1
|
Tao G, Ahrendt S, Miyauchi S, Zhu X, Peng H, Labutti K, Clum A, Hayes R, Chain PSG, Grigoriev IV, Bonito G, Martin FM. Characterisation and comparative analysis of mitochondrial genomes of false, yellow, black and blushing morels provide insights on their structure and evolution. IMA Fungus 2025; 16:e138363. [PMID: 40052075 PMCID: PMC11881001 DOI: 10.3897/imafungus.16.138363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/07/2025] [Indexed: 03/09/2025] Open
Abstract
Morchella species have considerable significance in terrestrial ecosystems, exhibiting a range of ecological lifestyles along the saprotrophism-to-symbiosis continuum. However, the mitochondrial genomes of these ascomycetous fungi have not been thoroughly studied, thereby impeding a comprehensive understanding of their genetic makeup and ecological role. In this study, we analysed the mitogenomes of 30 Morchellaceae species, including yellow, black, blushing and false morels. These mitogenomes are either circular or linear DNA molecules with lengths ranging from 217 to 565 kbp and GC content ranging from 38% to 48%. Fifteen core protein-coding genes, 28-37 tRNA genes and 3-8 rRNA genes were identified in these Morchellaceae mitogenomes. The gene order demonstrated a high level of conservation, with the cox1 gene consistently positioned adjacent to the rnS gene and cob gene flanked by apt genes. Some exceptions were observed, such as the rearrangement of atp6 and rps3 in Morchellaimportuna and the reversed order of atp6 and atp8 in certain morel mitogenomes. However, the arrangement of the tRNA genes remains conserved. We additionally investigated the distribution and phylogeny of homing endonuclease genes (HEGs) of the LAGLIDADG (LAGs) and GIY-YIG (GIYs) families. A total of 925 LAG and GIY sequences were detected, with individual species containing 19-48HEGs. These HEGs were primarily located in the cox1, cob, cox2 and nad5 introns and their presence and distribution displayed significant diversity amongst morel species. These elements significantly contribute to shaping their mitogenome diversity. Overall, this study provides novel insights into the phylogeny and evolution of the Morchellaceae.
Collapse
Affiliation(s)
- Gang Tao
- College of Eco-Environmental Engineering, Guizhou Minzu University, 550025, Guiyang, ChinaUniversité de LorraineChampenouxFrance
- Université de Lorraine, INRAE, UnitéMixte de Recherche Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, FranceGuizhou Minzu UniversityGuiyangChina
| | - Steven Ahrendt
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
| | - Shingo Miyauchi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, JapanOkinawa Institute of Science and Technology Graduate UniversityOnna, OkinawaJapan
| | - XiaoJie Zhu
- College of Eco-Environmental Engineering, Guizhou Minzu University, 550025, Guiyang, ChinaUniversité de LorraineChampenouxFrance
| | - Hao Peng
- College of Eco-Environmental Engineering, Guizhou Minzu University, 550025, Guiyang, ChinaUniversité de LorraineChampenouxFrance
| | - Kurt Labutti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
| | - Alicia Clum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
| | - Richard Hayes
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
| | - Patrick S. G. Chain
- Los Alamos National Laboratory (LANL), Los Alamos, NM 87545, USALos Alamos National LaboratoryLos AlamosUnited States of America
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAU.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National LaboratoryBerkeleyUnited States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USAUniversity of California BerkeleyBerkeleyUnited States of America
| | - Gregory Bonito
- Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USAMichigan State UniversityEast LansingUnited States of America
| | - Francis M. Martin
- Université de Lorraine, INRAE, UnitéMixte de Recherche Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, FranceGuizhou Minzu UniversityGuiyangChina
| |
Collapse
|
2
|
Ma JX, Li HJ, Jin C, Wang H, Tang LX, Si J, Cui BK. Assembly and comparative analysis of the complete mitochondrial genome of Daedaleopsissinensis (Polyporaceae, Basidiomycota), contributing to understanding fungal evolution and ecological functions. IMA Fungus 2025; 16:e141288. [PMID: 40052081 PMCID: PMC11882022 DOI: 10.3897/imafungus.16.141288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 03/09/2025] Open
Abstract
Daedaleopsissinensis is a crucial wood-decaying fungus with significant lignocellulose-degrading ability, which plays a vital role in the material cycle and energy flow of forest ecosystems. However, the mitochondrial genome of D.sinensis has not yet been revealed. In the present study, the complete mitochondrial genome of D.sinensis was assembled and compared with related species. The mitochondrial genome spans 69,155 bp and has a GC content of 25.0%. It comprises 15 protein-coding genes (PCGs), 26 transfer RNA genes, two ribosomal RNA genes and one DNA polymerase gene (dpo). Herein, we characterised and analysed the codon preferences, variation and evolution of PCGs, repeats, intron dynamics, as well as RNA editing events in the D.sinensis mitochondrial genome. Further, a phylogenetic analysis of D.sinensis and the other 86 Basidiomycota species was performed using mitochondrial genome data. The results revealed that four species, D.confragosa, D.sinensis, D.nitida and Fomesfomentarius, were grouped in a closely-related cluster with high support values, indicating that a close phylogenetic relationship existed between Daedaleopsis and Fomes. This study reported on the initial assembly and annotation of the mitochondrial genome of D.sinensis, which greatly improved the knowledge of the fungus. These results contribute to the limited understanding of the mitochondrial repository of wood-decaying fungi, thereby laying the foundation for subsequent research on fungal evolution and ecological functions.
Collapse
Affiliation(s)
- Jin-Xin Ma
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Hai-Jiao Li
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, ChinaNational Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and PreventionBeijingChina
| | - Can Jin
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Hao Wang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Lu-Xin Tang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Jing Si
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Bao-Kai Cui
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
3
|
Gao W, Chen S, Li Q. The first complete mitochondrial genome of Phellinus pomaceus var. prunastri (Pers.) Pat. 1926 (Hymenochaetales: Hymenochaetaceae) and phylogenetic analysis. Mitochondrial DNA B Resour 2024; 9:1674-1678. [PMID: 39664029 PMCID: PMC11632937 DOI: 10.1080/23802359.2024.2438275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024] Open
Abstract
Phellinus pomaceus var. prunastri (Pers.) Pat. 1926 is a famous medicinal fungus that has attracted considerable interest in biotechnology because of its diverse biologically active ingredients. Here, we provide the full mitochondrial genome sequence of P. pomaceus, which spans 122,850 bp and has a GC content of 26.04%. The genome comprises 15 essential protein-coding genes, 26 distinct ORFs, 24 intronic ORFs, 25 tRNAs, and 2 rRNA genes. Bayesian inference (BI) was employed for phylogenetic analysis, revealing the evolutionary relationships among 17 Basidiomycota fungi. The results strongly supported distinct clades and indicated that P. pomaceus is closely related to Fomitiporia mediterranea.
Collapse
Affiliation(s)
- Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Shuyi Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
He M, Chen G. Characterization of the complete mitochondrial genome of the medical fungus Ganoderma resinaceum Boud., 1889 (Polyporales: Ganodermataceae). Mitochondrial DNA B Resour 2024; 9:1291-1297. [PMID: 39359381 PMCID: PMC11445931 DOI: 10.1080/23802359.2024.2410449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
The medical mushroom Ganoderma resinaceum Boud., 1889, is of great interest in pharmacy due to its diverse functional active ingredients. However, the mitochondrial genome of G. resinaceum remains unexplored. Here, we present the complete mitochondrial genome of G. resinaceum, which spans 67,458 bp and has a GC content of 25.65%. This genome encompasses 15 core protein-coding genes, 8 independent ORFs, 15 intronic ORFs, 27 tRNAs, and 2 rRNA genes. Through phylogenetic analysis using Bayesian inference (BI), we elucidated the evolutionary relationships among 34 Basidiomycota fungi, revealing distinct clades and indicating a close relationship between G. resinaceum and G. subamboinense.
Collapse
Affiliation(s)
- Mingda He
- Chengdu Sport University, Chengdu, P. R. China
| | - Guangjiu Chen
- Luzhou Vocational and Technical College, Luzhou, P. R. China
| |
Collapse
|
5
|
He J, Qu H, Yu Y, Huang J. Characterization and phylogenetic analysis of the Talaromyces liani (kamyschko) Yilmaz, Frisvad & Samson, 2014 (Eurotiales: trichocomaceae) mitochondrial genome. Mitochondrial DNA B Resour 2024; 9:1201-1206. [PMID: 39286475 PMCID: PMC11404368 DOI: 10.1080/23802359.2024.2403409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
The filamentous fungus Talaromyces liani (Kamyschko) Yilmaz, Frisvad & Samson, 2014, has attracted considerable interest in biotechnology due to its diverse industrial applications and physiological characteristics. However, the mitochondrial genome of T. liani remains uncharacterized. Here, we present the complete mitochondrial genome of T. liani, comprising 38,000 bp with a GC content of 24.61%. This genome includes 15 core protein-coding genes, 4 independent ORFs, 6 intronic ORFs, 26 tRNAs, and 2 rRNA genes. Phylogenetic analysis using Bayesian inference (BI) revealed the evolutionary relationships among 15 fungi from Eurotiales, strongly supporting distinct clades and indicating that T. liani most closely related to T. pinophilus.
Collapse
Affiliation(s)
- Jing He
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, Sichuan, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Huijuan Qu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Youqiao Yu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Tao J, Wang X, Long Y, Gao Z, Zhang G, Guo Z, Wang G, Xu G, Wang Y, Liu H. Determining Gene Order Patterns in the Suillus and Boletales through Comparative Analysis of Their Mitogenomes. Int J Mol Sci 2024; 25:9597. [PMID: 39273542 PMCID: PMC11394714 DOI: 10.3390/ijms25179597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Suillus is one of the most important genera of ectomycorrhizal fungi. As a model for studying host specificity, its molecular fragments and nuclear genome have been analyzed. However, its mitochondrial genome has not yet been reported. In this study, we assembled five mitogenomes of Suillus and analyzed and compared their basic characteristics. Owing to the large number of introns as well as intergenic regions, the mitogenomic lengths of species of Suillus were greater than those of other species of Boletales. We identified two main patterns of gene order arrangement in the members of the order Boletales. The Ka/Ks values of 15 protein-coding genes were <1 for the mitochondrial genes of 39 Boletales species, indicating their conserved evolution. Phylogenetic trees, reconstructed using the mitogenomes, indicated that the genus Suillus was monophyletic. Phylogenetic results based on the internal transcribed spacer region and mitogenome were used to confirm the distribution of Suillus placidus in China. The results showed that the mitogenome was superior in distinguishing species compared with a single molecular fragment. This is the first study to investigate the mitogenome of Suillus, enriching the mitogenome information and providing basic data for the phylogeny, resource conservation, and genetic diversity of this genus.
