1
|
Martinecz A, Boeree MJ, Diacon AH, Dawson R, Hemez C, Aarnoutse RE, Abel zur Wiesch P. High rifampicin peak plasma concentrations accelerate the slow phase of bacterial decline in tuberculosis patients: Evidence for heteroresistance. PLoS Comput Biol 2023; 19:e1011000. [PMID: 37053266 PMCID: PMC10128972 DOI: 10.1371/journal.pcbi.1011000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/25/2023] [Accepted: 03/06/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Antibiotic treatments are often associated with a late slowdown in bacterial killing. This separates the killing of bacteria into at least two distinct phases: a quick phase followed by a slower phase, the latter of which is linked to treatment success. Current mechanistic explanations for the in vitro slowdown are either antibiotic persistence or heteroresistance. Persistence is defined as the switching back and forth between susceptible and non-susceptible states, while heteroresistance is defined as the coexistence of bacteria with heterogeneous susceptibilities. Both are also thought to cause a slowdown in the decline of bacterial populations in patients and therefore complicate and prolong antibiotic treatments. Reduced bacterial death rates over time are also observed within tuberculosis patients, yet the mechanistic reasons for this are unknown and therefore the strategies to mitigate them are also unknown. METHODS AND FINDINGS We analyse a dose ranging trial for rifampicin in tuberculosis patients and show that there is a slowdown in the decline of bacteria. We show that the late phase of bacterial killing depends more on the peak drug concentrations than the total drug exposure. We compare these to pharmacokinetic-pharmacodynamic models of rifampicin heteroresistance and persistence. We find that the observation on the slow phase's dependence on pharmacokinetic measures, specifically peak concentrations are only compatible with models of heteroresistance and incompatible with models of persistence. The quantitative agreement between heteroresistance models and observations is very good ([Formula: see text]). To corroborate the importance of the slowdown, we validate our results by estimating the time to sputum culture conversion and compare the results to a different dose ranging trial. CONCLUSIONS Our findings indicate that higher doses, specifically higher peak concentrations may be used to optimize rifampicin treatments by accelerating bacterial killing in the slow phase. It adds to the growing body of literature supporting higher rifampicin doses for shortening tuberculosis treatments.
Collapse
Affiliation(s)
- Antal Martinecz
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Martin J. Boeree
- Department of Lung Diseases, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Andreas H. Diacon
- Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- TASK Applied Science, Cape Town, South Africa
| | - Rodney Dawson
- Division of Pulmonology and Department of Medicine, University of Cape Town, Cape Town, South Africa
- University of Cape Town Lung Institute, Cape Town, South Africa
| | - Colin Hemez
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Graduate program in Biophysics, Harvard University, Boston, Massachusetts, United States of America
| | - Rob E. Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Pia Abel zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Norwegian Institute of Public Health (Folkehelseinstitutt), Oslo, Norway
| |
Collapse
|
2
|
Liang J, Tran VNN, Hemez C, Abel Zur Wiesch P. Current Approaches of Building Mechanistic Pharmacodynamic Drug-Target Binding Models. Methods Mol Biol 2022; 2385:1-17. [PMID: 34888713 DOI: 10.1007/978-1-0716-1767-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanistic pharmacodynamic models that incorporate the binding kinetics of drug-target interactions have several advantages in understanding target engagement and the efficacy of a drug dose. However, guidelines on how to build and interpret mechanistic pharmacodynamic drug-target binding models considering both biological and computational factors are still missing in the literature. In this chapter, current approaches of building mechanistic PD models and their advantages are discussed. We also present a methodology on how to select a suitable model considering both biological and computational perspectives, as well as summarize the challenges of current mechanistic PD models.
Collapse
Affiliation(s)
- Jingyi Liang
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Vi Ngoc-Nha Tran
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Colin Hemez
- Graduate Program in Biophysics, Harvard University, Boston, MA, USA
| | - Pia Abel Zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, USA.
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, Blindern, Oslo, Norway.
| |
Collapse
|
3
|
Mikhailov OV. The Physical Chemistry and Chemical Physics (PCCP) Section of the International Journal of Molecular Sciences in Its Publications: The First 300 Thematic Articles in the First 3 Years. Int J Mol Sci 2021; 23:241. [PMID: 35008667 PMCID: PMC8745423 DOI: 10.3390/ijms23010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The Physical Chemistry and Chemical Physics Section (PCCP Section) is one of the youngest among the sections of the International Journal of Molecular Sciences (IJMS)-the year 2021 will only mark three years since its inception [...].
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|