1
|
Bai Y, Miao Y, Wang J, Gan J, Feng J. Predictive Value and Immunological Role of the HSPA5 Gene in Cervical Cancer. Biochem Genet 2025; 63:1566-1583. [PMID: 38584219 DOI: 10.1007/s10528-024-10782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
Cervical cancer (CC) ranks fourth among women's malignancies worldwide and seriously affects women's health. HSPA5 is a heat shock protein, also known as glucose regulatory protein 78 (GRP78). Upregulation of HSPA5 has been reported to be closely associated with multiple types of tumors. However, the specific role of HSPA5 in cervical cancer has not been discovered. In our study, we explored the prognostic value of HSPA5 in CC. Here, we analyzed the (TCGA) and (UCSC) databases, the analysis of HSPA5 in many tumors types was conducted with the "wilcox. test" method. A False Discovery Rate (FDR) value < 0.05 and Log2 | (fold change, FC) |> 1 were set as the cutoffs. "*", "**", and "***" indicate FDR < 0.05, < 0.01, and < 0.001, respectively, and further used human cervical cancer cells for q-PCR and western blotting detection. q-PCR and western blotting results showed that HSPA5 was highly expressed in cervical cancer cells, while it was expressed at low levels in normal cells (P < 0.05).We also analyzed the immunohistochemical data. immunohistochemical analysis results showed that HSPA5 was highly expressed in human cervical cancer, while it was expressed at low levels in normal tissues (P < 0.05). Analysis in TCGA-UCSC showed that the proportion of G3 in the group with high expression of HSPA5 was relatively high (P < 0.05). Enrichment analysis and survival analysis showed that the increased expression of HSPA5 in cervical cancer was related to the survival of CC and was involved in the regulation of biological behavior and molecular signaling pathways of cervical cancer. The correlation analysis of immune checkpoint and immune infiltration showed that HSPA5 was involved in the regulation of immune process of cervical cancer (P < 0.05). Drug sensitivity correlation analysis showed that HSPA5 was a sensitive target for tumor drugs (P < 0.05). In brief, those results suggest that HSPA5 can act as an oncogene of CC development and can serve as an effective predictive biomarker in cervical cancer.
Collapse
Affiliation(s)
- Yingying Bai
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, 569Xinsi Road, Baqiao District, Xian, 710038, Shanxi, China
| | - Yandong Miao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai, 264100, China
| | - Jiangtao Wang
- Department of General Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, 264000, China
| | - Jian Gan
- Department of General Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, 264000, China
| | - Jiang Feng
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, 569Xinsi Road, Baqiao District, Xian, 710038, Shanxi, China.
| |
Collapse
|
2
|
Shakya R, Suraneni P, Zaslavsky A, Rahi A, Magdongon CB, Gajjela R, Mattamana BB, Varma D. The Hexosamine Biosynthetic Pathway alters the cytoskeleton to modulate cell proliferation and migration in metastatic prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618283. [PMID: 39464080 PMCID: PMC11507681 DOI: 10.1101/2024.10.14.618283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Castration-resistant prostate cancer (CRPC) progresses despite androgen deprivation therapy, as cancer cells adapt to grow without testosterone, becoming more aggressive and prone to metastasis. CRPC biology complicates the development of effective therapies, posing challenges for patient care. Recent gene-expression and metabolomics studies highlight the Hexosamine Biosynthetic Pathway (HBP) as a critical player, with key components like GNPNAT1 and UAP1 being downregulated in metastatic CRPC. GNPNAT1 knockdown has been shown to increase cell proliferation and metastasis in CRPC cell lines, though the mechanisms remain unclear. To investigate the cellular basis of these CRPC phenotypes, we generated a CRISPR-Cas9 knockout model of GNPNAT1 in 22Rv1 CRPC cells, analyzing its impact on metabolomic, glycoproteomic, and transcriptomic profiles of cells. We hypothesize that HBP inhibition disrupts the cytoskeleton, altering mitotic progression and promoting uncontrolled growth. GNPNAT1 KO cells showed reduced levels of cytoskeletal filaments, such as actin and microtubules, leading to cell structure disorganization and chromosomal mis-segregation. GNPNAT1 inhibition also activated PI3K/AKT signaling, promoting proliferation, and impaired cell adhesion by mislocalizing EphB6, enhancing migration via the RhoA pathway and promoting epithelial-to-mesenchymal transition. These findings suggest that HBP plays a critical role in regulating CRPC cell behavior, and targeting this pathway could provide a novel therapeutic approach.
