1
|
Gao W, Zhang J, Ding L, Chang Y, Gao F, Yang P, Ma X, Guo Y. Tumor Targeted Cuprous-Based Nanocomposite as Responsive Cascade Nanocatalyst for Efficient Tumor Synergistic Therapy. Chemistry 2024; 30:e202302961. [PMID: 38014860 DOI: 10.1002/chem.202302961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
The single-functionality of traditional chemodynamic therapy (CDT) reagents usually limits the therapeutic efficacy of cancer treatment. Synergistic nanocomposites that involve cascade reaction provide a promising strategy to achieve satisfactory anticancer effects. Herein, a cuprous-based nanocomposite (CCS@GOx@HA) is fabricated, which owns the tumor targeting ability and can undergo tumor microenvironment responsive cascade reaction to enhance the tumor therapeutic efficiency significantly. Surface modification of nanocomposite with hyaluronic acid enables the targeted delivery of the nanocomposite to cancer cells. Acid-triggered decomposition of nanocomposite in cancer cell results in the release of Cu+ , Se2- and GOx. The Cu+ improves the Fenton-like reaction with endogenous H2 O2 to generate highly toxic • OH for CDT. While GOx can not only catalyze the in situ generation of endogenous H2 O2 , but also accelerate the consumption of intratumoral glucose to reduce nutrient supply in tumor site. In addition, Se2- further improves the therapeutic effects of CDT by upregulating the reactive oxygen species (ROS) in tumor cells. Meanwhile, the surface modification endows the nanocomposite the good water dispersibility and biocompatibility. Moreover, in vitro and in vivo experiments demonstrate satisfactory anti-cancer therapeutic performance by the synergistic cascade function of CCS@GOx@HA than CDT alone.
Collapse
Affiliation(s)
- Weihua Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lina Ding
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yi Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Fangli Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Pengfei Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yuming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
2
|
Chiu YC, Liang CM, Chung CH, Hong ZJ, Chien WC, Hsu SD. The influence of early selenium supplementation on trauma patients: A propensity-matched analysis. Front Nutr 2022; 9:1062667. [PMID: 36570123 PMCID: PMC9773250 DOI: 10.3389/fnut.2022.1062667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Oxidative stress is involved in numerous inflammatory diseases, including trauma. Micronutrients, such as selenium (Se), which contribute to antioxidant defense, exhibit low plasma levels during critical illness. This study aimed to investigate the impact of early Se supplementation on trauma patients. Materials and methods A total of 6,891 trauma patients were registered at a single medical center from January 2018 to December 2021. Twenty trauma patients with Se supplemented according to the protocol were included in the study group. Subsequently, 1:5 propensity score matching (PSM) analysis was introduced. These patients received 100 mcg three times a day for 5 days. The primary outcome was overall survival (OS); the secondary outcomes were hospital/intensive care unit (ICU) length of stay (LOS), serologic change, ventilator dependence days, and ventilation profile. Results The hospital LOS (20.0 ± 10.0 vs. 37.4 ± 42.0 days, p = 0.026) and ICU LOS (6.8 ± 3.6 vs. 13.1 ± 12.6 days, p < 0.006) were significantly shorter in the study group. In terms of serology, improvement in neutrophil, liver function, and C-reactive protein (CRP) level change percentile indicated better outcomes in the study group as well as a better OS rate (100 vs. 83.7%, p = 0.042). Longer ventilator dependence was found to be an independent risk factor for mortality and pulmonary complications in 6,891 trauma patients [odds ratio (OR) = 1.262, 95% confidence interval (CI) = 1.039-1.532, p < 0.019 and OR = 1.178, 95% CI = 1.033-1.344, p = 0.015, respectively]. Conclusion Early Se supplementation after trauma confers positive results in terms of decreasing overall ICU LOS/hospital LOS and mortality. Organ injury, particularly hepatic insults, and inflammatory status, also recovered better.
Collapse
Affiliation(s)
- Yu-Cheng Chiu
- Division of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Ming Liang
- Division of Trauma Surgery and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Zhi-Jie Hong
- Division of Trauma Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Der Hsu
- Division of Trauma Surgery and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,*Correspondence: Sheng-Der Hsu,
| |
Collapse
|
3
|
Editorial for the Special Issue "New Strategies in Cancer Pharmacotherapy: Development of Hormonal Antineoplastic Drugs, Cytotoxic Drugs and Targeted Therapies". Int J Mol Sci 2020; 21:ijms21114081. [PMID: 32521599 PMCID: PMC7312230 DOI: 10.3390/ijms21114081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The Special Issue entitled "New Strategies in Cancer Pharmacotherapy: Development of Hormonal Antineoplastic Drugs, Cytotoxic Drugs and Targeted Therapies" was conceived with the idea of compiling information on the latest advances in the treatment of both hormone-dependent and hormone-independent cancers [...].
Collapse
|
4
|
Zheng W, He R, Boada R, Subirana MA, Ginman T, Ottosson H, Valiente M, Zhao Y, Hassan M. A general covalent binding model between cytotoxic selenocompounds and albumin revealed by mass spectrometry and X-ray absorption spectroscopy. Sci Rep 2020; 10:1274. [PMID: 31988319 PMCID: PMC6985102 DOI: 10.1038/s41598-020-57983-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/23/2019] [Indexed: 01/27/2023] Open
Abstract
Selenocompounds (SeCs) are promising therapeutic agents for a wide range of diseases including cancer. The treatment results are heterogeneous and dependent on both the chemical species and the concentration of SeCs. Moreover, the mechanisms of action are poorly revealed, which most probably is due to the detection methods where the quantification is based on the total selenium as an element. To understand the mechanisms underlying the heterogeneous cytotoxicity of SeCs and to determine their pharmacokinetics, we investigated selenium speciation of six SeCs representing different categories using liquid chromatography-mass spectrometry (LC-MS) and X-ray absorption spectroscopy (XAS) and the cytotoxicity using leukemic cells. SeCs cytotoxicity was correlated with albumin binding degree as revealed by LC-MS and XAS. Further analysis corroborated the covalent binding between selenol intermediates of SeCs and albumin thiols. On basis of the Se-S model, pharmacokinetic properties of four SeCs were for the first time profiled. In summary, we have shown that cytotoxic SeCs could spontaneously transform into selenol intermediates that immediately react with albumin thiols through Se-S bond. The heterogeneous albumin binding degree may predict the variability in cytotoxicity. The present knowledge will also guide further kinetic and mechanistic investigations in both experimental and clinical settings.
Collapse
Affiliation(s)
- Wenyi Zheng
- Experimental Cancer Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institute, Huddinge, 141 86, Sweden.,ECM, Clinical Research Center and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden
| | - Rui He
- Experimental Cancer Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institute, Huddinge, 141 86, Sweden.,ECM, Clinical Research Center and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden
| | - Roberto Boada
- Centre GTS, Department of Chemistry, Autonomous University of Barcelona, Barcelona, 08193, Spain
| | - Maria Angels Subirana
- Centre GTS, Department of Chemistry, Autonomous University of Barcelona, Barcelona, 08193, Spain
| | | | - Håkan Ottosson
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 141 86, Sweden
| | - Manuel Valiente
- Centre GTS, Department of Chemistry, Autonomous University of Barcelona, Barcelona, 08193, Spain
| | - Ying Zhao
- Experimental Cancer Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institute, Huddinge, 141 86, Sweden. .,ECM, Clinical Research Center and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institute, Huddinge, 141 86, Sweden. .,ECM, Clinical Research Center and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden.
| |
Collapse
|