1
|
Yang J, Chen J, Li Q, Xu RA, Chen X. Effects of three flavonoids on the metabolism of lenvatinib. Front Pharmacol 2024; 15:1438259. [PMID: 39228528 PMCID: PMC11368737 DOI: 10.3389/fphar.2024.1438259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Lenvatinib is a first-line therapy for the treatment of hepatocellular carcinoma (HCC), an active multi-target tyrosine kinase inhibitor (TKI). The interaction between Traditional Chinese Medicine (TCM) and chemicals has increasingly become a research hotspot. The objective of this study was to pinpoint the effects of three flavonoids on the metabolism of lenvatinib. Enzyme reaction system was established and optimized in vitro, and in vivo experiments were conducted in Sprague-Dawley (SD) rats, where the analytes were detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). We found that among three flavonoids, luteolin and myricetin had strong inhibitory effects on lenvatinib metabolism, with half-maximal inhibitory concentration (IC50) values of 11.36 ± 0.46 µM and 11.21 ± 0.81 µM in rat liver microsomes (RLM), respectively, and 6.89 ± 0.43 µM and 12.32 ± 1.21 µM in human liver microsomes (HLM), respectively. In Sprague-Dawley rats, the combined administration of lenvatinib and luteolin obviously expanded the exposure to lenvatinib; however, co-administered with myricetin did not have any changes, which may be due to the poor bioavailability of myricetin in vivo. Furthermore, the inhibitory type of luteolin on lenvatinib showed an un-competitive in RLM and a mixed in HLM. Collectively, flavonoids with liver protection, especially luteolin, may inhibit lenvatinib metabolism in vitro and in vivo.
Collapse
Affiliation(s)
- Jinzhao Yang
- Wenzhou People’s Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohai Chen
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Qadir A, Samad DA, Asif M, Ali MM, Zain S. Investigating the effect of vandetanib and celecoxib combination on angiogenesis. J Taibah Univ Med Sci 2023; 18:1011-1017. [PMID: 36959917 PMCID: PMC10027553 DOI: 10.1016/j.jtumed.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Objective Angiogenesis plays an important role in various physiological and pathological conditions and is essential for tumor growth and metastasis. The aim of this study was to evaluate the effect of a combination of vandetanib and celecoxib on angiogenic tube formation and its effect on angiogenic genes (MMP-2 and MMP-9) using an in vitro model of human umbilical vein endothelial cells (HUVECs). Methods HUVECs were cultured and verified by flow cytometry. HUVECs were then treated with vandetanib, celecoxib, and the combination of both drugs. Then, we investigated cell viability and cell apoptosis by MTT assays and flow cytometry. The process of angiogenesis was analyzed by tube formation assays, and the effect on angiogenic genes was determined by RT-qPCR. Results HUVECs were positive for CD144 and negative for CD14. Vandetanib, celecoxib, and their combination inhibited HUVEC viability in a dose-dependent manner (p < 0.001). The rate of apoptosis was 13.1%, 9%, and 23.7% (p < 0.001) when treated with vandetanib, celecoxib, or the combination of both drugs, respectively. Vandetanib inhibited tube formation by 43.7%, celecoxib by 21%, and their combination by 77.3% (p < 0.001), respectively. RT-qPCR revealed that both vandetanib and celecoxib reduced the expression levels of MMP-2 and MMP-9, and their combination resulted in an even greater extent of reduction in expression levels (p < 0.001). Conclusion Celecoxib enhanced the effect of vandetanib in inhibiting in vitro angiogenesis and the combination of these two drugs led to even greater extents of inhibition than vandetanib alone.
