1
|
Xing Z, Gao H, Wang D, Shang Y, Tuliebieke T, Jiang J, Li C, Wang H, Li Z, Jia L, Wu Y, Wang D, Yang W, Chang Y, Zhang X, Xu L, Jiang C, Huang L, Tian X. A novel biological sources consistency evaluation method reveals high level of biodiversity within wild natural medicine: A case study of Amynthas earthworms as “Guang Dilong”. Acta Pharm Sin B 2022; 13:1755-1770. [PMID: 37139429 PMCID: PMC10150161 DOI: 10.1016/j.apsb.2022.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
For wild natural medicine, unanticipated biodiversity as species or varieties with similar morphological characteristics and sympatric distribution may co-exist in a single batch of medical materials, which affects the efficacy and safety of clinical medication. DNA barcoding as an effective species identification tool is limited by its low sample throughput nature. In this study, combining DNA mini-barcode, DNA metabarcoding and species delimitation method, a novel biological sources consistency evaluation strategy was proposed, and high level of interspecific and intraspecific variations were observed and validated among 5376 Amynthas samples from 19 sampling points regarded as "Guang Dilong" and 25 batches of proprietary Chinese medicines. Besides Amynthas aspergillum as the authentic source, 8 other Molecular Operational Taxonomic Units (MOTUs) were elucidated. Significantly, even the subgroups within A. aspergillum revealed here differ significantly on chemical compositions and biological activity. Fortunately, this biodiversity could be controlled when the collection was limited to designated areas, as proved by 2796 "decoction pieces" samples. This batch biological identification method should be introduced as a novel concept regarding natural medicine quality control, and to offer guidelines for in-situ conservation and breeding bases construction of wild natural medicine.
Collapse
Affiliation(s)
- Zhimei Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Gao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ye Shang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Tenukeguli Tuliebieke
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jibao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunxiao Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hong Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenguo Li
- Mudanjiang YouBo Pharmaceutical Co. Ltd., Mudanjiang 157000, China
| | - Lifu Jia
- Guizhou Ruihe Pharmaceutical Co. Ltd., Guizhou 550000, China
| | - Yongsheng Wu
- Mudanjiang YouBo Pharmaceutical Co. Ltd., Mudanjiang 157000, China
| | - Dandan Wang
- Mudanjiang YouBo Pharmaceutical Co. Ltd., Mudanjiang 157000, China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Liuwei Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Chao Jiang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China
- Corresponding authors.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China
- Corresponding authors.
| | - Xiaoxuan Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Corresponding authors.
| |
Collapse
|
2
|
Identifying the Genetic Distance Threshold for Entiminae (Coleoptera: Curculionidae) Species Delimitation via COI Barcodes. INSECTS 2022; 13:insects13030261. [PMID: 35323559 PMCID: PMC8953793 DOI: 10.3390/insects13030261] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023]
Abstract
The subfamily Entiminae is the largest group in the family Curculionidae, and it has long represented a challenge in traditional and molecular classification. Here, we analyzed intra- and interspecific genetic distances of 621 public COI barcode sequences (658bp) from 39 genera and 110 species of Entiminae, to determine parameters most congruent in retaining established species. We found that the mean intraspecific genetic distance (3.07%) was much smaller than the mean interspecific one (21.96%), but there is a wide range of overlap between intra- and interspecific genetic distances (0.77−18.01%), indicating that there is no consistent, universal barcoding gap. Specifically, DNA barcoding gap analysis for morphospecies revealed that 102 of 110 morphospecies had barcoding gaps, and 9.18% was the optimum threshold of genetic distances for 97 species delimitation. We further confirmed this threshold with barcodes from 27 morphologically identified specimens (including 21 newly reported barcodes) sequenced from five genera and seven species. We also identified thresholds to delimit congeneric species within 14 selected genera (species > 2), which varied from 7.42% (Trichalophus) to 13.48% (Barypeithes). We herein present optimal parameters for species identification in the Entiminae. Our study suggests that despite no universal genetic distance threshold value in subfamily Entiminae, 9.18% is optimal for most species. We recommend a wider sampling of geographic populations to better account for intraspecific distance variation, and that genetic distance thresholds for species delimitation should be refined at the genus level.