Collapse
Affiliation(s)
- Rajina Shakya
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Praveen Suraneni
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexander Zaslavsky
- Department of Urology, University of Michigan Medical School, Ann Harbor, MI 48108, USA
| | - Amit Rahi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christine B Magdongon
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Raju Gajjela
- Proteomics Core, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Basil B Mattamana
- Proteomics Core, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dileep Varma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Zhu Z, Li T, Wang H, Jiao L. AQP5 promotes epithelial-mesenchymal transition and tumor growth through activating the Wnt/β-catenin pathway in triple-negative breast cancer. Mutat Res 2024; 829:111868. [PMID: 38959561 DOI: 10.1016/j.mrfmmm.2024.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Emerging data identifies aquaporin 5 (AQP5) as a vital player in many kinds of cancers. Over expression of AQP5 was associated with increased metastasis and poor prognosis, suggesting that AQP5 may facilitate cancer cell proliferation and migration. Our previous studies also showed that AQP3 and AQP5 were highly expressed in triple-negative breast cancer (TNBC) and the expression of AQP3 and AQP5 in TNBC tissue was positive correlated with advanced clinical stage. OBJECTIVE We aim to investigate the role of AQP5 in TNBC oncogenesis and development. METHODS MDA-MB-231 cells were transfected with siRNA-AQP5 and AQP5 overexpression vector to establish a differential expression system for AQP5. Cell proliferation and apoptosis of MDA-MB-231 cells were detected by CCK-8 (Cell Counting Kit-8) and FCM (flow cytometry), respectively. Cell migration and invasion abilities were evaluated by wound healing assay and transwell assay. The qRT-PCR and western blot assays were used to study the effect of AQP5 expression level on the expression of epithelial-to-mesenchymal transition (EMT) related molecules. The effects of ICG-001, a Wnt/β-catenin signaling pathway inhibitor, on the invasive and migratory capabilities of overexpressed AQP5 cells and downstream molecules were measured. RESULTS 1. The expression of AQP5 in the MDA-MB-231 cells was significantly higher than that in the MCF-10A cells. 2. Up-regulation of AQP5 significantly promoted the proliferation, migration and invasion of TNBC cells, while inhibited the cell apoptosis; in addition, up-regulation of AQP5 increased the expression of Bcl-2 and decreased the expression of Caspase-3. However, knockdown of AQP5 presented the adverse effects of AQP5 overexpression. 3. Overexpressed AQP5 induced the overexpression of EMT-related factors, which further promoted the migration and invasion of cells. 4. Overexpression of AQP5 could up-regulate the expression of β-catenin in the nucleus followed by increasing the expression levels of downstream genes in Wnt/β-catenin signaling pathway. Moreover, ICG-001, the inhibitor of Wnt/β-catenin signaling pathway, could significantly attenuate the effect of overexpression of AQP5 on cells, further confirming that AQP5 may promote the proliferation, migration and invasion of TNBC cells by activating Wnt/β-catenin signaling pathway. CONCLUSIONS In the TNBC cells, AQP5 modulates the expression levels of EMT-related proteins through activation of Wnt/β-catenin signaling pathway, thus enhancing the cell proliferation, migration and invasion while inhibiting the cell apoptosis.