Collapse
Affiliation(s)
- Abdul Qadir
- Department of Pharmacology, United Medical and Dental College, Karachi, Pakistan
- Corresponding address: United Medical and Dental College, Department of Pharmacology, Sector 48H Korangi Creek, Karachi, Sindh 75190, Pakistan.
| | | | - Mahayrookh Asif
- Department of Pharmacology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Mujtaba Ali
- Department of Pharmacology, United Medical and Dental College, Karachi, Pakistan
| | - Syeda Zain
- Department of Pharmacology, United Medical and Dental College, Karachi, Pakistan
| |
Collapse
|
3
|
Wang F, Zhang X, Wang Y, Chen Y, Lu H, Meng X, Ye X, Chen W. Activation/Inactivation of Anticancer Drugs by CYP3A4: Influencing Factors for Personalized Cancer Therapy. Drug Metab Dispos 2023; 51:543-559. [PMID: 36732076 DOI: 10.1124/dmd.122.001131] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Cytochrome P450 3A4 (CYP3A4), one of the most important members of the cytochrome P450 subfamily, is a crucial catalyst in the metabolism of numerous drugs. As it catalyzes numerous processes for drug activation or inactivation, the pharmacological activities and clinical outcomes of anticancer drugs metabolized by CYP3A4 are highly dependent on the enzyme's activity and expression. Due to the complexity of tumor microenvironments and various influencing factors observed in human in vitro models and clinical studies, the pharmacokinetics of most anticancer drugs are influenced by the extent of induction or inhibition of CYP3A4-mediated metabolism, and these details are not fully recognized and highlighted. Therefore, this interindividual variability due to genetic and nongenetic factors, together with the narrow therapeutic index of most anticancer drugs, contributes to their unique set of exposures and responses, which have important implications for achieving the expected efficacy and minimizing adverse events of chemotherapy for cancer in individuals. To elucidate the mechanisms of CYP3A4-mediated activation/inactivation of anticancer drugs associated with personalized therapy, this review focuses on the underlying determinants that contribute to differences in CYP3A4 metabolic activity and provides a comprehensive and valuable overview of the significance of these factors, which differs from current considerations for dosing regimens in cancer therapy. We also discuss knowledge gaps, challenges, and opportunities to explore optimal dosing regimens for drug metabolic activation/inactivation in individual patients, with particular emphasis on pooling and analyzing clinical information that affects CYP3A4 activity. SIGNIFICANCE STATEMENT: This review focuses on anticancer drugs that are activated/deactivated by CYP3A4 and highlights outstanding factors affecting the interindividual variability of CYP3A4 activity in order to gain a detailed understanding of CYP3A4-mediated drug metabolism mechanisms. A systematic analysis of available information on the underlying genetic and nongenetic determinants leading to variation in CYP3A4 metabolic activity to predict therapeutic response to drug exposure, maximize efficacy, and avoid unpredictable adverse events has clinical implications for the identification and development of CYP3A4-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Xue Zhang
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Yanyan Wang
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Yunna Chen
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Huiyu Lu
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Xiangyun Meng
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Xi Ye
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| | - Weidong Chen
- Department of Pharmacy, Hefei Hospital, Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei, Anhui, China (F.W., X.M., X.Y.); School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (F.W.); School of Pharmacy (F.W., X.Z., Y.W., Y.C., H.L., W.C.) and Institute of Pharmaceutics, School of Pharmaceutical Sciences (X.Z., H.L., W.C.), Anhui University of Chinese Medicine, Hefei, Anhui, China; The Second People's Hospital of Hefei, Affiliated to Bengbu Medical College, Hefei, Anhui, China (F.W., X.M., X.Y.); and MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui, China (W.C.)
