato bacterial wilt resistance, soil chemical properties, and soil microbial community and to decipher the disease suppression mechanisms from a soil microbial perspective. Biochar application significantly reduced the disease severity of bacterial wilt, increased soil total organic carbon, total nitrogen, C:N ratio, organic matter, available P, available K, pH, and electrical conductivity. Biochar treatment also increased soil acid phosphatase activity under the non-R.-solanacearum-inoculated condition. High-throughput sequencing of 16S rRNA revealed substantial differences in rhizosphere bacterial community structures between biochar-amended and nonamended treatments. Biochar did not influence soil microbial richness and diversity but significantly increased the relative abundance of Bacteroidetes and Proteobacteria in soil at the phylum level under R. solanacearum inoculation. Furthermore, biochar amendment harbored a higher abundance of Chitinophaga, Flavitalea, Adhaeribacter, Pontibacter, Pedobacter, and Ohtaekwangia at the genus level of Bacteroides and Pseudomonas at the genus level of Proteobacteria under R. solanacearum inoculation. Our findings suggest that a biochar-shifted soil bacterial community structure can favorably contribute to the resistance of tomato plants against bacterial wilt.
Collapse
|