Collapse
Affiliation(s)
- Zhengcai Zhu
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 215300, PR China
| | - Tao Li
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 215300, PR China
| | - Honggang Wang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 215300, PR China
| | - Lianghe Jiao
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 215300, PR China.
| |
Collapse
|
4
|
Ding Y, Zhou G, Hu W. Epigenetic regulation of TGF-β pathway and its role in radiation response. Int J Radiat Biol 2024; 100:834-848. [PMID: 38506660 DOI: 10.1080/09553002.2024.2327395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Transforming growth factor (TGF-β) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-β-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-β signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-β signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS By revealing the epigenetic mechanism related to TGF-β-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-β signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.
Collapse
Affiliation(s)
- Yunan Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
5
|
The Role of Cytokines in Epithelial-Mesenchymal Transition in Gynaecological Cancers: A Systematic Review. Cells 2023; 12:cells12030416. [PMID: 36766756 PMCID: PMC9913821 DOI: 10.3390/cells12030416] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Chronic inflammation has been closely linked to the development and progression of various cancers. The epithelial-mesenchymal transition (EMT) is a process involving the acquisition of mesenchymal features by carcinoma cells and is an important link between inflammation and cancer development. Inflammatory mediators in the tumour micro-environment, such as cytokines and chemokines, can promote EMT changes in cancer cells. The aim of this systematic review is to analyse the effect of cytokines on EMT in gynaecological cancers and discuss their possible therapeutic implications. A search of the databases CINAHL, Cochrane, Embase, Medline, PubMed, TRIP, and Web of Science was performed using the keywords: "cytokines" AND "epithelial mesenchymal transition OR transformation" AND "gynaecological cancer". Seventy-one articles reported that various cytokines, such as TGF-β, TNF-α, IL-6, etc., promoted EMT changes in ovarian, cervical, and endometrial cancers. The EMT changes included from epithelial to mesenchymal morphological change, downregulation of the epithelial markers E-cadherin/β-catenin, upregulation of the mesenchymal markers N-cadherin/vimentin/fibronectin, and upregulation of the EMT-transformation factors (EMT-TF) SNAI1/SNAI2/TWIST/ZEB. Cytokine-induced EMT can lead to gynaecological cancer development and metastasis and hence novel therapies targeting the cytokines or their EMT signalling pathways could possibly prevent cancer progression, reduce cancer recurrence, and prevent drug-resistance.
Collapse
|
6
|
Knockdown of RhoQ, a member of Rho GTPase, accelerates TGF-β-induced EMT in human lung adenocarcinoma. Biochem Biophys Rep 2022; 32:101346. [PMID: 36120491 PMCID: PMC9474329 DOI: 10.1016/j.bbrep.2022.101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and the most common subtype of lung cancer is adenocarcinoma. RhoQ is a Rho family GTPase with primary sequence and structural similarities to Cdc42 and RhoJ. RhoQ is involved in neurite outgrowth via membrane trafficking and is essential for insulin-stimulated glucose uptake in mature adipocytes. However, the function of RhoQ in lung adenocarcinoma (LUAD) remains unclear. In this study, RhoQ siRNAs were introduced into A549 and PC-9 cells. Expression level of EMT-related genes and invasion ability were investigated using Western blot and transwell assay. To examine the relationship between RhoQ expression and prognosis of LUAD, Kaplan–Meier plotter was used. We discovered that suppressing RhoQ expression promoted TGF-β-mediated EMT and invasion in LUAD cell lines. Furthermore, RhoQ knockdown increased Smad3 phosphorylation and Snail expression, indicating that RhoQ was involved in TGF/Smad signaling during the EMT process. Moreover, Kaplan–Meier plotter analysis revealed that low RhoQ levels were associated with poor overall survival in patients with LUAD. In conclusion, these findings shed light on RhoQ's role as a negative regulator of TGF-β-mediated EMT in LUAD. Knockdown of RhoQ expression promoted TGF-β-mediated EMT and invasion in human lung adenocarcinoma cells. RhoQ knockdown increased Smad3 phosphorylation and Snail expression during the EMT process. Low RhoQ levels were associated with poor overall survival in patients with lung adenocarcinoma.