| |
Collapse
|
4
|
Pilot Study on the Impact of Polymorphisms Linked to Multi-Kinase Inhibitor Metabolism on Lenvatinib Side Effects in Patients with Advanced Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24065496. [PMID: 36982571 PMCID: PMC10049548 DOI: 10.3390/ijms24065496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Multi-kinase inhibitors (MKIs) represent the best therapeutic option in advanced thyroid cancer patients. The therapeutic efficacy and toxicity of MKIs are very heterogeneous and are difficult to predict before starting treatment. Moreover, due to the development of severe adverse events, it is necessary to interrupt the therapy some patients. Using a pharmacogenetic approach, we evaluated polymorphisms in genes coding for proteins involved with the absorption and elimination of the drug in 18 advanced thyroid cancer patients treated with lenvatinib, and correlated the genetic background with (1) diarrhea, nausea, vomiting and epigastric pain; (2) oral mucositis and xerostomia; (3) hypertension and proteinuria; (4) asthenia; (5) anorexia and weight loss; (6) hand foot syndrome. Analyzed variants belong to cytochrome P450 (CYP3A4 rs2242480 and rs2687116 and CYP3A5 rs776746) genes and to ATP-binding cassette transporters (ABCB1 rs1045642, rs2032582 and rs2235048 and ABCG2 rs2231142). Our results suggest that the GG genotype for rs2242480 in CYP3A4 and CC genotype in rs776746 for CYP3A5 were both associated with the presence of hypertension. Being heterozygous for SNPs in the ABCB1 gene (rs1045642 and 2235048) implicated a higher grade of weight loss. The ABCG2 rs2231142 statistically correlated with a higher extent of mucositis and xerostomia (CC genotype). Heterozygous and rare homozygous genotypes for rs2242480 in CYP3A4 and for rs776746 for CYP3A5 were found to be statistically linked to a worse outcome. Evaluating the genetic profile before starting lenvatinib treatment may help to predict the occurrence and grade of some side effects, and may contribute to improving patient management.
Collapse
|
5
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
6
|
Vavrová K, Indra R, Pompach P, Heger Z, Hodek P. The impact of individual human cytochrome P450 enzymes on oxidative metabolism of anticancer drug lenvatinib. Biomed Pharmacother 2021; 145:112391. [PMID: 34847475 DOI: 10.1016/j.biopha.2021.112391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
Lenvatinib, a small molecule tyrosine kinase inhibitor (TKI), exhibits good inhibitory effect in several types of carcinomas. Specifically, it is the most effective TKI used for treatment of thyroid cancer. To extend pharmacokinetics data on this anticancer agent, we aimed to identify the metabolites of lenvatinib formed during in vitro incubation of lenvatinib with human hepatic microsomes or recombinant cytochromes P450 (CYPs) by using high performance liquid chromatography and mass spectrometry. The role of CYPs in the oxidation of lenvatinib was initially investigated in hepatic microsomes using specific CYP inhibitors. CYP-catalytic activities in each microsomal sample were correlated with the amounts of lenvatinib metabolites formed by these samples. Further, human recombinant CYPs were employed in the metabolic studies. Based on our data, lenvatinib is metabolized to O-desmethyl lenvatinib, N-descyclopropyl lenvatinib and lenvatinib N-oxide. In the presence of cytochrome b5, recombinant CYP3A4 was the most efficient to form these metabolites. In addition, CYP1A1 significantly contributes to the lenvatinib metabolism. It was even more efficient in forming of O-desmethyl lenvatinib than CYP3A4 in the absence of cytochrome b5. The present study indicates that further research focused on drug-drug interactions, in particular on CYP3A4 and CYP1A1 modulators, is needed. This will pave new avenues towards TKIs-mediated personalized therapy.
Collapse
Affiliation(s)
- Katarína Vavrová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic.