Collapse
Affiliation(s)
- Jiawei Tao
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
| | - Xianyi Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
| | - Yaohang Long
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
| | - Zexin Gao
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
| | - Gongyou Zhang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
| | - Zhongyao Guo
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
| | - Guoyu Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Guangyin Xu
- School of Basic Medicine Science, Guizhou Medical University, Guiyang 561113, China
| | - Yaping Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
| | - Hongmei Liu
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, Guizhou Medical University, Guiyang 561113, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang 561113, China
- School of Basic Medicine Science, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
7
|
Feng XL, Xie TC, Wang ZX, Lin C, Li ZC, Huo J, Li Y, Liu C, Gao JM, Qi J. Distinguishing Sanghuangporus from sanghuang-related fungi: a comparative and phylogenetic analysis based on mitogenomes. Appl Microbiol Biotechnol 2024; 108:423. [PMID: 39037499 PMCID: PMC11263249 DOI: 10.1007/s00253-024-13207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/24/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
The Chinese medicinal fungi "Sanghuang" have been long recognized for their significant and valued medicinal properties, as documented in ancient medical literature. However, in traditional folk medicine, various macrofungi sharing similar appearance, habitat, and therapeutic effects with Sanghuang were erroneously used. These Sanghuang-like fungi mainly belong to the Porodaedalea, Phellinus, and Inonotus genera within the Hymenochaetaceae family. Despite the establishment of the Sanghuangporus genus and the identification of multiple species, the emerging taxonomic references based on morphological, ITS, and mycelial structural features have been inadequate to differentiate Sanghuangporus and Sanghuang-like fungi. To address this limitation, this study presents the first comparative and phylogenetic analysis of Sanghuang-related fungi based on mitogenomes. Our results show that Sanghuangporus species show marked convergence in mitochondrial genomic features and form a distinct monophyletic group based on phylogenetic analyses of five datasets. These results not only deepen our understanding of Sanghuang-like fungi but also offer novel insights into their mitochondrial composition and phylogeny, thereby providing new research tools for distinguishing members of the Sanghuangporus genus. KEY POINTS: • Sanghuangporus, Inonotus, and Porodaedalea are monophyly in sanghuang-like species. • Mitogenome-based analysis exhibits high resolution in sanghuang-like genus. • The mitogenomes provide strong evidence for reclassifying Phellinus gilvus S12 as Sanghuangporus vaninii.
Collapse
Affiliation(s)
- Xi-Long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Tian-Chen Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Zhen-Xin Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Zhao-Chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jinxi Huo
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yougui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| |
Collapse
|
8
|
Deng Y, Chen G, Bao X, He J. Characterization and phylogenetic analysis of the complete mitochondrial genome of Saccharomycopsis fibuligera (lindner) Klocker 1907 (saccharomycetales: saccharomycopsidaceae). Mitochondrial DNA B Resour 2024; 9:743-747. [PMID: 38887218 PMCID: PMC11182061 DOI: 10.1080/23802359.2024.2364756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Saccharomycopsis fibuligera (Lindner) Klocker 1907 is frequently employed in the fermentation of metabolites such as citric acid, ethanol, mannitol, and pyruvate. Its heat tolerance and alcohol-producing capabilities during fermentation make it a desirable option for bread and wine production. To date, the mitochondrial genome of S. fibuligera has not been sequenced. In the present study, we obtained the full mitochondrial genome of S. fibuligera, which is 57,302 bp long and has a GC content of 24.40%. This genome contained 14 core protein-coding genes, 3 independent ORFs, 21 intronic ORFs, 25 tRNAs, and 2 rRNA genes. By utilizing the Bayesian inference phylogenetic method, we constructed phylogenetic trees for 24 Saccharomycotina fungi, which indicated that S. fibuligera is closely related to S. capsularis.
Collapse
Affiliation(s)
- Yue Deng
- Luzhou Vocational and Technical College, Luzhou, Sichuan, China
| | - Guangjiu Chen
- Luzhou Vocational and Technical College, Luzhou, Sichuan, China
| | - Xuedong Bao
- Luzhou Vocational and Technical College, Luzhou, Sichuan, China
| | - Jie He
- Luzhou Vocational and Technical College, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Deng Y, Chen G, Bao X, He J, Li Q. Mitochondrial genomic characteristics and phylogenetic analysis of a brewing fungus, Rhizopus microsporus Tiegh. 1875 (Mucorales: Rhizopodaceae). Mitochondrial DNA B Resour 2024; 9:657-662. [PMID: 38774188 PMCID: PMC11107855 DOI: 10.1080/23802359.2024.2356133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/12/2024] [Indexed: 05/24/2024] Open
Abstract
Rhizopus microsporus Tiegh. 1875 is widely used in a variety of industries, such as brewing, wine making, baking, and medicine production, as it has the capability to break down proteins and generate surface-active agents. To date, the mitochondrial genome features of early evolved fungi from the Rhizopus genus have not been extensively studied. Our research obtained a full mitochondrial genome of R. microsporus species, which was 43,837 bp in size and had a GC content of 24.93%. This genome contained 14 core protein-coding genes, 3 independent ORFs, 7 intronic ORFs, 24 tRNAs, and 2 rRNA genes. Through the use of the BI phylogenetic inference method, we were able to create phylogenetic trees for 25 early differentiation fungi which strongly supported the major clades; this indicated that R. microsporus is most closely related to Rhizopus oryzae.
Collapse
Affiliation(s)
- Yue Deng
- Luzhou Vocational and Technical College, Luzhou, Sichuan, P. R. China
| | - Guangjiu Chen
- Luzhou Vocational and Technical College, Luzhou, Sichuan, P. R. China
| | - Xuedong Bao
- Luzhou Vocational and Technical College, Luzhou, Sichuan, P. R. China
| | - Jie He
- Luzhou Vocational and Technical College, Luzhou, Sichuan, P. R. China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
10
|
Anwar G, Mamut R, Wang J. Characterization of Complete Mitochondrial Genomes of the Five Peltigera and Comparative Analysis with Relative Species. J Fungi (Basel) 2023; 9:969. [PMID: 37888225 PMCID: PMC10607270 DOI: 10.3390/jof9100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 10/28/2023] Open
Abstract
In the present study, the complete mitochondrial genomes of five Peltigera species (Peltigera elisabethae, Peltigera neocanina, Peltigera canina, Peltigera ponojensis, Peltigera neckeri) were sequenced, assembled and compared with relative species. The five mitogenomes were all composed of circular DNA molecules, and their ranged from 58,132 bp to 69,325 bp. The mitochondrial genomes of the five Peltigera species contain 15 protein-coding genes (PCGs), 2 rRNAs, 26-27 tRNAs and an unidentified open reading frame (ORF). The PCG length, AT skew and GC skew varied among the 15 PCGs in the five mitogenomes. Among the 15 PCGs, cox2 had the least K2P genetic distance, indicating that the gene was highly conserved. The synteny analysis revealed that the coding regions were highly conserved in the Peltigera mitochondrial genomes, but gene rearrangement occurred in the intergenic regions. The phylogenetic analysis based on the 14 PCGs showed that the 11 Peltigera species formed well-supported topologies, indicating that the protein-coding genes in the mitochondrial genome may be used as a reliable molecular tool in the study of the phylogenetic relationship of Peltigera.
Collapse
Affiliation(s)
| | - Reyim Mamut
- College of Life Sciences and Technology, Xinjiang University, Urumchi 830017, China; (G.A.); (J.W.)
| | | |
Collapse
|
11
|
Shao BY, Wang MZ, Chen SS, Ya JD, Jin XH. Habitat-related plastome evolution in the mycoheterotrophic Neottia listeroides complex (Orchidaceae, Neottieae). BMC PLANT BIOLOGY 2023; 23:282. [PMID: 37244988 DOI: 10.1186/s12870-023-04302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Mycoheterotrophs, acquiring organic carbon and other nutrients from mycorrhizal fungi, have evolved repeatedly with substantial plastid genome (plastome) variations. To date, the fine-scale evolution of mycoheterotrophic plastomes at the intraspecific level is not well-characterized. A few studies have revealed unexpected plastome divergence among species complex members, possibly driven by various biotic/abiotic factors. To illustrate evolutionary mechanisms underlying such divergence, we analyzed plastome features and molecular evolution of 15 plastomes of Neottia listeroides complex from different forest habitats. RESULTS These 15 samples of Neottia listeroides complex split into three clades according to their habitats approximately 6 million years ago: Pine Clade, including ten samples from pine-broadleaf mixed forests, Fir Clade, including four samples from alpine fir forests and Fir-willow Clade with one sample. Compared with those of Pine Clade members, plastomes of Fir Clade members show smaller size and higher substitution rates. Plastome size, substitution rates, loss and retention of plastid-encoded genes are clade-specific. We propose to recognized six species in N. listeroides complex and slightly modify the path of plastome degradation. CONCLUSIONS Our results provide insight into the evolutionary dynamics and discrepancy of closely related mycoheterotrophic orchid lineages at a high phylogenetic resolution.