Collapse
|
7
|
FASN promotes lymph node metastasis in cervical cancer via cholesterol reprogramming and lymphangiogenesis. Cell Death Dis 2022; 13:488. [PMID: 35597782 PMCID: PMC9124199 DOI: 10.1038/s41419-022-04926-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Cervical cancer (CC) patients with lymph node metastasis (LNM) have a poor prognosis. Clarification of the detailed mechanisms underlying LNM may provide potential clinical therapeutic targets for CC patients with LNM. However, the molecular mechanism of LNM in CC is unclear. In the present study, we demonstrated that fatty acid synthase (FASN), one of the key enzymes in lipid metabolism, had upregulated expression in the CC samples and was correlated with LNM. Moreover, multivariate Cox proportional hazards analysis identified FASN as an independent prognostic factor of CC patients. Furthermore, gain-of-function and loss-of-function approaches showed that FASN promoted CC cell migration, invasion, and lymphangiogenesis. Mechanistically, on the one hand, FASN could regulate cholesterol reprogramming and then activate the lipid raft-related c-Src/AKT/FAK signaling pathway, leading to enhanced cell migration and invasion. On the other hand, FASN induced lymphangiogenesis by secreting PDGF-AA/IGFBP3. More importantly, knockdown of FASN with FASN shRNA or the inhibitors C75 and Cerulenin dramatically diminished LNM in vivo, suggesting that FASN plays an essential role in LNM of CC and the clinical application potential of FASN inhibitors. Taken together, our findings uncover a novel molecular mechanism in LNM of CC and identify FASN as a novel prognostic factor and potential therapeutic target for LNM in CC.
Collapse
|
8
|
Sun Y, Ling J, Liu L. Collagen type X alpha 1 promotes proliferation, invasion and epithelial-mesenchymal transition of cervical cancer through activation of TGF-β/Smad signaling. Physiol Int 2022; 109:204-214. [PMID: 35587388 DOI: 10.1556/2060.2022.00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Background Collagen type X alpha 1 (COL10A1) belongs to the collagen family and constitutes the main component of the interstitial matrix. COL10A1 was found to be dysregulated in various cancers, and to participate in tumorigenesis. However, the role of COL10A1 in cervical cancer (CC) remains unclear. Methods Expression of COL10A1 in CC cells and tissues was detected by western blot and qRT-PCR. CC cells were transfected with pcDNA-COL10A1 or si-COL10A1, and the effect of COL10A1 on cell proliferation of CC was assessed by MTT and colony formation assays. Cell metastasis was detected by wound healing and transwell assays. Western blot was applied to evaluate epithelial-mesenchymal transition. Results COL10A1 was significantly elevated in CC tissues and cells (P < 0.001). Over-expression of COL10A1 increased cell viability of CC (P < 0.001), and enhanced the number of colonies (P < 0.001). However, knockdown of COL10A1 reduced the cell proliferation of CC (P < 0.001). Over-expression of COL10A1 also promoted cell migration (P < 0.001) and invasion (P < 0.001) of CC, whereas silencing of COL10A1 suppressed cell metastasis (P < 0.001). Protein level of E-cadherin in CC was reduced (P < 0.05), whereas N-cadherin and vimentin were enhanced by COL10A1 over-expression (P < 0.001). Silencing of COL10A1 reduced the protein level of TGF-β1 (P < 0.01), and down-regulated the phosphorylation of Smad2 and Smad3 in CC (P < 0.001). Conclusion Down-regulation of COL10A1 suppressed cell proliferation, metastasis, and epithelial-mesenchymal transition of CC through inactivation of TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Yangyan Sun
- 1 Department of Gynecology, Jiangyin People's Hospital, Wuxi, Jiangsu Province, 214400, China
