1
|
Fletcher KA, Alkurashi MH, Lindsay AJ. Endosomal recycling inhibitors downregulate estrogen receptor-alpha and synergise with endocrine therapies. Breast Cancer Res Treat 2024; 204:631-642. [PMID: 38228924 PMCID: PMC10959794 DOI: 10.1007/s10549-023-07225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Breast cancer (BC) accounts for roughly 30% of new cancers diagnosed in women each year; thus, this cancer type represents a substantial burden for people and health care systems. Despite the existence of effective therapies to treat BC, drug resistance remains a problem and is a major cause of treatment failure. Therefore, new drugs and treatment regimens are urgently required to overcome resistance. Recent research indicates that inhibition of the endosomal recycling pathway, an intracellular membrane trafficking pathway that returns endocytosed proteins back to the plasma membrane, may be a promising strategy to downregulate clinically relevant cell surface proteins such as HER2 and HER3, and to overcome drug resistance. METHODS To investigate the molecular mechanism of action of an endosomal recycling inhibitor (ERI) called primaquine, we performed a reverse-phase protein array (RPPA) assay using a HER2-positive breast cancer cell line. The RPPA findings were confirmed by Western blot and RT-qPCR in several BC cell lines. Novel drug combinations were tested by MTT cell viability and clonogenic assays. RESULTS Among the signalling molecules downregulated by ERIs were estrogen receptor-alpha (ER-α) and androgen receptor. We confirmed this finding in other breast cancer cell lines and show that downregulation occurs at the transcriptional level. We also found that ERIs synergise with tamoxifen, a standard-of-care therapy for breast cancer. DISCUSSION Our data suggest that combining ERIs with hormone receptor antagonists may enhance their efficacy and reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Kelsey A Fletcher
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Mai H Alkurashi
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland.
| |
Collapse
|
2
|
Benvenuto M, Angiolini V, Focaccetti C, Nardozi D, Palumbo C, Carrano R, Rufini A, Bei R, Miele MT, Mancini P, Barillari G, Cirone M, Ferretti E, Tundo GR, Mutti L, Masuelli L, Bei R. Antitumoral effects of Bortezomib in malignant mesothelioma: evidence of mild endoplasmic reticulum stress in vitro and activation of T cell response in vivo. Biol Direct 2023; 18:17. [PMID: 37069690 PMCID: PMC10111665 DOI: 10.1186/s13062-023-00374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is a rare tumor with a dismal prognosis. The low efficacy of current treatment options highlights the urge to identify more effective therapies aimed at improving MM patients' survival. Bortezomib (Bor) is a specific and reversible inhibitor of the chymotrypsin-like activity of the 20S core of the proteasome, currently approved for the treatment of multiple myeloma and mantle cell lymphoma. On the other hand, Bor appears to have limited clinical effects on solid tumors, because of its low penetration and accumulation into tumor tissues following intravenous administration. These limitations could be overcome in MM through intracavitary delivery, with the advantage of increasing local drug concentration and decreasing systemic toxicity. METHODS In this study, we investigated the effects of Bor on cell survival, cell cycle distribution and modulation of apoptotic and pro-survival pathways in human MM cell lines of different histotypes cultured in vitro. Further, using a mouse MM cell line that reproducibly forms ascites when intraperitoneally injected in syngeneic C57BL/6 mice, we investigated the effects of intraperitoneal Bor administration in vivo on both tumor growth and the modulation of the tumor immune microenvironment. RESULTS We demonstrate that Bor inhibited MM cell growth and induced apoptosis. Further, Bor activated the Unfolded Protein Response, which however appeared to participate in lowering cells' sensitivity to the drug's cytotoxic effects. Bor also affected the expression of EGFR and ErbB2 and the activation of downstream pro-survival signaling effectors, including ERK1/2 and AKT. In vivo, Bor was able to suppress MM growth and extend mice survival. The Bor-mediated delay of tumor progression was sustained by increased activation of T lymphocytes recruited to the tumor microenvironment. CONCLUSIONS The results presented herein support the use of Bor in MM and advocate future studies aimed at defining the therapeutic potential of Bor and Bor-based combination regimens for this treatment-resistant, aggressive tumor.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
- Saint Camillus International, University of Health and Medical Sciences, Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Rufini