| | - Petr Pompach
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| |
Collapse
|
7
|
Abourehab MAS, Alqahtani AM, Youssif BGM, Gouda AM. Globally Approved EGFR Inhibitors: Insights into Their Syntheses, Target Kinases, Biological Activities, Receptor Interactions, and Metabolism. Molecules 2021; 26:6677. [PMID: 34771085 PMCID: PMC8587155 DOI: 10.3390/molecules26216677] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Targeting the EGFR with small-molecule inhibitors is a confirmed valid strategy in cancer therapy. Since the FDA approval of the first EGFR-TKI, erlotinib, great efforts have been devoted to the discovery of new potent inhibitors. Until now, fourteen EGFR small-molecule inhibitors have been globally approved for the treatment of different types of cancers. Although these drugs showed high efficacy in cancer therapy, EGFR mutations have emerged as a big challenge for these drugs. In this review, we focus on the EGFR small-molecule inhibitors that have been approved for clinical uses in cancer therapy. These drugs are classified based on their chemical structures, target kinases, and pharmacological uses. The synthetic routes of these drugs are also discussed. The crystal structures of these drugs with their target kinases are also summarized and their bonding modes and interactions are visualized. Based on their binding interactions with the EGFR, these drugs are also classified into reversible and irreversible inhibitors. The cytotoxicity of these drugs against different types of cancer cell lines is also summarized. In addition, the proposed metabolic pathways and metabolites of the fourteen drugs are discussed, with a primary focus on the active and reactive metabolites. Taken together, this review highlights the syntheses, target kinases, crystal structures, binding interactions, cytotoxicity, and metabolism of the fourteen globally approved EGFR inhibitors. These data should greatly help in the design of new EGFR inhibitors.
Collapse
Affiliation(s)
- Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Ahmed M. Gouda
- Department of Medicinal Chemistry, Faculty of pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
8
|
Jáklová K, Feglarová T, Rex S, Heger Z, Eckschlager T, Hraběta J, Hodek P, Kolárik M, Indra R. Apoferritin/Vandetanib Association Is Long-Term Stable But Does Not Improve Pharmacological Properties of Vandetanib. Int J Mol Sci 2021; 22:ijms22084250. [PMID: 33923880 PMCID: PMC8074211 DOI: 10.3390/ijms22084250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
A tyrosine kinase inhibitor, vandetanib (Van), is an anticancer drug affecting the signaling of VEGFR, EGFR and RET protooncogenes. Van is primarily used for the treatment of advanced or metastatic medullary thyroid cancer; however, its usage is significantly limited by side effects, particularly cardiotoxicity. One approach to minimize them is the encapsulation or binding of Van in- or onto a suitable carrier, allowing targeted delivery to tumor tissue. Herein, we constructed a nanocarrier based on apoferritin associated with Van (ApoVan). Based on the characteristics obtained by analyzing the average size, the surface ζ-potential and the polydispersive index, ApoVan nanoparticles exhibit long-term stability and maintain their morphology. Experiments have shown that ApoVan complex is relatively stable during storage. It was found that Van is gradually released from its ApoVan form into the neutral environment (pH 7.4) as well as into the acidic environment (pH 6.5). The effect of free Van and ApoVan on neuroblastoma and medullary thyroid carcinoma cell lines revealed that both forms were toxic in both used cell lines, and minimal differences between ApoVan and Van were observed. Thus, we assume that Van might not be encapsulated into the cavity of apoferritin, but instead only binds to its surface.
Collapse
Affiliation(s)
- Kateřina Jáklová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic; (K.J.); (T.F.); (P.H.); (M.K.)
| | - Tereza Feglarová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic; (K.J.); (T.F.); (P.H.); (M.K.)
| | - Simona Rex
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (S.R.); (Z.H.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (S.R.); (Z.H.)
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Tomáš Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84/1, 150 06 Prague 5, Czech Republic; (T.E.); (J.H.)
| | - Jan Hraběta
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84/1, 150 06 Prague 5, Czech Republic; (T.E.); (J.H.)
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic; (K.J.); (T.F.); (P.H.); (M.K.)
| | - Matúš Kolárik
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic; (K.J.); (T.F.); (P.H.); (M.K.)
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic; (K.J.); (T.F.); (P.H.); (M.K.)
- Correspondence: ; Tel.: +420-221-951-285
| |
Collapse
|
9
|
Cell and Molecular Biology of Thyroid Disorders 2.0. Int J Mol Sci 2021; 22:ijms22041990. [PMID: 33671462 PMCID: PMC7922009 DOI: 10.3390/ijms22041990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/09/2022] Open
Abstract
This issue is the second volume of the previous Special Issue, "Cell and Molecular Biology of Thyroid Disorders" [...].