Collapse
|
3
|
Puig AS, Wurzel S, Suarez S, Marelli JP, Niogret J. Mealybug (Hemiptera: Pseudococcidae) Species Associated with Cacao Mild Mosaic Virus and Evidence of Virus Acquisition. INSECTS 2021; 12:994. [PMID: 34821794 PMCID: PMC8624702 DOI: 10.3390/insects12110994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
Theobroma cacao is affected by viruses on every continent where the crop is cultivated, with the most well-known ones belonging to the Badnavirus genus. One of these, cacao mild mosaic virus (CaMMV), is present in the Americas, and is transmitted by several species of Pseudococcidae (mealybugs). To determine which species are associated with virus-affected cacao plants in North America, and to assess their potential as vectors, mealybugs (n = 166) were collected from infected trees in Florida, and identified using COI, ITS2, and 28S markers. The species present were Pseudococcus jackbeardsleyi (38%; n = 63), Maconellicoccus hirsutus (34.3%; n = 57), Pseudococcus comstocki (15.7%; n = 26), and Ferrisia virgata (12%; n = 20). Virus acquisition was assessed by testing mealybug DNA (0.8 ng) using a nested PCR that amplified a 500 bp fragment of the movement protein-coat protein region of CaMMV. Virus sequences were obtained from 34.6 to 43.1% of the insects tested; however, acquisition did not differ among species, X2 (3, N = 166) = 0.56, p < 0.91. This study identified two new mealybug species, P. jackbeardsleyi and M. hirsutus, as potential vectors of CaMMV. This information is essential for understanding the infection cycle of CaMMV and developing effective management strategies.
Collapse
Affiliation(s)
- Alina S. Puig
- Subtropical Horticultural Research Station, USDA-ARS, Miami, FL 33158, USA;
| | - Sarah Wurzel
- Subtropical Horticultural Research Station, USDA-ARS, Miami, FL 33158, USA;
| | | | | | - Jerome Niogret
- Mars Wrigley, James Cook University, Smithfield, QLD 4878, Australia;
| |
Collapse
|
4
|
Native or Invasive? The Red-Haired Pine Bark Beetle Hylurgus ligniperda (Fabricius) (Curculionidae: Scolytinae) in East Asia. FORESTS 2021. [DOI: 10.3390/f12070950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The red-haired pine bark beetle, Hylurgus ligniperda (Fabricius), is one of the most rapidly spreading invasive forest insects. Originally from Eurasia, it has subsequently been introduced to Oceania, North, and South America. Yet, the status of H. ligniperda in East Asia is ambiguous. Here, investigation and analysis were conducted on the beetle in China, South Korea, and Japan. New occurrences in China and South Korea were recorded by field surveys and the expansion of H. ligniperda spreading in East Asia was analyzed. The results show that H. ligniperda is likely an invasive species in East Asia, initially invading Japan, then South Korea. Now it has invaded and successfully colonized Shandong province, China. Furthermore, the species has spread rapidly and it is now widely distributed in South Korea and Japan.
Collapse
|
6
|
Abdel-Gaber R, Alajmi R, Haddadi R, El-Ashram S. The phylogenetic position of Arhaphe deviatica within Hemipteran insects: A potential model species for eco-devo studies of symbiosis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:73-78. [PMID: 33351288 DOI: 10.1002/jez.b.23019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/06/2022]
Abstract
Insecta is known to be the most diverse group of species, exhibiting numerous forms of endosymbiotic associations. Molecular techniques have provided significant indicators for insect-microbe interactions. The present study aimed to register one of the true bugs of pentatomomorpha and clarify its taxonomic position through phylogenetic analysis of the partial 16S rRNA gene region. A maximum likelihood analysis retrieved a generally well-supported phylogeny based on Tamura 3-parameter model. Based on the partial mitochondrial 16S rRNA gene sequences, a phylogenetic study of suborder Heteroptera relationships within Hemipteras' order was constructed. Sequences of 221 bases of the 3' end of the gene from 28 species within 16 families were analyzed. This analysis and bootstrap confidence revealed two major clades comprising four suborders within Hemiptera, with a close relationship between Heteroptera + (Sternorrhyncha + (Auchenorrhycha + Coleorrhyncha)). Infraorder Pentatomomorpha is forming a sister group with a substantial bootstrap value to Cimicomorpha. Pyrrhocoroidea forms a sister relationship with Lygaeoidea + Coreoidea. There is a close relationship between Largidae and Pyrrhocoridae within Pyrrhocoroidea. The results show that the present species is firmly embedded in the genus Arhaphe with 94.35% sequence resemblance to its congeners. Besides, the recovered hemipteran species considered a potential model group for studying different symbionts. We propose both phylogenetic and ecological evolutionary developmental biology viewpoints for a more synthetic understanding of insect populations' molecular evolution.
Collapse
Affiliation(s)
- Rewaida Abdel-Gaber
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Reem Alajmi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rania Haddadi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China.,Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|