- Saint Camillus International, University of Health and Medical Sciences, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Riccardo Bei
- Medical School, University of Rome "Tor Vergata", Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luciano Mutti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
3
|
Chuang TC, Fang GS, Hsu SC, Lee YJ, Shao WS, Wang V, Lee SL, Kao MC, Ou CC. Baicalein suppresses HER2-mediated malignant transformation of HER2-overexpressing ovarian cancer cells by downregulating HER2 gene expression. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988316 DOI: 10.1002/tox.23790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
The upregulation of the HER2 oncogene is associated with a variety of human cancers and is associated with poor prognosis. Baicalein is reported to have anti-tumor activity, but the molecular mechanism of this effect in HER2-positive cancer cells has not been studied. In this study, our data showed that baicalein can inhibit the proliferation and transformation potential of ovarian cancer cells overexpressing HER2. Baicalein treatment caused a dose-dependent inhibition of HER2 gene expression at the transcriptional level. Baicalein acted on ovarian cancer cells overexpressing HER2 to downregulate the PI3K/Akt signaling pathway downstream of HER2 and inhibit the expression or activity of downstream targets, such as VEGF and cyclin D1 and MMP2. Oral administration of baicalein supplemented with a pharmaceutical excipient significantly inhibited the growth of HER2-overexpressing ovarian SKOV-3 cancer xenografts in mice. These results suggest that downregulation of HER2 gene expression by baicalein at the transcriptional level contributes to inhibit the in vitro and in vivo proliferation and HER2-mediated malignant transformation of HER2-overexpressing ovarian cancer cells.
Collapse
Affiliation(s)
- Tzu-Chao Chuang
- Department of Chemistry, Tamkang University, New Taipei, Taiwan, R.O.C
| | - Guan-Shiun Fang
- Department of Chemistry, Tamkang University, New Taipei, Taiwan, R.O.C
| | - Shih-Chung Hsu
- Department of Early Childhood Care and Education, University of Kang Ning, Taipei, Taiwan, R.O.C
| | - Yi-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Wei-Syun Shao
- Department of Chemistry, Tamkang University, New Taipei, Taiwan, R.O.C
| | - Vinchi Wang
- Department of Neurology, Cardinal Tien Hospital, New Taipei, Taiwan, R.O.C
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C
| | - Shou-Lun Lee
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Ming-Ching Kao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Chien-Chih Ou
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| |
Collapse
|
4
|
Wei Y, Yu N, Wang Z, Hao Y, Wang Z, Yang Z, Liu J, Wang J. Analysis of the multi-physiological and functional mechanism of wheat alkylresorcinols based on reverse molecular docking and network pharmacology. Food Funct 2022; 13:9091-9107. [PMID: 35943408 DOI: 10.1039/d2fo01438f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Alkylresorcinols (ARs) are phenolic lipids present in the bran part of whole grain wheat and rye, which possess antioxidant, anti-inflammatory, anti-cancer and anti-tumor properties. The physiological activities of ARs have been proven to be diverse; however, the specific molecular mechanisms are still unclear. In this study, reverse virtual screening and network pharmacology were used to explore the potential molecular mechanisms of the physiological function of ARs and their endogenous metabolites. The Metascape database was used for GO enrichment and KEGG pathway analysis. Furthermore, molecular docking was used to investigate the interactions between active compounds and potential targets. The results showed that the bioavailability of most ARs and their endogenous metabolites was 0.55 and 0.56, while the bioavailability of certain endogenous metabolites was only 0.11. Multiplex analysis was used to screen 73 important targets and 4 core targets (namely, HSP90AA1, EP300, HSP90AB1 and ERBB2) out of the 163 initial targets. The important targets involved in the key KEGG pathway were pathways in cancer (hsa05200), lipid and atherosclerosis (hsa05417), Th17 cell differentiation (hsa04659), chemical carcinogenesis-receptor activation (hsa05207), and prostate cancer (hsa05215). The compounds involved in the core targets were AR-C21, AR-C19, AR-C17, 3,5-DHPHTA-S, 3,5-DHPHTA-G, 3,5-DHPPTA, 3,5-DHPPTA-S, 3,5-DHPPTA-G, 3,5-DHPPTA-Gly and 3,5-DHPPA-G. The interaction force between them was mainly related to hydrogen bonds and van der Waals. Overall, the physiological activities of ARs are not only related to their multiple targets, but may also be related to the synergistic effect of their endogenous metabolites.
