1
|
Kasparkova J, Hernández-García A, Kostrhunova H, Goicuría M, Novohradsky V, Bautista D, Markova L, Santana MD, Brabec V, Ruiz J. Novel 2-(5-Arylthiophen-2-yl)-benzoazole Cyclometalated Iridium(III) dppz Complexes Exhibit Selective Phototoxicity in Cancer Cells by Lysosomal Damage and Oncosis. J Med Chem 2024; 67:691-708. [PMID: 38141031 PMCID: PMC10788912 DOI: 10.1021/acs.jmedchem.3c01978] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
A second-generation series of biscyclometalated 2-(5-aryl-thienyl)-benzimidazole and -benzothiazole Ir(III) dppz complexes [Ir(C^N)2(dppz)]+, Ir1-Ir4, were rationally designed and synthesized, where the aryl group attached to the thienyl ring was p-CF3C6H4 or p-Me2NC6H4. These new Ir(III) complexes were assessed as photosensitizers to explore the structure-activity correlations for their potential use in biocompatible anticancer photodynamic therapy. When irradiated with blue light, the complexes exhibited high selective potency across several cancer cell lines predisposed to photodynamic therapy; the benzothiazole derivatives (Ir1 and Ir2) were the best performers, Ir2 being also activatable with green or red light. Notably, when irradiated, the complexes induced leakage of lysosomal content into the cytoplasm of HeLa cancer cells and induced oncosis-like cell death. The capability of the new Ir complexes to photoinduce cell death in 3D HeLa spheroids has also been demonstrated. The investigated Ir complexes can also catalytically photo-oxidate NADH and photogenerate 1O2 and/or •OH in cell-free media.
Collapse
Affiliation(s)
- Jana Kasparkova
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - Alba Hernández-García
- Departamento
de Química Inorgánica, Universidad de Murcia, and Biomedical
Research Institute of Murcia (IMIB-Arrixaca), Murcia E-30100, Spain
| | - Hana Kostrhunova
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - Marta Goicuría
- Departamento
de Química Inorgánica, Universidad de Murcia, and Biomedical
Research Institute of Murcia (IMIB-Arrixaca), Murcia E-30100, Spain
| | - Vojtěch Novohradsky
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | | | - Lenka Markova
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - María Dolores Santana
- Departamento
de Química Inorgánica, Universidad de Murcia, and Biomedical
Research Institute of Murcia (IMIB-Arrixaca), Murcia E-30100, Spain
| | - Viktor Brabec
- Czech
Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad de Murcia, and Biomedical
Research Institute of Murcia (IMIB-Arrixaca), Murcia E-30100, Spain
| |
Collapse
|
2
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Makgoo L, Mosebi S, Mbita Z. The Role of Death-Associated Protein Kinase-1 in Cell Homeostasis-Related Processes. Genes (Basel) 2023; 14:1274. [PMID: 37372454 DOI: 10.3390/genes14061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Tremendous amount of financial resources and manpower have been invested to understand the function of numerous genes that are deregulated during the carcinogenesis process, which can be targeted for anticancer therapeutic interventions. Death-associated protein kinase 1 (DAPK-1) is one of the genes that have shown potential as biomarkers for cancer treatment. It is a member of the kinase family, which also includes Death-associated protein kinase 2 (DAPK-2), Death-associated protein kinase 3 (DAPK-3), Death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK-1) and Death-associated protein kinase-related apoptosis-inducing kinase 2 (DRAK-2). DAPK-1 is a tumour-suppressor gene that is hypermethylated in most human cancers. Additionally, DAPK-1 regulates a number of cellular processes, including apoptosis, autophagy and the cell cycle. The molecular basis by which DAPK-1 induces these cell homeostasis-related processes for cancer prevention is less understood; hence, they need to be investigated. The purpose of this review is to discuss the current understanding of the mechanisms of DAPK-1 in cell homeostasis-related processes, especially apoptosis, autophagy and the cell cycle. It also explores how the expression of DAPK-1 affects carcinogenesis. Since deregulation of DAPK-1 is implicated in the pathogenesis of cancer, altering DAPK-1 expression or activity may be a promising therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Lilian Makgoo
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Pietersburg 0727, Sovenga, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Johanessburg 1710, Florida, South Africa
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Pietersburg 0727, Sovenga, South Africa
| |
Collapse
|
4
|
Qi X, Li Q, Che X, Wang Q, Wu G. Application of Regulatory Cell Death in Cancer: Based on Targeted Therapy and Immunotherapy. Front Immunol 2022; 13:837293. [PMID: 35359956 PMCID: PMC8960167 DOI: 10.3389/fimmu.2022.837293] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The development of cancer treatment methods is constantly changing. For common cancers, our treatment methods are still based on conventional treatment methods, such as chemotherapy, radiotherapy, and targeted drug therapy. Nevertheless, the emergence of tumor resistance has a negative impact on treatment. Regulated cell death is a gene-regulated mode of programmed cell death. After receiving specific signal transduction, cells change their physical and chemical properties and the extracellular microenvironment, resulting in structural destruction and decomposition. As research accumulates, we now know that by precisely inducing specific cell death patterns, we can treat cancer with less collateral damage than other treatments. Many newly discovered types of RCD are thought to be useful for cancer treatment. However, some experimental results suggest that some RCDs are not sensitive to cancer cell death, and some may even promote cancer progression. This review summarizes the discovered types of RCDs, reviews their clinical efficacy in cancer treatment, explores their anticancer mechanisms, and discusses the feasibility of some newly discovered RCDs for cancer treatment in combination with the immune and tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Qifei Wang
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Pu F, Chen F, Zhang Z, Shi D, Zhong B, Lv X, Tucker AB, Fan J, Li AJ, Qin K, Hu D, Chen C, Wang H, He F, Ni N, Huang L, Liu Q, Wagstaff W, Luu HH, Haydon RC, Shen L, He TC, Liu J, Shao Z. Ferroptosis as a novel form of regulated cell death: Implications in the pathogenesis, oncometabolism and treatment of human cancer. Genes Dis 2020; 9:347-357. [PMID: 35224151 PMCID: PMC8843993 DOI: 10.1016/j.gendis.2020.11.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
The treatment of cancer mainly involves surgical excision supplemented by radiotherapy and chemotherapy. Chemotherapy drugs act by interfering with tumor growth and inducing the death of cancer cells. Anti-tumor drugs were developed to induce apoptosis, but some patient’s show apoptosis escape and chemotherapy resistance. Therefore, other forms of cell death that can overcome the resistance of tumor cells are important in the context of cancer treatment. Ferroptosis is a newly discovered iron-dependent, non-apoptotic type of cell death that is highly negatively correlated with cancer development. Ferroptosis is mainly caused by the abnormal increase in iron-dependent lipid reactive oxygen species and the imbalance of redox homeostasis. This review summarizes the progression and regulatory mechanism of ferroptosis in cancer and discusses its possible clinical applications in cancer diagnosis and treatment.
Collapse
|