1
|
Sheng L, Sun J, Huang L, Yu M, Meng X, Shan Y, Dai H, Wang F, Shi J, Sheng M. Astragalus membranaceus and its monomers treat peritoneal fibrosis and related muscle atrophy through the AR/TGF-β1 pathway. Front Pharmacol 2024; 15:1418485. [PMID: 39239655 PMCID: PMC11374727 DOI: 10.3389/fphar.2024.1418485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024] Open
Abstract
Background: To anticipate the potential molecular mechanism of Astragalus membranaceus (AM) and its monomer, Calycosin, against peritoneal fibrosis (PF) and related muscle atrophy using mRNA-seq, network pharmacology, and serum pharmacochemistry. Methods: Animal tissues were examined to evaluate a CKD-PF mice model construction. mRNA sequencing was performed to find differential targets. The core target genes of AM against PF were screened through network pharmacology analysis, and CKD-PF mice models were given high- and low-dose AM to verify common genes. Serum pharmacochemistry was conducted to clarify which components of AM can enter the blood circulation, and the selected monomer was further validated through cell experiments for the effect on PF and mesothelial mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs). Results: The CKD-PF mice models were successfully constructed. A total of 31,184 genes were detected in the blank and CKD-PF groups, and 228 transcription factors had significant differences between the groups. Combined with network pharmacology analysis, a total of 228 AM-PF-related targets were identified. Androgen receptor (AR) was the remarkable transcription factor involved in regulating transforming growth factor-β1 (TGF-β1). AM may be involved in regulating the AR/TGF-β1 signaling pathway and may alleviate peritoneal dialysis-related fibrosis and muscle atrophy in CKD-PF mice. In 3% peritoneal dialysis solution-stimulated HMrSV5 cells, AR expression levels were dramatically reduced, whereas TGF-β1/p-smads expression levels were considerably increased. Conclusion: AM could ameliorate PF and related muscle atrophy via the co-target AR and modulated AR/TGF-β1 pathway. Calycosin, a monomer of AM, could partially reverse PMC MMT via the AR/TGF-β1/smads pathway. This study explored the traditional Chinese medicine theory of "same treatment for different diseases," and supplied the pharmacological evidence of "AM can treat flaccidity syndrome."
Collapse
Affiliation(s)
- Li Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
- Medical Experimental Research Center, First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Huang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohui Meng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Shi
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Gao J, Wen J, Hu D, Liu K, Zhang Y, Zhao X, Wang K. Bottlebrush inspired injectable hydrogel for rapid prevention of postoperative and recurrent adhesion. Bioact Mater 2022; 16:27-46. [PMID: 35386330 PMCID: PMC8958549 DOI: 10.1016/j.bioactmat.2022.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Postsurgical adhesion is a common clinic disease induced by surgical trauma, accompanying serious subsequent complications. Current non-surgical approaches of drugs treatment and biomaterial barrier administration only show limited prevention effects and couldn't effectively promote peritoneum repair. Herein, inspired by bottlebrush, a novel self-fused, antifouling, and injectable hydrogel is fabricated by the free-radical polymerization in aqueous solution between the methacrylate hyaluronic acid (HA-GMA) and N-(2-hydroxypropyl) methacrylamide (HPMA) monomer without any chemical crosslinkers, termed as H-HPMA hydrogel. The H-HPMA hydrogel can be tuned to perform excellent self-fused properties and suitable abdominal metabolism time. Intriguingly, the introduction of the ultra-hydrophilic HPMA chains to the H-HPMA hydrogel affords an unprecedented antifouling capability. The HPMA chains establish a dense hydrated layer that rapidly prevents the postsurgical adhesions and recurrent adhesions after adhesiolysis in vivo. The H-HPMA hydrogel can repair the peritoneal wound of the rat model within 5 days. Furthermore, an underlying mechanism study reveals that the H-HPMA hydrogel significantly regulated the mesothelial-to-mesenchymal transition (MMT) process dominated by the TGF-β-Smad2/3 signal pathway. Thus, we developed a simple, effective, and available approach to rapidly promote peritoneum regeneration and prevent peritoneal adhesion and adhesion recurrence after adhesiolysis, offering novel design ideas for developing biomaterials to prevent peritoneal adhesion.