Collapse
Affiliation(s)
- Bing-Yi Shao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mo-Zhu Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Si-Si Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ji-Dong Ya
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China
| | - Xiao-Hua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Li Q, Xiao W, Wu P, Zhang T, Xiang P, Wu Q, Zou L, Gui M. The first two mitochondrial genomes from Apiotrichum reveal mitochondrial evolution and different taxonomic assignment of Trichosporonales. IMA Fungus 2023; 14:7. [PMID: 37004131 PMCID: PMC10064765 DOI: 10.1186/s43008-023-00112-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Apiotrichum is a diverse anamorphic basidiomycetous yeast genus, and its mitogenome characterization has not been revealed. In this study, we assembled two Apiotrichum mitogenomes and compared them with mitogenomes from Agaricomycotina, Pucciniomycotina and Ustilaginomycotina. The mitogenomes of Apiotrichum gracile and A. gamsii comprised circular DNA molecules, with sizes of 34,648 bp and 38,096 bp, respectively. Intronic regions were found contributed the most to the size expansion of A. gamsii mitogenome. Comparative mitogenomic analysis revealed that 6.85-38.89% of nucleotides varied between tRNAs shared by the two Apiotrichum mitogenomes. The GC content of all core PCGs in A. gamsii was lower than that of A. gracile, with an average low value of 4.97%. The rps3 gene differentiated the most among Agaricomycotina, Pucciniomycotina and Ustilaginomycotina species, while nad4L gene was the most conserved in evolution. The Ka/Ks values for cob and rps3 genes were > 1, indicating the two genes may be subjected to positive selection in Agaricomycotina, Pucciniomycotina and Ustilaginomycotina. Frequent intron loss/gain events and potential intron transfer events have been detected in evolution of Agaricomycotina, Pucciniomycotina and Ustilaginomycotina. We further detected large-scale gene rearrangements between the 19 mitogenomes from Agaricomycotina, Pucciniomycotina and Ustilaginomycotina, and fifteen of the 17 mitochondrial genes shared by Apiotrichum varied in gene arrangements. Phylogenetic analyses based on maximum likelihood and Bayesian inference methods using a combined mitochondrial gene dataset revealed different taxonomic assignment of two Apiotrichum species, wherein A. gamsii had a more closely relationship with Trichosporon asahii. This study served as the first report on mitogenomes from the genus Apiotrichum, which promotes the understanding of evolution, genomics, and phylogeny of Apiotrichum.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
- School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, Chengdu, 610106, Sichuan, China.
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China.
- School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
13
|
Wu P, Xiao W, Luo Y, Xiong Z, Chen X, He J, Sha A, Gui M, Li Q. Comprehensive analysis of codon bias in 13 Ganoderma mitochondrial genomes. Front Microbiol 2023; 14:1170790. [PMID: 37213503 PMCID: PMC10192751 DOI: 10.3389/fmicb.2023.1170790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Codon usage bias is a prevalent phenomenon observed across various species and genes. However, the specific attributes of codon usage in the mitochondrial genome of Ganoderma species remain unknown. Methods In this study, we investigated the codon bias of 12 mitochondrial core protein-coding genes (PCGs) in 9 Ganoderma species, including 13 Ganoderma strains. Results The codons of all Ganoderma strains showed a preference for ending in A/T. Additionally, correlations between codon base composition and the codon adaptation index (CAI), codon bias index (CBI) and frequency of optimal codons (FOP) were identified, demonstrating the impact of base composition on codon bias. Various base bias indicators were found to vary between or within Ganoderma strains, including GC3s, the CAI, the CBI, and the FOP. The results also revealed that the mitochondrial core PCGs of Ganoderma have an average effective number of codons (ENC) lower than 35, indicating strong bias toward certain codons. Evidence from neutrality plot and PR2-bias plot analysis indicates that natural selection is a major factor affecting codon bias in Ganoderma. Additionally, 11 to 22 optimal codons (ΔRSCU>0.08 and RSCU>1) were identified in 13 Ganoderma strains, with GCA, AUC, and UUC being the most widely used optimal codons in Ganoderma. By analyzing the combined mitochondrial sequences and relative synonymous codon usage (RSCU) values, the genetic relationships between or within Ganoderma strains were determined, indicating variations between them. Nevertheless, RSCU-based analysis illustrated the intra- and interspecies relationships of certain Ganoderma species. Discussion This study deepens our insight into the synonymous codon usage characteristics, genetics, and evolution of this important fungal group.
Collapse
Affiliation(s)
- Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
- *Correspondence: Mingying Gui,
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
- Qiang Li,
| |
Collapse
|
14
|
Li Q, Li L, Zhang T, Xiang P, Wu Q, Tu W, Bao Z, Zou L, Chen C. The first two mitochondrial genomes for the genus Ramaria reveal mitochondrial genome evolution of Ramaria and phylogeny of Basidiomycota. IMA Fungus 2022; 13:16. [PMID: 36100951 PMCID: PMC9469536 DOI: 10.1186/s43008-022-00100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
In the present study, we assembled and analyzed the mitogenomes of two Ramaria species. The assembled mitogenomes of Ramaria cfr. rubripermanens and R. rubella were circularized, with sizes of 126,497 bp and 143,271 bp, respectively. Comparative mitogenome analysis showed that intron region contributed the most (contribution rate, 43.74%) to the size variations of Ramaria mitogenomes. The genetic contents, gene length, tRNAs, and codon usages of the two Ramaria mitogenomes varied greatly. In addition, the evolutionary rates of different core protein coding genes (PCGs) in Phallomycetidae mitogenomes varied. We detected large-scale gene rearrangements between Phallomycetidae mitogenomes, including gene displacement and tRNA doubling. A total of 4499 bp and 7746 bp aligned fragments were detected between the mitochondrial and nuclear genomes of R. cfr. rubripermanens and R. rubella, respectively, indicating possible gene transferring events. We further found frequent intron loss/gain and potential intron transfer events in Phallomycetidae mitogenomes during the evolution, and the mitogenomes of R. rubella contained a novel intron P44. Phylogenetic analyses using both Bayesian inference (BI) and Maximum Likelihood (ML) methods based on a combined mitochondrial gene dataset obtained an identical and well-supported phylogenetic tree for Basidiomycota, wherein R. cfr. rubripermanens and Turbinellus floccosus are sister species. This study served as the first report on mitogenomes from the genus Ramaria, which provides a basis for understanding the evolution, genetics, and taxonomy of this important fungal group.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China.
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Ren Y, He X, Yan X, Yang Y, Li Q, Yao T, Lu L, Peng L, Zou L. Unravelling the Polytoxicology of Chlorfenapyr on Non-Target HepG2 Cells: The Involvement of Mitochondria-Mediated Programmed Cell Death and DNA Damage. Molecules 2022; 27:5722. [PMID: 36080487 PMCID: PMC9457613 DOI: 10.3390/molecules27175722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Chlorfenapyr (CHL) is a type of insecticide with a wide range of insecticidal activities and unique targets. The extensive use of pesticides has caused an increase in potential risks to the environment and human health. However, the potential toxicity of CHL and its mechanisms of action on humans remain unclear. Therefore, human liver cells (HepG2) were used to investigate the cytotoxic effect and mechanism of toxicity of CHL at the cellular level. The results showed that CHL induced cellular toxicity in HepG2 cells and induced mitochondrial damage associated with reactive oxygen species (ROS) accumulation and mitochondrial calcium overload, ultimately leading to apoptosis and autophagy in HepG2 cells. Typical apoptotic changes occurred, including a decline in the mitochondrial membrane potential, the promotion of Bax/Bcl-2 expression causing the release of cyt-c into the cytosol, the activation of cas-9/-3, and the cleavage of PARP. The autophagic effects included the formation of autophagic vacuoles, accumulation of Beclin-1, transformation of LC3-II, and downregulation of p62. Additionally, DNA damage and cell cycle arrest were detected in CHL-treated cells. These results show that CHL induced cytotoxicity associated with mitochondria-mediated programmed cell death (PCD) and DNA damage in HepG2 cells.
Collapse
Affiliation(s)
- Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuan He
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiyue Yan
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yanting Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tian Yao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lidan Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, China
- Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, Chengdu 610106, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
16
|
Li Q, Zhang T, Li L, Bao Z, Tu W, Xiang P, Wu Q, Li P, Cao M, Huang W. Comparative Mitogenomic Analysis Reveals Intraspecific, Interspecific Variations and Genetic Diversity of Medical Fungus Ganoderma. J Fungi (Basel) 2022; 8:781. [PMID: 35893149 PMCID: PMC9394262 DOI: 10.3390/jof8080781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Ganoderma species are widely distributed in the world with high diversity. Some species are considered to be pathogenic fungi while others are used as traditional medicine in Asia. In this study, we sequenced and assembled four Ganoderma complete mitogenomes, including G. subamboinense s118, G. lucidum s37, G. lingzhi s62, and G. lingzhi s74. The sizes of the four mitogenomes ranged from 50,603 to 73,416 bp. All Ganoderma specimens had a full set of core protein-coding genes (PCGs), and the rps3 gene of Ganoderma species was detected to be under positive or relaxed selection. We found that the non-conserved PCGs, which encode RNA polymerases, DNA polymerases, homing endonucleases, and unknown functional proteins, are dynamic within and between Ganoderma species. Introns were thought to be the main contributing factor in Ganoderma mitogenome size variation (p < 0.01). Frequent intron loss/gain events were detected within and between Ganoderma species. The mitogenome of G. lucidum s26 gained intron P637 in the cox3 gene compared with the other two G. lucidum mitogenomes. In addition, some rare introns in Ganoderma were detected in distinct Basidiomycetes, indicating potential gene transfer events. Comparative mitogenomic analysis revealed that gene arrangements also varied within and between Ganoderma mitogenomes. Using maximum likelihood and Bayesian inference methods with a combined mitochondrial gene dataset, phylogenetic analyses generated identical, well-supported tree topologies for 71 Agaricomycetes species. This study reveals intraspecific and interspecific variations of the Ganoderma mitogenomes, which promotes the understanding of the origin, evolution, and genetic diversity of Ganoderma species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Q.L.); (T.Z.); (L.L.); (Z.B.); (W.T.); (P.X.); (Q.W.)