Collapse
Affiliation(s)
- Yulong Wei
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Zongwei Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Zihui Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
5
|
Liu X, Chipurupalli S, Jiang P, Tavasoli M, Yoo BH, McPhee M, Mazinani S, Francia G, Kerbel RS, Rosen KV. ErbB2/Her2-dependent downregulation of a cell death-promoting protein BLNK in breast cancer cells is required for 3D breast tumor growth. Cell Death Dis 2022; 13:687. [PMID: 35933456 PMCID: PMC9357009 DOI: 10.1038/s41419-022-05117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023]
Abstract
A significant proportion of breast cancers are driven by ErbB2/Her2 oncoprotein that they overexpress. These malignancies are typically treated with various ErbB2-targeted drugs, but many such cancers develop resistance to these agents and become incurable. Conceivably, treatment of ErbB2-positive cancers could be facilitated by use of agents blocking oncogenic signaling mechanisms downstream of ErbB2. However, current understanding of these mechanisms is limited. The ability of solid tumor cells to resist anoikis, cell death triggered by cell detachment from the extracellular matrix (ECM), is thought to be critical for 3D tumor growth. In an effort to understand the mechanisms of ErbB2-driven breast cancer cell anoikis resistance we found that detachment of non-malignant breast epithelial cells from the ECM upregulates a cell death-promoting tumor suppressor adapter protein BLNK and that ErbB2 blocks this upregulation by reducing tumor cell levels of transcription factor IRF6. We further observed that trastuzumab, a therapeutic anti-ErbB2 antibody, upregulates BLNK in human trastuzumab-sensitive but not trastuzumab-resistant ErbB2-positive breast cancer cells. Moreover, we established that BLNK promotes anoikis by activating p38 MAP kinase and that ErbB2-dependent BLNK downregulation blocks breast cancer cell anoikis. In search for pharmacological approaches allowing to upregulate BLNK in tumor cells we found that clinically approved proteasome inhibitor bortezomib upregulates IRF6 and BLNK in human breast cancer cells and inhibits their 3D growth in a BLNK-dependent manner. In addition, we found that BLNK upregulation in human ErbB2-positive breast cancer cells blocks their ability to form tumors in mice. Furthermore, we used publicly available data on mRNA levels in multiple breast cancers to demonstrate that increased BLNK mRNA levels correlate with increased relapse-free survival in a cohort of approximately 400 patients with ErbB2-positive breast cancer. In summary, we discovered a novel mechanism of ErbB2-driven 3D breast tumor growth mediated by ErbB2-dependent BLNK downregulation.
Collapse
Affiliation(s)
- Xiaoyang Liu
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Sandhya Chipurupalli
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Peijia Jiang
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Mahtab Tavasoli
- grid.55602.340000 0004 1936 8200Department of Pharmacology, Department of Pediatrics, Dalhousie University, Halifax, NS Canada
| | - Byong Hoon Yoo
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Michael McPhee
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Sina Mazinani
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Giulio Francia
- grid.267324.60000 0001 0668 0420Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX USA
| | - Robert S. Kerbel
- grid.17063.330000 0001 2157 2938Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938University of Toronto Department of Medical Biophysics, Toronto, ON Canada
| | - Kirill V. Rosen
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
6
|
Mishra A, Hourigan D, Lindsay AJ. Inhibition of the endosomal recycling pathway downregulates HER2 activation and overcomes resistance to tyrosine kinase inhibitors in HER2-positive breast cancer. Cancer Lett 2022; 529:153-167. [PMID: 35007696 DOI: 10.1016/j.canlet.2022.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
The development of HER2-targeted therapies has led to a dramatic improvement in outcomes for breast cancer patients. However, nearly all patients with metastatic HER2-positive breast cancer will eventually progress on these therapies due to innate or acquired resistance. Recent evidence suggests that the endosomal recycling of HER2 plays an important role in regulating its oncogenic signalling. Here we report that the expression of Rab coupling protein (RCP), a key regulator of endosomal recycling, positively correlates with that of HER2 and HER3 in breast tumours, and high RCP expression is predictive of poor relapse-free and overall survival in patients with HER2-amplified breast cancer. Chemical and genetic inhibition of endosomal recycling leads to a reduction in the total cellular levels of HER2 and HER3 and inhibits the activation of their downstream signalling pathways. We find that HER2 and HER3 that have been internalised from the plasma membrane are diverted to lysosomes for degradation when endosomal recycling is blocked. Primaquine (PQ), a small molecule inhibitor of the endosomal recycling pathway, synergises with HER2-targeting tyrosine kinase inhibitors and overcomes innate and acquired resistance to these TKIs. Moreover, TKI-induced drug tolerant persister cells are vulnerable to endosomal recycling inhibitors. These findings suggest that inhibition of endosomal recycling represents a promising therapeutic strategy for treating drug resistant HER2-positive breast cancer.