Collapse
Affiliation(s)
- Jushan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinpeng Wen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Datao Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kailai Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinxin Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
3
|
Tucker TA, Idell S. Update on Novel Targeted Therapy for Pleural Organization and Fibrosis. Int J Mol Sci 2022; 23:ijms23031587. [PMID: 35163509 PMCID: PMC8835949 DOI: 10.3390/ijms23031587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022] Open
Abstract
Pleural injury and subsequent loculation is characterized by acute injury, sustained inflammation and, when severe, pathologic tissue reorganization. While fibrin deposition is a normal part of the injury response, disordered fibrin turnover can promote pleural loculation and, when unresolved, fibrosis of the affected area. Within this review, we present a brief discussion of the current IPFT therapies, including scuPA, for the treatment of pathologic fibrin deposition and empyema. We also discuss endogenously expressed PAI-1 and how it may affect the efficacy of IPFT therapies. We further delineate the role of pleural mesothelial cells in the progression of pleural injury and subsequent pleural remodeling resulting from matrix deposition. We also describe how pleural mesothelial cells promote pleural fibrosis as myofibroblasts via mesomesenchymal transition. Finally, we discuss novel therapeutic targets which focus on blocking and/or reversing the myofibroblast differentiation of pleural mesothelial cells for the treatment of pleural fibrosis.
Collapse
|
4
|
Ghosh AK, Soberanes S, Lux E, Shang M, Aillon RP, Eren M, Budinger GRS, Miyata T, Vaughan DE. Pharmacological inhibition of PAI-1 alleviates cardiopulmonary pathologies induced by exposure to air pollutants PM 2.5. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117283. [PMID: 34426376 PMCID: PMC8434953 DOI: 10.1016/j.envpol.2021.117283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 05/09/2023]
Abstract
Numerous studies have established that acute or chronic exposure to environmental pollutants like particulate matter (PM) leads to the development of accelerated aging related pathologies including pulmonary and cardiovascular diseases, and thus air pollution is one of the major global threats to human health. Air pollutant particulate matter 2.5 (PM2.5)-induced cellular dysfunction impairs tissue homeostasis and causes vascular and cardiopulmonary damage. To test a hypothesis that elevated plasminogen activator inhibitor-1 (PAI-1) levels play a pivotal role in air pollutant-induced cardiopulmonary pathologies, we examined the efficacy of a drug-like novel inhibitor of PAI-1, TM5614, in treating PM2.5-induced vascular and cardiopulmonary pathologies. Results from biochemical, histological, and immunohistochemical studies revealed that PM2.5 increases the circulating levels of PAI-1 and thrombin and that TM5614 treatment completely abrogates these effects in plasma. PM2.5 significantly augments the levels of pro-inflammatory cytokine interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF), and this also can be reversed by TM5614, indicating its efficacy in amelioration of PM2.5-induced increases in inflammatory and pro-thrombotic factors. TM5614 reduces PM2.5-induced increased levels of inflammatory markers cluster of differentiation 107 b (Mac3) and phospho-signal transducer and activator of transcription-3 (pSTAT3), adhesion molecule vascular cell adhesion molecule 1 (VCAM1), and apoptotic marker cleaved caspase 3. Longer exposure to PM2.5 induces pulmonary and cardiac thrombosis, but TM5614 significantly ameliorates PM2.5-induced vascular thrombosis. TM5614 also reduces PM2.5-induced increased blood pressure and heart weight. In vitro cell culture studies revealed that PM2.5 induces the levels of PAI-1, type I collagen, fibronectin (Millipore), and sterol regulatory element binding protein-1 and 2 (SREBP-1 and SREBP-2), transcription factors that mediate profibrogenic signaling, in cardiac fibroblasts. TM5614 abrogated that stimulation, indicating that it may block PM2.5-induced PAI-1 and profibrogenic signaling through suppression of SREBP-1 and 2. Furthermore, TM5614 blocked PM2.5-mediated suppression of nuclear factor erythroid related factor 2 (Nrf2), a major antioxidant regulator, in cardiac fibroblasts. Pharmacological inhibition of PAI-1 with TM5614 is a promising therapeutic approach to control air pollutant PM2.5-induced cardiopulmonary and vascular pathologies.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Saul Soberanes