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd., Chengdu 610061, China;
| | - Mei Cao
- Core Laboratory, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, 106 # Shizishan Rd., Chengdu 610061, China;
| |
Collapse
|
17
|
Li Q, Bao Z, Tang K, Feng H, Tu W, Li L, Han Y, Cao M, Zhao C. First two mitochondrial genomes for the order Filobasidiales reveal novel gene rearrangements and intron dynamics of Tremellomycetes. IMA Fungus 2022; 13:7. [PMID: 35501936 PMCID: PMC9059411 DOI: 10.1186/s43008-022-00094-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/22/2022] [Indexed: 02/03/2023] Open
Abstract
In the present study, two mitogenomes from the Filobasidium genus were assembled and compared with other Tremellomycetes mitogenomes. The mitogenomes of F. wieringae and F. globisporum both comprised circular DNA molecules, with sizes of 27,861 bp and 71,783 bp, respectively. Comparative mitogenomic analysis revealed that the genetic contents, tRNAs, and codon usages of the two Filobasidium species differed greatly. The sizes of the two Filobasidium mitogenomes varied greatly with the introns being the main factor contributing to mitogenome expansion in F. globisporum. Positive selection was observed in several protein-coding genes (PCGs) in the Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina species, including cob, cox2, nad2, and rps3 genes. Frequent intron loss/gain events were detected to have occurred during the evolution of the Tremellomycetes mitogenomes, and the mitogenomes of 17 species from Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina have undergone large-scale gene rearrangements. Phylogenetic analyses based on Bayesian inference and the maximum likelihood methods using a combined mitochondrial gene set generated identical and well-supported phylogenetic trees, wherein Filobasidium species had close relationships with Trichosporonales species. This study, which is the first report on mitogenomes from the order Filobasidiales, provides a basis for understanding the genomics, evolution, and taxonomy of this important fungal group.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ke Tang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yunlei Han
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Mei Cao
- Core Laboratory, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China. .,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China.
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Ma Q, Geng Y, Li Q, Cheng C, Zang R, Guo Y, Wu H, Xu C, Zhang M. Comparative mitochondrial genome analyses reveal conserved gene arrangement but massive expansion/contraction in two closely related Exserohilum pathogens. Comput Struct Biotechnol J 2022; 20:1456-1469. [PMID: 35386100 PMCID: PMC8956966 DOI: 10.1016/j.csbj.2022.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/18/2023] Open
Abstract
Exserohilum turcicum and E. rostratum, two closely related fungal species, are both economically important pathogens but have quite different target hosts (specific to plants and cross-kingdom infection, respectively). In the present study, complete circular mitochondrial genomes of the two Exserohilum species were sequenced and de novo assembled, which mainly comprised the same set of 13 core protein-coding genes (PCGs), two rRNAs, and a certain number of tRNAs and unidentified open reading frames (ORFs). Comparative analyses indicated that these two fungi had significant mitogenomic collinearity and consistent mitochondrial gene arrangement, yet with vastly different mitogenome sizes, 264,948 bp and 64,620 bp, respectively. By contrast with the 17 introns containing 17 intronic ORFs (one-to-one) in the E. rostratum mitogenome, E. turcicum involved far more introns (70) and intronic ORFs (126), which was considered as the main contributing factors of their mitogenome expansion/contraction. Within the generally intron-rich gene cox1, a total of 18 and 10 intron position classes (Pcls) were identified separately in the two mitogenomes. Moreover, 16.16% and 10.85% ratios of intra-mitogenomic repetitive regions were detected in E. turcicum and E. rostratum, respectively. Based on the combined mitochondrial gene dataset, we established a well-supported topology of phylogeny tree of 98 ascomycetes, implying that mitogenomes may act as an effective molecular marker for fungal phylogenetic reconstruction. Our results served as the first report on mitogenomes in the genus Exserohilum, and would have significant implications in understanding the origin, evolution and pathogenic mechanisms of this fungal lineage.
Collapse
Affiliation(s)
- Qingzhou Ma
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuehua Geng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chongyang Cheng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Rui Zang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yashuang Guo
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haiyan Wu
- Analytical Instrument Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chao Xu
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Meng Zhang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Zhong C, Jin J, Zhou R, Liu H, Xie J, Wan D, Xiao S, Zhang S. Comparative analysis of the complete mitochondrial genomes of four cordyceps fungi. Ecol Evol 2022; 12:e8818. [PMID: 35494498 PMCID: PMC9036042 DOI: 10.1002/ece3.8818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Cordyceps is a large group of entomogenous, medicinally important fungi. In this study, we sequenced, assembled, and annotated the entire mitochondrial genome of Ophiocordyceps xuefengensis, in addition to comparing it against other three complete cordyceps mitogenomes that were previously published. Comparative analysis indicated that the four complete mitogenomes are all composed of circular DNA molecules, although their sizes significantly differ due to high variability in intron and intergenic region sizes in the Ophiocordyceps sinensis and O. xuefengensis mitogenomes. All mitogenomes contain 14 conserved genes and two ribosomal RNA genes, but varying numbers of tRNA introns. The Ka/Ks ratios for all 14 PCGs and rps3 were all less than 1, indicating that these genes have been subject to purifying selection. Phylogenetic analysis was conducted using concatenated amino acid and nucleotide sequences of the 14 PCGs and rps3 using two different methods (Maximum Likelihood and Bayesian analysis), revealing highly supported relationships between O. xuefengensis and other Ophiocordyceps species, in addition to a close relationship with O. sinensis. Further, the analyses indicated that cox1 and rps3 play important roles in population differentiation. These mitogenomes will allow further study of the population genetics, taxonomy, and evolutionary biology of medicinally important cordyceps species.
Collapse
Affiliation(s)
- Can Zhong
- Horticulture and Landscape College Hunan Agricultural University Changsha China.,Institute of Chinese Materia Medica Hunan Academy of Chinese Medicine Changsha China
| | - Jian Jin
- Institute of Chinese Materia Medica Hunan Academy of Chinese Medicine Changsha China
| | - Rongrong Zhou
- Changchun University of Chinese Medicine Changchun China
| | - Hao Liu
- Institute of Chinese Materia Medica Hunan Academy of Chinese Medicine Changsha China
| | - Jing Xie
- Institute of Chinese Materia Medica Hunan Academy of Chinese Medicine Changsha China
| | - Dan Wan
- Institute of Chinese Materia Medica Hunan Academy of Chinese Medicine Changsha China
| | - Shengen Xiao
- Horticulture and Landscape College Hunan Agricultural University Changsha China
| | - Shuihan Zhang
- Horticulture and Landscape College Hunan Agricultural University Changsha China.,Institute of Chinese Materia Medica Hunan Academy of Chinese Medicine Changsha China
| |
Collapse
|
20
|
Zuo Q, Zhang Z, Shen Y. Novel mitochondrial gene rearrangements pattern in the millipede Polydesmus sp. GZCS-2019 and phylogenetic analysis of the Myriapoda. Ecol Evol 2022; 12:e8764. [PMID: 35356579 PMCID: PMC8948135 DOI: 10.1002/ece3.8764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/29/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
The subphylum Myriapoda included four extant classes (Chilopoda, Symphyla, Diplopoda, and Pauropoda). Due to the limitation of taxon sampling, the phylogenetic relationships within Myriapoda remained contentious, especially for Diplopoda. Herein, we determined the complete mitochondrial genome of Polydesmus sp. GZCS-2019 (Myriapoda: Polydesmida) and the mitochondrial genomes are circular molecules of 15,036 bp, with all genes encoded on + strand. The A+T content is 66.1%, making the chain asymmetric, and exhibits negative AT-skew (-0.236). Several genes rearrangements were detected and we propose a new rearrangement model: "TD (N\R) L + C" based on the genome-scale duplication + (non-random/random) loss + recombination. Phylogenetic analyses demonstrated that Chilopoda and Symphyla both were monophyletic group, whereas Pauropoda was embedded in Diplopoda to form the Dignatha. Divergence time showed the first split of Myriapoda occurred between the Chilopoda and other classes (Wenlock period of Silurian). We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod. Our results help to better explain the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Myriapoda.
Collapse
Affiliation(s)
- Qing Zuo
- Key Laboratory of Eco‐Environments in Three Gorges Reservoir Region (Ministry of Education)School of Life SciencesSouthwest UniversityChongqingChina
| | - Zhisheng Zhang
- Key Laboratory of Eco‐Environments in Three Gorges Reservoir Region (Ministry of Education)School of Life SciencesSouthwest UniversityChongqingChina
| | - Yanjun Shen
- Chongqing Key Laboratory of Animal BiologySchool of Life SciencesChongqing Normal UniversityChongqingChina
| |
Collapse
|
21
|
Deng Y, He J. Characterization of the complete mitochondrial genome of Aspergillus terricola (Aspergillaceae, Eurotiales), isolated from soy sauce fermentation system. Mitochondrial DNA B Resour 2022; 7:76-78. [PMID: 34993316 PMCID: PMC8725983 DOI: 10.1080/23802359.2021.2008832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In the present study, the complete mitochondrial genome of Aspergillus terricola É.J. Marchal 1893 was sequenced and assembled. The mitochondrial genome of A. terricola was composed of circular DNA molecules, with a total size of 28,689 bp. The GC content of the A. terricola mitochondrial genome was 26.34%. A total of 18 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, and 26 transfer RNA (tRNA) genes were detected in the A. terricola mitochondrial genome. Phylogenetic analysis based on the combined mitochondrial gene dataset indicated that the A. terricola exhibited a close relationship with A. parasiticus.
Collapse
Affiliation(s)
- Yue Deng
- School of China Alcoholic Drinks, Luzhou Vocational and Technical College, Sichuan, Luzhou, P. R. China
| | - Jie He
- School of China Alcoholic Drinks, Luzhou Vocational and Technical College, Sichuan, Luzhou, P. R. China
| |
Collapse
|
22
|
Tan M, Wang Q. Characterization of the complete mitochondrial genome of Dioszegia changbaiensis (Tremellales: Bulleribasidiaceae) with phylogenetic implications. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3315-3317. [PMID: 34746399 PMCID: PMC8567934 DOI: 10.1080/23802359.2021.1915197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, the complete mitochondrial genome of Dioszegia changbaiensis we sequenced and assembled by the next-generation sequencing. The complete mitochondrial genome of Dioszegia changbaiensis contained 22 protein-coding genes (PCG), two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes. The total length of the Dioszegia changbaiensis mitochondrial genome is 34,853 bp, and the GC content of the mitochondrial genome is 41.88%. Phylogenetic analysis based on a combined mitochondrial gene dataset indicated that the mitochondrial genome of Dioszegia changbaiensis exhibited a close relationship with that of Hannaella oryzae.