Collapse
|
10
|
Fanni D, Pinna F, Gerosa C, Paribello P, Carpiniello B, Faa G, Manchia M. Anatomical distribution and expression of CYP in humans: Neuropharmacological implications. Drug Dev Res 2021; 82:628-667. [PMID: 33533102 DOI: 10.1002/ddr.21778] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
The cytochrome P450 (CYP450) superfamily is responsible for the metabolism of most xenobiotics and pharmacological treatments generally used in clinical settings. Genetic factors as well as environmental determinants acting through fine epigenetic mechanisms modulate the expression of CYP over the lifespan (fetal vs. infancy vs. adult phases) and in diverse organs. In addition, pathological processes might alter the expression of CYP. In this selective review, we sought to summarize the evidence on the expression of CYP focusing on three specific aspects: (a) the anatomical distribution of the expression in body districts relevant in terms of drug pharmacokinetics (liver, gut, and kidney) and pharmacodynamics, focusing for the latter on the brain, since this is the target organ of psychopharmacological agents; (b) the patterns of expression during developmental phases; and (c) the expression of CYP450 enzymes during pathological processes such as cancer. We showed that CYP isoforms show distinct patterns of expression depending on the body district and the specific developmental phases. Of particular relevance for neuropsychopharmacology is the complex regulatory mechanisms that significantly modulate the complexity of the pharmacokinetic regulation, including the concentration of specific CYP isoforms in distinct areas of the brain, where they could greatly affect local substrate and metabolite concentrations of drugs.
Collapse
Affiliation(s)
- Daniela Fanni
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Clara Gerosa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
Scimone C, Alibrandi S, Donato L, Giofrè SV, Rao G, Sidoti A, D'Angelo R. Antiretroviral treatment leading to secondary trimethylaminuria: Genetic associations and successful management with riboflavin. J Clin Pharm Ther 2020; 46:304-309. [PMID: 33247860 DOI: 10.1111/jcpt.13315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Trimethylaminuria is a metabolic disorder characterized by excessive excretion of trimethylamine in body fluids following FMO3 gene mutations. Secondary forms of the disease may be due to consumption of trimethylamine precursor-rich foods or metabolism of some xenobiotics. CASE SUMMARY A HIV patient developed secondary trimethylaminuria following antiretroviral treatment. Riboflavin supplementation ameliorated his phenotype. 1 H-NMR confirmed increased urine level of TMA. Several genes involved in choline catabolism harboured missense mutations. Riboflavin supplement improved enzymatic activity of mutated enzymes promoting TMA clearance. WHAT IS NEW AND CONCLUSION Antiretrovirals may increase the concentration of TMA precursors. The present study reports antiretroviral treatment as risk factor for such secondary trimethylaminuria. Riboflavin is an effective treatment.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy.,Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T, Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Donato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy.,Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T, Palermo, Italy
| | - Salvatore V Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giacomo Rao
- Prevention and Research division, INAIL, Rome, Italy
| | - Antonina Sidoti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy.,Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T, Palermo, Italy
| | - Rosalia D'Angelo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy.,Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, I.E.ME.S.T, Palermo, Italy
| |
Collapse
|
12
|
Indra R, Vavrová K, Pompach P, Heger Z, Hodek P. Identification of Enzymes Oxidizing the Tyrosine Kinase Inhibitor Cabozantinib: Cabozantinib Is Predominantly Oxidized by CYP3A4 and Its Oxidation Is Stimulated by cyt b 5 Activity. Biomedicines 2020; 8:biomedicines8120547. [PMID: 33260548 PMCID: PMC7759869 DOI: 10.3390/biomedicines8120547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
Herein, the in vitro metabolism of tyrosine kinase inhibitor cabozantinib, the drug used for the treatment of metastatic medullary thyroid cancer and advanced renal cell carcinoma, was studied using hepatic microsomal samples of different human donors, human recombinant cytochromes P450 (CYPs), flavin-containing mono-oxygenases (FMOs) and aldehyde oxidase. After incubation with human microsomes, three metabolites, namely cabozantinib N-oxide, desmethyl cabozantinib and monohydroxy cabozantinib, were detected. Significant correlations were found between CYP3A4 activity and generation of all metabolites. The privileged role of CYP3A4 was further confirmed by examining the effect of CYP inhibitors and by human recombinant enzymes. Only four of all tested human recombinant cytochrome P450 were able to oxidize cabozantinib, and CYP3A4 exhibited the most efficient activity. Importantly, cytochrome b5 (cyt b5) stimulates the CYP3A4-catalyzed formation of cabozantinib metabolites. In addition, cyt b5 also stimulates the activity of CYP3A5, whereas two other enzymes, CYP1A1 and 1B1, were not affected by cyt b5. Since CYP3A4 exhibits high expression in the human liver and was found to be the most efficient enzyme in cabozantinib oxidation, we examined the kinetics of this oxidation. The present study provides substantial insights into the metabolism of cabozantinib and brings novel findings related to cabozantinib pharmacokinetics towards possible utilization in personalized medicine.