Collapse
Affiliation(s)
- Anurag Mishra
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - David Hourigan
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland.
| |
Collapse
|
7
|
Shi K, Yang L, Du X, Guo D, Xue L. Molecular chaperone Hsp90 protects KCBP from degradation by proteasome in Dunaliella salina cells. Folia Microbiol (Praha) 2021; 66:949-957. [PMID: 34240332 DOI: 10.1007/s12223-021-00897-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/01/2021] [Indexed: 11/26/2022]
Abstract
Kinesin-like calmodulin-binding protein (KCBP) is a unique kinesin with half kinesin and half myosin, with kinesin motor domain at C-terminus and myosin tail homology region 4 (MyTH4) and band 4.1, ezrin, radixin, moesin (FERM) domains at N-terminus. The special structure endows KCBP multi-intracellular functions, including cell division, trichome morphogenesis in plants, and flagellar function in algae. However, little is known about the molecular mechanism underlying these functions. Here, we identified a molecular chaperone Hsp90 as a novel binding partner with KCBP in Dunaliella salina using a yeast two-hybrid screen. Further analysis showed that Hsp90 interacted with both the N-terminal and C-terminal of DsKCBP. Since Hsp90 was involved in the stability and proteolytic turnover of numerous proteins, whether Hsp90 regulated the degradation of DsKCBP was investigated. Our results showed that both Hsp90 and DsKCBP presented in the purified proteasome, and the interaction of DsKCBP-Hsp90 was inhibited upon Hsp90 inhibitor geldanamycin treatment. The level of DsKCBP proteins was diminished remarkably indicating that the disassociation of DsKCBP from Hsp90 accelerated the degradation of the former. Furthermore, immunofluorescence results showed that the localization of DsKCBP at basal body and flagella was disappeared by Hsp90 inhibition. The increased mRNA level of DsKCBP during flagellar assembly was not obvious by geldanamycin treatment. These data provided evidence that Hsp90 protected DsKCBP from degradation by proteasome and was involved in the role of DsKCBP in flagellar assembly.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, Henan, China.
- Laboratory for Cell Biology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China.
| | - Liang Yang
- Department of Microbiology and Immunology and Medicine, Henan Medical College, Zhengzhou, Henan, China
| | - Xiuhong Du
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, Henan, China
| | - Dan Guo
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, Henan, China
| | - Lexun Xue
- Laboratory for Cell Biology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Melatonin potentiates the cytotoxic effect of Neratinib in HER2 + breast cancer through promoting endocytosis and lysosomal degradation of HER2. Oncogene 2021; 40:6273-6283. [PMID: 34556812 PMCID: PMC8566236 DOI: 10.1038/s41388-021-02015-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Complete blockade of the HER2 protein itself and HER signaling network is critical to achieving effective HER2-targeted therapies. Despite the success of HER2-targeted therapies, the diseases will relapse in a significant fraction of patients with HER2+ breast cancers. How to improve the therapeutic efficacy of existing HER2-targeted agents remains an unmet clinical need. Here, we uncover a role of Melatonin in diminishing HER2-mediated signaling by destruction of HER2 protein. Mechanistically, Melatonin treatment attenuated the protective effect of the HSP90 chaperone complex on its client protein HER2, triggering ubiquitylation and subsequent endocytic lysosomal degradation of HER2. The inhibitory effect of Melatonin on HER2 signaling substantially enhanced the cytotoxic effects of the pan-HER inhibitor Neratinib in HER2+ breast cancer cells. Lastly, we demonstrate that dual inhibition of HER2 by combined use of Melatonin and Neratinib effectively blocked the growth of HER2+ breast tumor xenografts in vivo. Our findings shed light on the potential use of Melatonin in a novel dual HER2 blockade strategy for HER2+ breast cancer treatment.
Collapse
|