Collapse
Affiliation(s)
- Maoling Tan
- School of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Qiangfeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, PR China
| |
Collapse
|
23
|
Bai X, Ye X, Luo Y, Liu C, Wu Q. Characterization of the first complete chloroplast genome of Amaranthus hybridus (Caryophyllales: Amaranthaceae) with phylogenetic implications. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3306-3308. [PMID: 34722881 PMCID: PMC8555552 DOI: 10.1080/23802359.2021.1994890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, the complete chloroplast genome of Amaranthus hybridus was sequenced and assembled. The complete chloroplast genome of Amaranthus hybridus is 150,709 in size, with the GC content of 36.56%. The chloroplast genome of Amaranthus hybridus contained 86 protein-coding genes (PCGs), eight ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. Phylogenetic analysis based on combined chloroplast gene dataset indicated that the Amaranthus hybridus exhibited a close relationship with A. hypochondriacus and A. caudatus.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yiming Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changyin Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Peng C, Bao Z, Tu W, Li L, Li Q. The first complete mitochondrial genome of mushroom Leucoagaricus naucinus (Agaricaceae, Agaricales) and insights into its phylogeny. Mitochondrial DNA B Resour 2021; 6:2803-2805. [PMID: 34514133 PMCID: PMC8425693 DOI: 10.1080/23802359.2021.1970643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022] Open
Abstract
Leucoagaricus naucinus (Fr.) Singer is a mycorrhizal fungus widely distributed in the northern Hemisphere. In the present study, the complete mitochondrial genome of Leucoagaricus naucinus was sequenced, assembled, and annotated. The L. naucinus mitochondrial genome was composed of circular DNA molecules, with the total size of 61,434 bp. The GC content of the L. naucinus mitochondrial genome was 26.07%. A total of 30 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, and 26 transfer RNA (tRNA) genes were detected in the L. naucinus mitochondrial genome. Phylogenetic analysis based on combined mitochondrial gene dataset indicated that the L. naucinus exhibited a close relationship with Agaricus bisporus.
Collapse
Affiliation(s)
- Cong Peng
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
| | - Zhijie Bao
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
| | - Wenying Tu
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
| | - Lijiao Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
| |
Collapse
|
25
|
Induction of Apoptosis in HeLa Cells by a Novel Peptide from Fruiting Bodies of Morchella importuna via the Mitochondrial Apoptotic Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563367. [PMID: 34394384 PMCID: PMC8360738 DOI: 10.1155/2021/5563367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022]
Abstract
Morels (Morchella spp.) are a genus of edible fungi with important economic and medicinal value. In this study, a novel peptide (MIPP) was extracted from the fruiting bodies of Morchella importuna using gel filtration chromatography. Structural analysis showed that the molecular mass of MIPP is 831 Da, and it has a simple amino acid sequence: Ser-Leu-Ser-Leu-Ser-Val-Ala-Arg. To explore the antitumor activity of MIPP, the effect of MIPP on HeLa cell apoptosis and the underlying preventative mechanisms were investigated. Results showed that MIPP reduced the viability of HeLa cells in a concentration-dependent manner. TUNEL analysis and flow cytometric examination showed that MIPP decreased cell proliferation via a mitochondrial-dependent pathway, as manifested by downregulation of Bcl-2/Bax, promotion of the movement of cytochrome C from the mitochondria to the cytoplasm, and triggering of caspase-9 and caspase-3. Therefore, MIPP may be a promising tumor-preventive agent, especially in human cervical cancer.
Collapse
|
26
|
Gou Q, Ren C, Peng C. Characterization of the complete mitochondrial genome of Peniophora lycii (Russulales: Peniophoraceae) with its phylogenetic analysis. Mitochondrial DNA B Resour 2021; 6:2200-2202. [PMID: 34286082 PMCID: PMC8266238 DOI: 10.1080/23802359.2021.1945508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peniophora lycii is a resupinate lichen-like species distributed all over the world. In the present study, we sequenced and assembled the complete mitochondrial genome of Peniophora lycii. The size of the mitochondrial genome of P. lycii was 38,296 bp, with a GC content of 25.89%. Twenty protein-coding genes, 2 ribosomal RNA genes, and 24 transfer RNA genes were identified in the mitochondrial genome of P. lycii. Phylogenetic analysis based on combined mitochondrial gene dataset indicated that the mitochondrial genome of P. lycii exhibited a close relationship with that of Heterobasidion irregulare.
Collapse
Affiliation(s)
- Qiufen Gou
- Leshan Vocational and Technical College, Leshan, Sichuan, China
| | - Chaoqin Ren
- Aba Teachers University, Wenchuan, Sichuan, China
| | - Cong Peng
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Fu J, Tu W, Bao Z, Li L, Li Q. The first complete mitochondrial genome of edible and medicinal fungus Chroogomphus rutilus (Gomphidiaceae, Boletales) and insights into its phylogeny. Mitochondrial DNA B Resour 2021; 6:2355-2357. [PMID: 34350345 PMCID: PMC8291066 DOI: 10.1080/23802359.2021.1950066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In the present study, we assembled and annotated the complete mitochondrial genome of Chroogomphus rutilus. The complete mitochondrial genome of C. rutilus was composed of circular DNA molecules, with a size of 37,508 bp. The GC content of the C. rutilus mitogenome was 22.82%. A total of 18 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, and 24 transfer RNA (tRNA) genes were detected in the C. rutilus mitogenome. Phylogenetic analysis based on combined mitochondrial gene dataset indicated that the C. rutilus exhibited a close relationship with species from the genus Rhizopogon. This study served as the first report on the complete mitochondrial genome from the family Gomphidiaceae, which will promote the understanding of phylogeny, evolution, and taxonomy of this important fungal species.
Collapse
Affiliation(s)
- Jia Fu
- School of Basic Medical Sciences, Chengdu University, Chengdu, P.R. China
| | - Wenying Tu
- School of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Zhijie Bao
- School of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Lijiao Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| |
Collapse
|
28
|
Wang P, Lu T, Huang J. The first complete mitochondrial genome of Macalpinomyces bursus (Ustilaginales: Ustilaginaceae) and insights into its phylogeny. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2151-2153. [PMID: 34377791 PMCID: PMC8330779 DOI: 10.1080/23802359.2021.1944383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, the complete mitochondrial genome of Macalpinomyces bursus (Berk.) Vanky 2002 was sequenced and assembled. The complete mitochondrial genome of M. bursus was 49,024 bp in length, with the GC content of 30.4%. The M. bursus mitochondrial genome contained 27 protein-coding genes, 2 ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes. Phylogenetic analysis based on combined mitochondrial gene dataset indicated that the M. bursus exhibited a close relationship with species from the genera Ustilago, Sporisorium, and Anthracocystis.
Collapse
Affiliation(s)
- Peng Wang
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Tianhao Lu
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Jingwei Huang
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, P.R. China.,Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
29
|
Ye X, Wang L, Xiang D, Sun Y. The first complete chloroplast genome of Fagopyrum leptopodum (Diels) Hedberg (Caryophyllales: Polygonaceae) with phylogenetic implications. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2203-2205. [PMID: 34263050 PMCID: PMC8259871 DOI: 10.1080/23802359.2021.1945967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present study, we sequenced and assembled the complete chloroplast genome of Fagopyrum leptopodum (Diels) Hedberg. The chloroplast genome of F. leptopodum was composed of 85 protein-coding genes, 8 ribosomal RNA genes, and 37 transfer RNA genes. The F. leptopodum chloroplast genome is 159,375 bp in length, with a GC content of 37.81%. Phylogenetic analysis based on the combined chloroplast gene dataset indicated that the F. leptopodum exhibited a close relationship with Fagopyrum luojishanense.
Collapse
Affiliation(s)
- Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Luo Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Yanxia Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| |
Collapse
|
30
|
Wu P, Yao T, Ren Y, Ye J, Qing Y, Li Q, Gui M. Evolutionary Insights Into Two Widespread Ectomycorrhizal Fungi ( Pisolithus) From Comparative Analysis of Mitochondrial Genomes. Front Microbiol 2021; 12:583129. [PMID: 34290675 PMCID: PMC8287656 DOI: 10.3389/fmicb.2021.583129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
The genus Pisolithus is a group of global ectomycorrhizal fungi. The characterizations of Pisolithus mitochondrial genomes have still been unknown. In the present study, the complete mitogenomes of two Pisolithus species, Pisolithus microcarpus, and Pisolithus tinctorius, were assembled and compared with other Boletales mitogenomes. Both Pisolithus mitogenomes comprised circular DNA molecules with sizes of 43,990 and 44,054 bp, respectively. Comparative mitogenomic analysis showed that the rps3 gene differentiated greatly between Boletales species, and this gene may be subjected to strong pressure of positive selection between some Boletales species. Several plasmid-derived genes and genes with unknown functions were detected in the two Pisolithus mitogenomes, which needs further analysis. The two Pisolithus species show a high degree of collinearity, which may represent the gene arrangement of the ancestors of ectomycorrhizal Boletales species. Frequent intron loss/gain events were detected in Boletales and basidiomycetes, and intron P717 was only detected in P. tinctorius out of the eight Boletales mitogenomes tested. We reconstructed phylogeny of 79 basidiomycetes based on combined mitochondrial gene dataset, and obtained well-supported phylogenetic topologies. This study served as the first report on the mitogenomes of the family Pisolithaceae, which will promote the understanding of the evolution of Pisolithus species.