| | - Jing Ling
- 1 Department of Gynecology, Jiangyin People's Hospital, Wuxi, Jiangsu Province, 214400, China
| | - Lu Liu
- 2 Department of Pediatrics, Wuhan Third Hospital, Wuhan, Hubei Province, 432500, China
| |
Collapse
|
9
|
The non-apoptotic function of Caspase-8 in negatively regulating the CDK9-mediated Ser2 phosphorylation of RNA polymerase II in cervical cancer. Cell Mol Life Sci 2022; 79:597. [PMID: 36399280 PMCID: PMC9674771 DOI: 10.1007/s00018-022-04598-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
Cervical cancer is the fourth most frequently diagnosed and fatal gynecological cancer. 15-61% of all cases metastasize and develop chemoresistance, reducing the 5-year survival of cervical cancer patients to as low as 17%. Therefore, unraveling the mechanisms contributing to metastasis is critical in developing better-targeted therapies against it. Here, we have identified a novel mechanism where nuclear Caspase-8 directly interacts with and inhibits the activity of CDK9, thereby modulating RNAPII-mediated global transcription, including those of cell-migration- and cell-invasion-associated genes. Crucially, low Caspase-8 expression in cervical cancer patients leads to poor prognosis, higher CDK9 phosphorylation at Thr186, and increased RNAPII activity in cervical cancer cell lines and patient biopsies. Caspase-8 knock-out cells were also more resistant to the small-molecule CDK9 inhibitor BAY1251152 in both 2D- and 3D-culture conditions. Combining BAY1251152 with Cisplatin synergistically overcame chemoresistance of Caspase-8-deficient cervical cancer cells. Therefore, Caspase-8 expression could be a marker in chemoresistant cervical tumors, suggesting CDK9 inhibitor treatment for their sensitization to Cisplatin-based chemotherapy.
Collapse
|
10
|
Zhao K, Yuan WH, Li WJ, Chi ZP, Wang SR, Chen ZG. Effect of RhoE expression on the migration and invasion of tongue squamous cell carcinoma. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:510-517. [PMID: 34636197 DOI: 10.7518/hxkq.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES This study aims to investigate the effect of RhoE expression on the migration and invasion of tongue squamous cell carcinoma (TSCC). METHODS Forty-eight TSCC cases were selected from the Maxillofacial Surgery Center of Qingdao Municipal Hospital from 2017 to 2019. The expression of RhoE in the specimens (TSCC and adjacent tissues) was detected by immunohistochemistry, and RhoE mRNA and protein were extracted to further detect the expression of RhoE. SCC-4 and CAL-27 cells were selected for in vitro experiments. Transient transfection was used to overexpress RhoE. Real-time fluorescence quantitative PCR (qRT-PCR) and Western blot analyses were conducted to detect the overexpression efficiency. Scratch test and Transwell cell invasion tests were used to detect the migration and invasion ability of TSCC, respectively. The expression levels of Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) were detected by Western blot. Experimental data were analyzed by Graphpad prism 8.2.1 software. RESULTS The expression level of RhoE in TSCC was significantly lower than that in adjacent tissues (P<0.05). The migration and invasion abilities of TSCC were significantly lower than those in the control group (P<0.05). The Western blot showed significantly lower expression levels of ROCK1, MMP-2, and MMP-9 in the experimental group than in the control group (P<0.05). CONCLUSIONS RhoE expression is low in TSCC. Over expression RhoE in TSCC can significantly decrease its migration and invasion abilities. Hence, RhoE may play an important role in regulating the metastasis and invasion of TSCC and provide a new target for gene therapy.