Collapse
Affiliation(s)
- Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic; (K.V.); (P.P.); (P.H.)
- Correspondence: ; Tel.: +420-221-951-285
| | - Katarína Vavrová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic; (K.V.); (P.P.); (P.H.)
| | - Petr Pompach
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic; (K.V.); (P.P.); (P.H.)
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic;
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200 Brno, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic; (K.V.); (P.P.); (P.H.)
| |
Collapse
|
13
|
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 2020; 94:3671-3722. [PMID: 33111191 PMCID: PMC7603454 DOI: 10.1007/s00204-020-02936-7] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Administration Center, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.
| |
Collapse
|
14
|
Indra R, Pompach P, Vavrová K, Jáklová K, Heger Z, Adam V, Eckschlager T, Kopečková K, Arlt VM, Stiborová M. Cytochrome P450 and flavin-containing monooxygenase enzymes are responsible for differential oxidation of the anti-thyroid-cancer drug vandetanib by human and rat hepatic microsomal systems. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103310. [PMID: 31837525 DOI: 10.1016/j.etap.2019.103310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
We studied the in vitro metabolism of the anti-thyroid-cancer drug vandetanib in a rat animal model and demonstrated that N-desmethylvandetanib and vandetanib N-oxide are formed by NADPH- or NADH-mediated reactions catalyzed by rat hepatic microsomes and pure biotransformation enzymes. In addition to the structural characterization of vandetanib metabolites, individual rat enzymes [cytochrome P450 (CYP) and flavin-containing monooxygenase (FMO)] capable of oxidizing vandetanib were identified. Generation of N-desmethylvandetanib, but not that of vandetanib N-oxide, was attenuated by CYP3A and 2C inhibitors while inhibition of FMO decreased formation of vandetanib N-oxide. These results indicate that liver microsomal CYP2C/3A and FMO1 are major enzymes participating in the formation of N-desmethylvandetanib and vandetanib N-oxide, respectively. Rat recombinant CYP2C11 > >3A1 > 3A2 > 1A1 > 1A2 > 2D1 > 2D2 were effective in catalyzing the formation of N-desmethylvandetanib. Results of the present study explain differences between the CYP- and FMO-catalyzed vandetanib oxidation in rat and human liver reported previously and the enzymatic mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov, 2030, 128 40 Prague 2, Czech Republic
| | - Petr Pompach
- Department of Biochemistry, Faculty of Science, Charles University, Albertov, 2030, 128 40 Prague 2, Czech Republic
| | - Katarína Vavrová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov, 2030, 128 40 Prague 2, Czech Republic
| | - Kateřina Jáklová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov, 2030, 128 40 Prague 2, Czech Republic
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| | - Tomáš Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty, Charles University and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Kateřina Kopečková
- Department of Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Volker Manfred Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov, 2030, 128 40 Prague 2, Czech Republic.
| |
Collapse
|