Collapse
Affiliation(s)
- Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, China
| | - Tian Yao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuanhang Ren
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jinghua Ye
- College of Information Science and Engineering, Chengdu University, Chengdu, China
| | - Yuan Qing
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
31
|
Ren Y, Xia H, Lu L, Zhao G. Characterization of the complete chloroplast genome of Hordeum vulgare L. var. trifurcatum with phylogenetic analysis. Mitochondrial DNA B Resour 2021; 6:1852-1854. [PMID: 34124367 PMCID: PMC8183546 DOI: 10.1080/23802359.2021.1935343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
In the present study, the complete chloroplast genome of Hordeum vulgare L. var. trifurcatum was sequenced, assembled and compared with closely related species. The chloroplast genome of Hordeum vulgare L. var. trifurcatum was composed of 84 protein-coding genes (PCG), 8 ribosomal RNA (rRNA) genes, and 38 transfer RNA (tRNA) genes. The Hordeum vulgare L. var. trifurcatum chloroplast genome is 136,485 bp in size, with the GC content of 38.32%. Phylogenetic analysis based on the combined chloroplast gene dataset indicated that the Hordeum vulgare L. var. trifurcatum exhibited a close relationship with Hordeum vulgare subsp. spontaneum and Hordeum vulgare subsp. vulgare.
Collapse
Affiliation(s)
- Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Hu Xia
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Lidan Lu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| |
Collapse
|
32
|
Li Q, Li L, Feng H, Tu W, Bao Z, Xiong C, Wang X, Qing Y, Huang W. Characterization of the Complete Mitochondrial Genome of Basidiomycete Yeast Hannaella oryzae: Intron Evolution, Gene Rearrangement, and Its Phylogeny. Front Microbiol 2021; 12:646567. [PMID: 34122362 PMCID: PMC8193148 DOI: 10.3389/fmicb.2021.646567] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
In this study, the mitogenome of Hannaella oryzae was sequenced by next-generation sequencing (NGS) and successfully assembled. The H. oryzae mitogenome comprised circular DNA molecules with a total size of 26,444 bp. We found that the mitogenome of H. oryzae partially deleted the tRNA gene transferring cysteine. Comparative mitogenomic analyses showed that intronic regions were the main factors contributing to the size variations of mitogenomes in Tremellales. Introns of the cox1 gene in Tremellales species were found to have undergone intron loss/gain events, and introns of the H. oryzae cox1 gene may have different origins. Gene arrangement analysis revealed that H. oryzae contained a unique gene order different from other Tremellales species. Phylogenetic analysis based on a combined mitochondrial gene set resulted in identical and well-supported topologies, wherein H. oryzae was closely related to Tremella fuciformis. This study represents the first report of mitogenome for the Hannaella genus, which will allow further study of the population genetics, taxonomy, and evolutionary biology of this important phylloplane yeast and other related species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yuan Qing
- Panxi Featured Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
33
|
Chen C, Fu R, Wang J, Li X, Chen X, Li Q, Lu D. Genome sequence and transcriptome profiles of pathogenic fungus Paecilomyces penicillatus reveal its interactions with edible fungus Morchella importuna. Comput Struct Biotechnol J 2021; 19:2607-2617. [PMID: 34025947 PMCID: PMC8120865 DOI: 10.1016/j.csbj.2021.04.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/15/2022] Open
Abstract
Paecilomyces penicillatus is one of the pathogens of morels, which greatly affects the yield and quality of Morchella spp.. In the present study, we de novo assembled the genome sequence of the fungus P. penicillatus SAAS_ppe1. We analyzed the transcriptional profile of P. penicillatus SAAS_ppe1 infection of Morchella importuna at different stages (3 days and 6 days after infection) and the response of M. importuna using the transcriptome. The assembled genome sequence of P. penicillatus SAAS_ppe1 was 39.78 Mb in length (11 scaffolds; scaffold N50, 6.50 Mb), in which 99.7% of the expected genes were detected. A total of 7.48% and 19.83% clean transcriptional reads from the infected sites were mapped to the P. penicillatus genome at the early and late stages of infection, respectively. There were 3,943 genes differently expressed in P. penicillatus at different stages of infection, of which 24 genes had increased expression with the infection and infection stage, including diphthamide biosynthesis, aldehyde reductase, and NAD (P)H-hydrate epimerase (P < 0.05). Several genes had variable expression trends at different stages of infection, indicating P. penicillatus had diverse regulation patterns to infect M. importuna. GO function, involving cellular components, and KEGG pathways, involving glycerolipid metabolism, and plant-pathogen interaction were significantly enriched during infection by P. penicillatus. The expression of ten genes in M. importuna increased during the infection and infection stage, and these may regulate the response of M. importuna to P. penicillatus infection. This is the first comprehensive study on P. penicillatus infection mechanism and M. importuna response mechanism, which will lay a foundation for understanding the fungus-fungus interactions, gene functions, and variety breeding of pathogenic and edible fungi.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, PR China
| | - Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, PR China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, PR China
| | - Xingyue Li
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, PR China
| | - Xiaojuan Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, PR China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, PR China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, PR China
| |
Collapse
|
34
|
Liu Q, Wang X. Characterization and phylogenetic analysis of the complete mitochondrial genome of pathogen Trichosporon inkin (Trichosporonales: Trichosporonaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:803-805. [PMID: 33763584 PMCID: PMC7954414 DOI: 10.1080/23802359.2021.1882912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In the present study, the complete mitochondrial genome of Trichosporon inkin was sequenced and assembled. The complete mitochondrial genome of T. inkin contained 22 protein-coding genes (PCG), 2 ribosomal RNA (rRNA) genes, and 24 transfer RNA (tRNA) genes. The total size of the T. inkin mitochondrial genome is 39,466 bp, with the GC content of 27.56%. Phylogenetic analysis based on combined mitochondrial gene dataset indicated that the T. inkin exhibited a close relationship with Trichosporon asahii.
Collapse
Affiliation(s)
- Qiaofeng Liu
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Xin Wang
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
35
|
Huang W, Feng H, Tu W, Xiong C, Jin X, Li P, Wang X, Li Q. Comparative Mitogenomic Analysis Reveals Dynamics of Intron Within and Between Tricholoma Species and Phylogeny of Basidiomycota. Front Genet 2021; 12:534871. [PMID: 33659021 PMCID: PMC7917209 DOI: 10.3389/fgene.2021.534871] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/18/2021] [Indexed: 01/28/2023] Open
Abstract
The genus of Tricholoma is a group of important ectomycorrhizal fungi. The overlapping of morphological characteristics often leads to the confusion of Tricholoma species classification. In this study, the mitogenomes of five Tricholoma species were sequenced based on the next-generation sequencing technology, including T. matsutake SCYJ1, T. bakamatsutake, T. terreum, T. flavovirens, and T. saponaceum. These five mitogenomes were all composed of circular DNA molecules, with sizes ranging from 49,480 to 103,090 bp. Intergenic sequences were considered to be the main factor contributing to size variations of Tricholoma mitogenomes. Comparative mitogenomic analysis showed that the introns of the Agaricales mitogenome experienced frequent loss/gain events. In addition, potential gene transfer was detected between the mitochondrial and nuclear genomes of the five species of Tricholoma. Evolutionary analysis showed that the rps3 gene of the Tricholoma species was under positive selection or relaxed selection in the evolutionary process. In addition, large-scale gene rearrangements were detected between some Tricholoma species. Phylogenetic analysis using the Bayesian inference and maximum likelihood methods based on a combined mitochondrial gene set yielded identical and well-supported tree topologies. This study promoted the understanding of the genetics, evolution, and phylogeny of the Tricholoma genus and related species.
Collapse
Affiliation(s)
- Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
36
|
Cheng J, Tu W, Luo Z, Gou X, Li Q, Wang D, Zhou J. A High-Efficiency Artificial Synthetic Pathway for 5-Aminovalerate Production From Biobased L-Lysine in Escherichia coli. Front Bioeng Biotechnol 2021; 9:633028. [PMID: 33634090 PMCID: PMC7900509 DOI: 10.3389/fbioe.2021.633028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Bioproduction of 5-aminovalerate (5AVA) from renewable feedstock can support a sustainable biorefinery process to produce bioplastics, such as nylon 5 and nylon 56. In order to achieve the biobased production of 5AVA, a 2-keto-6-aminocaproate-mediated synthetic pathway was established. Combination of L-Lysine α-oxidase from Scomber japonicus, α-ketoacid decarboxylase from Lactococcus lactis and aldehyde dehydrogenase from Escherichia coli could achieve the biosynthesis of 5AVA from biobased L-Lysine in E. coli. The H2O2 produced by L-Lysine α-oxidase was decomposed by the expression of catalase KatE. Finally, 52.24 g/L of 5AVA were obtained through fed-batch biotransformation. Moreover, homology modeling, molecular docking and molecular dynamic simulation analyses were used to identify mutation sites and propose a possible trait-improvement strategy: the expanded catalytic channel of mutant and more hydrogen bonds formed might be beneficial for the substrates stretch. In summary, we have developed a promising artificial pathway for efficient 5AVA synthesis.
Collapse
Affiliation(s)
- Jie Cheng
- Key Laboratory of Meat Processing of Sichuan Province, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenying Tu
- Key Laboratory of Meat Processing of Sichuan Province, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhou Luo
- Key Laboratory of Meat Processing of Sichuan Province, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xinghua Gou
- Key Laboratory of Meat Processing of Sichuan Province, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Li
- Key Laboratory of Meat Processing of Sichuan Province, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
37
|
Panorama of intron dynamics and gene rearrangements in the phylum Basidiomycota as revealed by the complete mitochondrial genome of Turbinellus floccosus. Appl Microbiol Biotechnol 2021; 105:2017-2032. [PMID: 33555361 DOI: 10.1007/s00253-021-11153-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 01/26/2023]
Abstract
In the present study, the complete mitogenome of Turbinellus floccosus was sequenced, assembled, and compared with other basidiomycete mitogenomes. The mitogenome of T. floccosus consists of a circular DNA molecule, with a size of 62,846 bp. Gene arrangement analysis indicated that large-scale gene rearrangements occurred in the levels of family and genus of basidiomycete species, and the mitogenome of T. floccosus contained a unique gene order. A significant correlation between the number of introns and the mitochondrial genome size of Basidiomycota were detected (P < 0.01). A total of 896 introns were detected in the core protein-coding genes (PCGs) of 74 basidiomycete species, and the cox1 gene was the largest host gene of basidiomycete introns. Intron position class (Pcls) P383 in the cox1 gene was the most common intron in Basidiomycota, which distributed in 40 of 74 basidiomycete species. In addition, frequent intron loss/gain events were detected in basidiomycete species. More than 50% of bases around insertion sites (- 15 bp to 15 bp) of Pcls from different species were conservative, indicating site preferences of intron insertions in Basidiomycota. Further analysis showed that 76.09% of introns tended to insert downstream to a T base in Basidiomycota. Phylogenetic analysis for 74 basidiomycetes indicated mitochondrial genes are effective molecular markers for phylogeny of basidiomycetes. The study served as the first report on the mitogenome from the family Gomphaceae, which will help to understand the intron origin and evolution in Basidiomycota. KEY POINTS: • The mitogenome of Turbinellus floccosus had a unique gene arrangement. • Intron loss/gain events were detected in the 74 basidiomycete species. • Introns tend to insert downstream of a T base in basidiomycete mitogenomes.