Collapse
Affiliation(s)
- Kai Zhao
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Wen-Hong Yuan
- Dept. of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Wen-Jian Li
- School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Zeng-Peng Chi
- College of Stomatology, Weifang Medical University, Weifang 261021, China
| | - Shao-Ru Wang
- School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Zheng-Gang Chen
- Dept. of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| |
Collapse
|
11
|
Nozaki M, Nishizuka M. Repression of RhoJ expression promotes TGF-β-mediated EMT in human non-small-cell lung cancer A549cells. Biochem Biophys Res Commun 2021; 566:94-100. [PMID: 34119829 DOI: 10.1016/j.bbrc.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Non-small-cell lung cancer (NSCLC) accounts for most cancer-related deaths because of its strong metastatic ability. It is important to understand NSCLC's molecular mechanisms of metastasis. RhoJ, a protein that belongs to the Rho family of small GTPases, regulates endothelial motility, angiogenesis, and adipogenesis. Recently, bioinformatics analysis showed that NSCLC patients with lower RhoJ expression had a worse survival outcome than those with high RhoJ expression. However, little is known about RhoJ's role in NSCLC. In the present study, we demonstrated that RhoJ knockdown accelerated TGF-βmediated epithelial-to-mesenchymal transition (EMT), an important cancer metastasis process, in A549 and PC-9 cells. Furthermore, using Matrigel-coated transwell chambers, we showed that RhoJ knockdown enhanced the invasion capacity of A549 cells that had undergone EMT. Also, reduced RhoJ expression increased Smad3 phosphorylation and Snail expression during the EMT process. Our results provide the first evidence of a potential novel role for RhoJ in the inhibition of EMT via modulation of the TGF-β-Smad signaling pathway, and shed new light on the mechanisms underlying EMT in NSCLC.
Collapse
Affiliation(s)
- Misa Nozaki
- Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Makoto Nishizuka
- Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan; Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
12
|
Wang S, Zhu W, Qiu J, Chen F. lncRNA SNHG4 promotes cell proliferation, migration, invasion and the epithelial-mesenchymal transition process via sponging miR-204-5p in gastric cancer. Mol Med Rep 2020; 23:85. [PMID: 33236157 PMCID: PMC7716413 DOI: 10.3892/mmr.2020.11724] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Long non-coding (lnc)RNAs and microRNAs (miRNAs/miRs) have physiological and pathological functions in various diseases, including gastric cancer (GC). The current study explored the association between lncRNA small nucleolar RNA host gene 4 (SNHG4) and miR-148a-3p, and their functions in GC cells. SNHG4 expression and overall survival data were analyzed using bioinformatics, and the interaction of SNHG4 and miR-148a-3p was predicted using starBase and confirmed via a dual-luciferase reporter assay. Cell viability, colony formation ability and apoptosis rate were detected using Cell Counting Kit-8, colony formation and flow cytometry assays, respectively. Cell migration and invasion were determined via wound-healing and Transwell assays. mRNA and protein expression levels were determined via reverse transcription-quantitative PCR and western blotting. The results demonstrated that in GC tissues and cell lines, SNHG4 was highly expressed, while miR-204-5p expression was decreased, and that the expression levels of SNHG4 and miR-204-5p were negatively correlated. The downregulated expression of SNHG4 decreased the effects of miR-204-5p inhibitor on promoting cell proliferation, migration, invasion and epithelial-mesenchymal transition, but enhanced the inhibitory effect of miR-204-5p on GC cell apoptosis. The findings of the current study revealed the potential mechanism of the SNHG4-miR-204-5p pathway in GC, which may be conducive to the development of novel drugs against GC growth.