- Pulmonary and Critical Care Division, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth Lux
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Meng Shang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Raul Piseaux Aillon
- Pulmonary and Critical Care Division, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mesut Eren
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Pulmonary and Critical Care Division, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University, Miyagi, Japan
| | - Douglas E Vaughan
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
HDAC Inhibitor Abrogates LTA-Induced PAI-1 Expression in Pleural Mesothelial Cells and Attenuates Experimental Pleural Fibrosis. Pharmaceuticals (Basel) 2021; 14:ph14060585. [PMID: 34207271 PMCID: PMC8234320 DOI: 10.3390/ph14060585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Lipoteichoic acid (LTA) stimulates pleural mesothelial cell (PMC) to overproduce plasminogen activator inhibitor-1 (PAI-1), and thus may promote pleural fibrosis in Gram-positive bacteria (GPB) parapneumonic effusion (PPE). Histone deacetylase inhibitor (HDACi) was found to possess anti-fibrotic properties. However, the effects of HDACi on pleural fibrosis remain unclear. The effusion PAI-1 was measured among 64 patients with GPB PPE. Pleural fibrosis was measured as radiographical residual pleural thickening (RPT) and opacity at a 12-month follow-up. The LTA-stimulated human PMCs and intrapleural doxycycline-injected rats were pretreated with or without the pan-HDACi, m-carboxycinnamic acid bis-hydroxamide (CBHA), then PAI-1 and collagen expression and activated signalings in PMCs, and morphologic pleural changes in rats were measured. Effusion PAI-1 levels were significantly higher in GPB PPE patients with RPT > 10 mm (n = 26) than those without (n = 38), and had positive correlation with pleural fibrosis shadowing. CBHA significantly reduced LTA-induced PAI-1 and collagen expression via inhibition of JNK, and decreased PAI-1 promoter activity and mRNA levels in PMCs. Furthermore, in doxycycline-treated rats, CBHA substantially repressed PAI-1 and collagen synthesis in pleural mesothelium and minimized pleural fibrosis. Conclusively, CBHA abrogates LTA-induced PAI-1 and collagen expression in PMCs and attenuates experimental pleural fibrosis. PAI-1 inhibition by HDACi may confer potential therapy for pleural fibrosis.
Collapse
|
6
|
Sathler PC. Hemostatic abnormalities in COVID-19: A guided review. AN ACAD BRAS CIENC 2020; 92:e20200834. [PMID: 32844987 DOI: 10.1590/0001-3765202020200834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already taken on pandemic proportions, affecting over 213 countries in a matter of weeks. In this context, several studies correlating hemostatic disorders with the infection dynamics of the new coronavirus have emerged. These studies have shown that a portion of the patients affected by Coronavirus Disease 2019 (COVID-19) have prolonged prothrombin time (PT) and activated partial thromboplastin time (APTT), elevated D-dimer levels and other fibrinolytic products, antithrombin (AT) activity reduced and decrease of platelet count. Based on these hallmarks, this review proposes to present possible pathophysiological mechanisms involved in the hemostatic changes observed in the pathological progression of COVID-19. In this analysis, it is pointed the relationship between the downregulation of angiotensin-converting enzyme 2 (ACE2) and storm cytokines action with the onset of hypercoagulability state, other than the clinical events involved in thrombocytopenia and hyperfibrinolysis progression.
Collapse
Affiliation(s)
- PlÍnio C Sathler
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|