Collapse
|
38
|
Chen C, Li Q, Fu R, Wang J, Deng G, Chen X, Lu D. Comparative mitochondrial genome analysis reveals intron dynamics and gene rearrangements in two Trametes species. Sci Rep 2021; 11:2569. [PMID: 33510299 PMCID: PMC7843977 DOI: 10.1038/s41598-021-82040-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Trametes species are efficient wood decomposers that are widespread throughout the world. Mitogenomes have been widely used to understand the phylogeny and evolution of fungi. Up to now, two mitogenomes from the Trametes genus have been revealed. In the present study, the complete mitogenomes of two novel Trametes species, Trametes versicolor and T. coccinea, were assembled and compared with other Polyporales mitogenomes. Both species contained circular DNA molecules, with sizes of 67,318 bp and 99,976 bp, respectively. Comparative mitogenomic analysis indicated that the gene number, length and base composition varied between the four Trametes mitogenomes we tested. In addition, all of the core protein coding genes in Trametes species were identified and subjected to purifying selection. The mitogenome of T. coccinea contained the largest number of introns among the four Trametes species tested, and introns were considered the main factors contributing to size variations of Polyporales. Several novel introns were detected in the Trametes species we assembled, and introns identified in Polyporales were found to undergo frequent loss/gain events. Large-scale gene rearrangements were detected between closely related Trametes species, including gene inversions, insertions, and migrations. A well-supported phylogenetic tree for 77 Basidiomycetes was obtained based on the combined mitochondrial gene set using 2 phylogenetic inference methods. The results showed that mitochondrial genes are effective molecular markers for understanding the phylogeny of Basidiomycetes. This study is the first to report the mitogenome rearrangement and intron dynamics of Trametes species, which shed light on the evolution of Trametes and other related species.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, People's Republic of China
| | - Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China
| | - Guangmin Deng
- Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, People's Republic of China
| | - Xiaojuan Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management On Crops in Southwest, Ministry of Agriculture, Chengdu, People's Republic of China.
- Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, People's Republic of China.
| |
Collapse
|
39
|
The first eleven mitochondrial genomes from the ectomycorrhizal fungal genus (Boletus) reveal intron loss and gene rearrangement. Int J Biol Macromol 2021; 172:560-572. [PMID: 33476615 DOI: 10.1016/j.ijbiomac.2021.01.087] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
In the present study, eleven novel complete mitogenomes of Boletus were assembled and compared. The eleven complete mitogenomes were all composed of circular DNA molecules, with sizes ranging from 32,883 bp to 48,298 bp. The mitochondrial gene arrangement of Boletus varied greatly from other Boletales mitogenomes, and gene position reversal were observed frequently in the evolution of Boletus. Across the 15 core protein-coding genes (PCGs) tested, atp9 had the least and rps3 had the largest genetic distances among the eleven Boletus species, indicating varied evolution rates of core PCGs. In addition, the Ka/Ks value for nad3 gene was >1, suggesting that this gene was subject to possible positive selection pressure. Comparative mitogenomic analysis indicated that the intronic region was significantly correlated with the size of mitogenomes in Boletales. Two large-scale intron loss events were detected in the evolution of Boletus. Phylogenetic analyses based on a combined mitochondrial gene dataset yielded a well-supported (BPP ≥ 0.99; BS =100) phylogenetic tree for 72 Agaricomycetes, and the Boletus species had a close relationship with Paxillus. This study served as the first report on complete mitogenomes in Boletus, which will further promote investigations of the genetics, evolution and phylogeny of the Boletus genus.
Collapse
|
40
|
Kulik T, Van Diepeningen AD, Hausner G. Editorial: The Significance of Mitogenomics in Mycology. Front Microbiol 2021; 11:628579. [PMID: 33488569 PMCID: PMC7817700 DOI: 10.3389/fmicb.2020.628579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anne D Van Diepeningen
- B.U. Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
41
|
Wu P, Bao Z, Tu W, Li L, Xiong C, Jin X, Li P, Gui M, Huang W, Li Q. The mitogenomes of two saprophytic Boletales species ( Coniophora) reveals intron dynamics and accumulation of plasmid-derived and non-conserved genes. Comput Struct Biotechnol J 2020; 19:401-414. [PMID: 33489009 PMCID: PMC7804350 DOI: 10.1016/j.csbj.2020.12.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 02/02/2023] Open
Abstract
The order Boletales is a group of fungi with complex life styles, which include saprophytic and ectomycorrhizal mushroom-forming fungi. In the present study, the complete mitogenomes of two saprophytic Boletales species, Coniophora olivacea, and C. puteana, were assembled and compared with mitogenomes of ectomycorrhizal Boletales. Both mitogenomes comprised circular DNA molecules with sizes of 78,350 bp and 79,655 bp, respectively. Comparative mitogenomic analysis indicated that the two saprophytic Boletales species contained more plasmid-derived (7 on average) and unknown functional genes (12 on average) than the four ectomycorrhizal Boletales species previously reported. In addition, the core protein coding genes, nad2 and rps3, were found to be subjected to positive selection pressure between some Boletales species. Frequent intron gain/loss events were detected in Boletales and Basidiomycetes, and several novel intron classes were found in two Coniophora species. A total of 33 introns were detected in C. olivacea, and most were found to have undergone contraction in the C. olivacea mitogenome. Mitochondrial genes of Coniophora species were found to have undergone large-scale gene rearrangements, and the accumulation of intra-genomic repeats in the mitogenome was considered as one of the main contributing factors. Based on combined mitochondrial gene sets, we obtained a well-supported phylogenetic tree for 76 Basidiomycetes, demonstrating the utility of mitochondrial gene analysis for inferring Basidiomycetes phylogeny. The study served as the first report on the mitogenomes of the family Coniophorineae, which will help to understand the origin and evolution patterns of Boletales species with complex lifestyles.
Collapse
Affiliation(s)
- Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunan Agricultural University, Kunming, Yunnan, China
| | - Zhijie Bao
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Ping Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunan Agricultural University, Kunming, Yunnan, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Li X, Li L, Bao Z, Tu W, He X, Zhang B, Ye L, Wang X, Li Q. The 287,403 bp Mitochondrial Genome of Ectomycorrhizal Fungus Tuber calosporum Reveals Intron Expansion, tRNA Loss, and Gene Rearrangement. Front Microbiol 2020; 11:591453. [PMID: 33362740 PMCID: PMC7756005 DOI: 10.3389/fmicb.2020.591453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 02/02/2023] Open
Abstract
In the present study, the mitogenome of Tuber calosporum was assembled and analyzed. The mitogenome of T. calosporum comprises 15 conserved protein-coding genes, two rRNA genes, and 14 tRNAs, with a total size of 287,403 bp. Fifty-eight introns with 170 intronic open reading frames were detected in the T. calosporum mitogenome. The intronic region occupied 69.41% of the T. calosporum mitogenome, which contributed to the T. calosporum mitogenome significantly expand relative to most fungal species. Comparative mitogenomic analysis revealed large-scale gene rearrangements occurred in the mitogenome of T. calosporum, involving gene relocations and position exchanges. The mitogenome of T. calosporum was found to have lost several tRNA genes encoding for cysteine, aspartate, histidine, etc. In addition, a pair of fragments with a total length of 32.91 kb in both the nuclear and mitochondrial genomes of T. calosporum was detected, indicating possible gene transfer events. A total of 12.83% intragenomic duplications were detected in the T. calosporum mitogenome. Phylogenetic analysis based on mitochondrial gene datasets obtained well-supported tree topologies, indicating that mitochondrial genes could be reliable molecular markers for phylogenetic analyses of Ascomycota. This study served as the first report on mitogenome in the family Tuberaceae, thereby laying the groundwork for our understanding of the evolution, phylogeny, and population genetics of these important ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lijiao Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhijie Bao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenying Tu
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaohui He
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
43
|
Glare T, Campbell M, Biggs P, Winter D, Durrant A, McKinnon A, Cox M. Mitochondrial evolution in the entomopathogenic fungal genus Beauveria. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21754. [PMID: 33124702 DOI: 10.1002/arch.21754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Species in the fungal genus Beauveria are pathogens of invertebrates and have been commonly used as the active agent in biopesticides. After many decades with few species described, recent molecular approaches to classification have led to over 25 species now delimited. Little attention has been given to the mitochondrial genomes of Beauveria but better understanding may led to insights into the nature of species and evolution in this important genus. In this study, we sequenced the mitochondrial genomes of four new strains belonging to Beauveria bassiana, Beauveria caledonica and Beauveria malawiensis, and compared them to existing mitochondrial sequences of related fungi. The mitochondrial genomes of Beauveria ranged widely from 28,806 to 44,135 base pairs, with intron insertions accounting for most size variation and up to 39% (B. malawiensis) of the mitochondrial length due to introns in genes. Gene order of the common mitochondrial genes did not vary among the Beauveria sequences, but variation was observed in the number of transfer ribonucleic acid genes. Although phylogenetic analysis using whole mitochondrial genomes showed, unsurprisingly, that B. bassiana isolates were the most closely related to each other, mitochondrial codon usage suggested that some B. bassiana isolates were more similar to B. malawiensis and B. caledonica than the other B. bassiana isolates analyzed.