Collapse
Affiliation(s)
- Shimei Wang
- Department of Gastroenterology, Zhuji People's Hospital of Zhejiang Province, Shaoxing, Zhejiang 311800, P.R. China
| | - Wei Zhu
- Department of General Surgery, Zhuji Central Hospital, Shaoxing, Zhejiang 311800, P.R. China
| | - Ji Qiu
- Department of Gastroenterology, Zhuji People's Hospital of Zhejiang Province, Shaoxing, Zhejiang 311800, P.R. China
| | - Fei Chen
- Department of Gastroenterology, Zhuji People's Hospital of Zhejiang Province, Shaoxing, Zhejiang 311800, P.R. China
| |
Collapse
|
13
|
Huang Q, Fu Y, Zhang S, Zhang Y, Chen S, Zhang Z. Ethyl pyruvate inhibits glioblastoma cells migration and invasion through modulation of NF-κB and ERK-mediated EMT. PeerJ 2020; 8:e9559. [PMID: 32742812 PMCID: PMC7380274 DOI: 10.7717/peerj.9559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Background Glioblastoma is a grade IV glioma with the highest degree of malignancy and extremely high incidence. Because of the poor therapeutic effect of surgery and radiochemotherapy, glioblastoma has a high recurrence rate and lethality, and is one of the most challenging tumors in the field of oncology. Ethyl pyruvate (EP), a stable lipophilic pyruvic acid derivative, has anti-inflammatory, antioxidant, immunomodulatory and other cellular protective effects. It has been reported that EP has potent anti-tumor effects on many types of tumors, including pancreatic cancer, prostate cancer, liver cancer, gastric cancer. However, whether EP has anti-tumor effect on glioblastoma or not is still unclear. Methods Glioblastoma U87 and U251 cells were treated with different concentrations of EP for 24 h or 48 h. CCK8 assay and Colony-Formation assay were performed to test the viability and proliferation. Wound-healing assay and Transwell assay were carried out to measure cell invasion and migration. Western blot was not only used to detect the protein expression of epithelial-mesenchymal transition (EMT)-related molecules, but also to detect the expression and activation levels of NF-κB (p65) and Extracellular Signal Regulated Kinase (ERK). Results In glioblastoma U87 and U251 cells treated with EP, the viability, proliferation, migration, invasion abilities were inhibited in a dose-dependent manner. EP inhibited EMT and the activation of NF-κB (p65) and ERK. With NF-κB (p65) and ERK activated, EMT, migration and invasion of U87 and U251 cells were promoted. However the activation of NF-κB (p65) and ERK were decreased, EMT, migration and invasion abilities were inhibited in U87 and U251 cells treated with EP. Conclusion EP inhibits glioblastoma cells migration and invasion by blocking NF-κB and ERK-mediated EMT.
Collapse
Affiliation(s)
- Qing Huang
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| | - Yongming Fu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Zhang
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| | - Youxiang Zhang
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| | - Simin Chen
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| | - Zuping Zhang
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
14
|
Rho GTPases in Gynecologic Cancers: In-Depth Analysis toward the Paradigm Change from Reactive to Predictive, Preventive, and Personalized Medical Approach Benefiting the Patient and Healthcare. Cancers (Basel) 2020; 12:cancers12051292. [PMID: 32443784 PMCID: PMC7281750 DOI: 10.3390/cancers12051292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Rho guanosine triphospatases (GTPases) resemble a conserved family of GTP-binding proteins regulating actin cytoskeleton dynamics and several signaling pathways central for the cell. Rho GTPases create a so-called Ras-superfamily of GTPases subdivided into subgroups comprising at least 20 members. Rho GTPases play a key regulatory role in gene expression, cell cycle control and proliferation, epithelial cell polarity, cell migration, survival, and apoptosis, among others. They also have tissue-related functions including angiogenesis being involved in inflammatory and wound healing processes. Contextually, any abnormality in the Rho GTPase function may result in severe consequences at molecular, cellular, and tissue levels. Rho GTPases also play a key role in tumorigenesis and metastatic disease. Corresponding mechanisms include a number of targets such as kinases and scaffold/adaptor-like proteins initiating GTPases-related signaling cascades. The accumulated evidence demonstrates the oncogenic relevance of Rho GTPases for several solid malignancies including breast, liver, bladder, melanoma, testicular, lung, central nervous system (CNS), head and neck, cervical, and ovarian cancers. Furthermore, Rho GTPases play a crucial role in the development of radio- and chemoresistance e.g. under cisplatin-based cancer treatment. This article provides an in-depth overview on the role of Rho GTPases in gynecological cancers, highlights relevant signaling pathways and pathomechanisms, and sheds light on their involvement in tumor progression, metastatic spread, and radio/chemo resistance. In addition, insights into a spectrum of novel biomarkers and innovative approaches based on the paradigm shift from reactive to predictive, preventive, and personalized medicine are provided.
Collapse
|