Collapse
Affiliation(s)
- Travis Glare
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Matt Campbell
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Patrick Biggs
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Abigail Durrant
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Aimee McKinnon
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Murray Cox
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
44
|
Chen C, Wang J, Li Q, Fu R, Jin X, Huang W, Lu D. Mitogenomes of Two Phallus Mushroom Species Reveal Gene Rearrangement, Intron Dynamics, and Basidiomycete Phylogeny. Front Microbiol 2020; 11:573064. [PMID: 33193177 PMCID: PMC7644776 DOI: 10.3389/fmicb.2020.573064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Phallus indusiatus and Phallus echinovolvatus are edible bamboo mushrooms with pharmacological properties. We sequenced, assembled, annotated, and compared the mitogenomes of these species. Both mitogenomes were composed of circular DNA molecules, with sizes of 89,139 and 50,098 bp, respectively. Introns were the most important factor in mitogenome size variation within the genus Phallus. Phallus indusiatus, P. echinovolvatus, and Turbinellus floccosus in the subclass Phallomycetidae have conservative gene arrangements. Large-scale gene rearrangements were observed in species representing 42 different genera of Basidiomycetes. A variety of intron position classes were found in the 44 Basidiomycete species analyzed. A novel group II intron from the P. indusiatus mitogenome was compared with other fungus species containing the same intron, and we demonstrated that the insertion sites of the intron had a base preference. Phylogenetic analyses based on combined gene datasets yielded well-supported Bayesian posterior probability (BPP = 1) topologies. This indicated that mitochondrial genes are reliable molecular markers for analyzing the phylogenetic relationships of the Basidiomycetes. This is the first study of the mitogenome of the genus Phallus, and it increases our understanding of the population genetics and evolution of bamboo mushrooms and related species.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xin Jin
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
45
|
Wang X, Wang Y, Yao W, Shen J, Chen M, Gao M, Ren J, Li Q, Liu N. The 256 kb mitochondrial genome of Clavaria fumosa is the largest among phylum Basidiomycota and is rich in introns and intronic ORFs. IMA Fungus 2020; 11:26. [PMID: 33292749 PMCID: PMC7666478 DOI: 10.1186/s43008-020-00047-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/22/2020] [Indexed: 11/10/2022] Open
Abstract
In the present study, the complete mitogenome of Clavaria fumosa, was sequenced, assembled, and compared. The complete mitogenome of C. fumosa is 256,807 bp in length and is the largest mitogenomes among all Basidiomycota mitogenomes reported. Comparative mitogenomic analysis indicated that the C. fumosa mitogenome contained the most introns and intronic ORFs among all fungal mitogenomes. Large intergenic regions, intronic regions, accumulation of repeat sequences and plasmid-derived genes together promoted the size expansion of the C. fumosa mitogenome. In addition, the rps3 gene was found subjected to positive selection between some Agaricales species. We found frequent intron gain/loss events in Agaricales mitogenomes, and four novel intron classes were detected in the C. fumosa mitogenome. Large-scale gene rearrangements were found occurred in Agaricales species and the C. fumosa mitogenome had a unique gene arrangement which differed from other Agaricales species. Phylogenetic analysis for 76 Basidiomycetes based on combined mitochondrial gene sets indicated that mitochondrial genes could be used as effective molecular markers for reconstructing evolution of Basidiomycota. The study served as the first report on the mitogenomes of the family Clavariaceae, which will promote the understanding of the genetics, evolution and taxonomy of C. fumosa and related species.
Collapse
Affiliation(s)
- Xu Wang
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yajie Wang
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Wen Yao
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Jinwen Shen
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Mingyue Chen
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Ming Gao
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Jiening Ren
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
| | - Na Liu
- Present Address: College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
46
|
The 206 kbp mitochondrial genome of Phanerochaete carnosa reveals dynamics of introns, accumulation of repeat sequences and plasmid-derived genes. Int J Biol Macromol 2020; 162:209-219. [DOI: 10.1016/j.ijbiomac.2020.06.142] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 01/14/2023]
|
47
|
Wang X, Jia L, Wang M, Yang H, Chen M, Li X, Liu H, Li Q, Liu N. The complete mitochondrial genome of medicinal fungus Taiwanofungus camphoratus reveals gene rearrangements and intron dynamics of Polyporales. Sci Rep 2020; 10:16500. [PMID: 33020532 PMCID: PMC7536210 DOI: 10.1038/s41598-020-73461-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Taiwanofungus camphoratus is a highly valued medicinal mushroom that is endemic to Taiwan, China. In the present study, the mitogenome of T. camphoratus was assembled and compared with other published Polyporales mitogenomes. The T. camphoratus mitogenome was composed of circular DNA molecules, with a total size of 114,922 bp. Genome collinearity analysis revealed large-scale gene rearrangements between the mitogenomes of Polyporales, and T. camphoratus contained a unique gene order. The number and classes of introns were highly variable in 12 Polyporales species we examined, which proved that numerous intron loss or gain events occurred in the evolution of Polyporales. The Ka/Ks values for most core protein coding genes in Polyporales species were less than 1, indicating that these genes were subject to purifying selection. However, the rps3 gene was found under positive or relaxed selection between some Polyporales species. Phylogenetic analysis based on the combined mitochondrial gene set obtained a well-supported topology, and T. camphoratus was identified as a sister species to Laetiporus sulphureus. This study served as the first report on the mitogenome in the Taiwanofungus genus, which will provide a basis for understanding the phylogeny and evolution of this important fungus.
Collapse
Affiliation(s)
- Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Lihua Jia
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Mingdao Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hao Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Mingyue Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hanyu Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Na Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
48
|
Tan M, Wang Q. Characterization of the complete mitochondrial genome of Sterigmatomyces hyphaenes (Agaricostilbales: Agaricostilbaceae) and implications for its phylogeny. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:3331-3333. [PMID: 33367015 PMCID: PMC7717615 DOI: 10.1080/23802359.2020.1815602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, the complete mitochondrial genome of Sterigmatomyces hyphaenes was sequenced by the next-generation sequencing. The complete mitochondrial genome of S. hyphaenes contained 17 protein-coding genes (PCG), 2 ribosomal RNA (rRNA) genes, and 23 transfer RNA (tRNA) genes. The total size of the S. hyphaenes mitochondrial genome is 26,198 bp, and the GC content of the mitochondrial genome is 42.08%. Phylogenetic analysis based on the combined mitochondrial gene dataset indicated that the mitochondrial genome of S. hyphaenes exhibited a close relationship with that of Rhodotorula mucilaginosa.
Collapse
Affiliation(s)
- Maoling Tan
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Qiangfeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, P.R. China
| |
Collapse
|
49
|
Ye J, Cheng J, Ren Y, Liao W, Li Q. The First Mitochondrial Genome for Geastrales ( Sphaerobolus stellatus) Reveals Intron Dynamics and Large-Scale Gene Rearrangements of Basidiomycota. Front Microbiol 2020; 11:1970. [PMID: 32849488 PMCID: PMC7432440 DOI: 10.3389/fmicb.2020.01970] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
In this study, the mitogenome of artillery fungus, Sphaerobolus stellatus, was assembled and compared with other Basidiomycota mitogenomes. The Sphaerobolus stellatus mitogenome was composed of circular DNA molecules, with a total size of 152,722 bp. Accumulation of intergenic and intronic sequences contributed to the Sphaerobolus stellatus mitogenome becoming the fourth largest mitogenome among Basidiomycota. We detected large-scale gene rearrangements in Basidiomycota mitogenomes, and the Sphaerobolus stellatus mitogenome contains a unique gene order. The quantity and position classes of intron varied between 75 Basidiomycota species we tested, indicating frequent intron loss/gain events occurred in the evolution of Basidiomycota. A novel intron position classes (P1281) was detected in the Sphaerobolus stellatus mitogenome, without any homologous introns from other Basidiomycota species. A pair of fragments with a total length of 9.12 kb in both the nuclear and mitochondrial genomes of Sphaerobolus stellatus was detected, indicating possible gene transferring events. Phylogenetic analysis based on the combined mitochondrial gene set obtained well-supported tree topologies (Bayesian posterior probabilities ≥ 0.99; bootstrap values ≥98). This study served as the first report on the mitogenome from the order Geastrales, which will promote the understanding of the phylogeny, population genetics, and evolution of the artillery fungus, Sphaerobolus stellatus.
Collapse
Affiliation(s)
- Jinghua Ye
- College of Information Science & Technology, Chengdu University, Chengdu, China
| | - Jie Cheng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yuanhang Ren
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wenlong Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
50
|
Huang J, Qu H, Shen X. Characterization of the complete mitochondrial genome of biocontrol yeast Sporobolomyces sp. (Sporidiobolales: Sporidiobolaceae) with phylogenetic analysis. Mitochondrial DNA B Resour 2020; 5:3039-3041. [PMID: 33458049 PMCID: PMC7782182 DOI: 10.1080/23802359.2020.1797581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this study, we obtained the complete mitochondrial genome of Sporobolomyces sp. using next-generation sequencing. The complete mitochondrial genome of Sporobolomyces sp. contained 15 protein-coding genes (PCG), two ribosomal RNA (rRNA) genes, and 25 transfer RNA (tRNA) genes. The total length of the Sporobolomyces sp. mitochondrial genome is 26,430 bp, and the GC content of the mitochondrial genome is 39.32%. Phylogenetic analysis based on combined mitochondrial gene dataset indicated that the mitochondrial genome of Sporobolomyces sp. exhibited a close relationship with that of Rhodotorula mucilaginosa.
Collapse
Affiliation(s)
- Jingwei Huang
- College of Medicine (School of Nursing), Chengdu University, Chengdu, P.R. China.,Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, P.R. China
| | - Huijuan Qu
- Sichuan Academy of Agricultural Sciences, Chengdu, P.R. China
| | - Xueshan Shen
- Sichuan Academy of Agricultural Sciences, Chengdu, P.R. China
| |
Collapse
|