1
|
Yang F, Ding X, Lv G. Quantitative proteomic analysis based on TMT reveals different responses of Haloxylon ammodendron and Haloxylon persicum to long-term drought. BMC PLANT BIOLOGY 2025; 25:480. [PMID: 40234745 PMCID: PMC11998144 DOI: 10.1186/s12870-025-06513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
The essence of the plant drought tolerance mechanism lies in determining protein expression patterns, identifying key drought-tolerant proteins, and elucidating their association with specific functions within metabolic pathways. So far, there is limited information on the long-term drought tolerance of Haloxylon ammodendron and Haloxylon persicum grown in natural environments, as analyzed through proteomics. Therefore, this study conducted proteomic research on H. ammodendron and H. persicum grown in natural environments to identify their long-term drought-tolerant protein expression patterns. Totals of 71 and 348 differentially expressed proteins (DEPs) were identified in H. ammodendron and H. persicum, respectively. Bioinformatics analysis of DEPs reveals that H. ammodendron primarily generates a large amount of energy by overexpressing proteins related to carbohydrate metabolism pathways (pyruvate kinase, purple acid phosphatases and chitinase), and simultaneously encodes proteins capable of degrading misfolded/damaged proteins (tam3-transposase, enhancer of mRNA-decapping protein 4, and proteinase inhibitor I3), thus adapting to long-term drought environments. For H. persicum, most DEPs (enolase and UDP-xylose/xylose synthase) involved in metabolic pathways are up-regulated, indicating that it mainly adapts to long-term drought environments through mechanisms related to positive regulation of protein expression. These results offer crucial insights into how desert plants adapt to arid environments over the long term to maintain internal balance. In addition, the identified key drought-tolerant proteins can serve as candidate proteins for molecular breeding in the genus Haloxylon, aiming to develop new germplasm for desert ecosystem restoration.
Collapse
Affiliation(s)
- Fang Yang
- School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, 833300, China
| | - Xuelian Ding
- School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, 833300, China
| | - Guanghui Lv
- School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China.
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China.
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, 833300, China.
| |
Collapse
|
2
|
Poza-Viejo L, Redondo-Nieto M, Matías J, Granado-Rodríguez S, Maestro-Gaitán I, Cruz V, Olmos E, Bolaños L, Reguera M. Shotgun proteomics of quinoa seeds reveals chitinases enrichment under rainfed conditions. Sci Rep 2023; 13:4951. [PMID: 36973333 PMCID: PMC10043034 DOI: 10.1038/s41598-023-32114-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Quinoa is an Andean crop whose cultivation has been extended to many different parts of the world in the last decade. It shows a great capacity for adaptation to diverse climate conditions, including environmental stressors, and, moreover, the seeds are very nutritious in part due to their high protein content, which is rich in essential amino acids. They are gluten-free seeds and contain good amounts of other nutrients such as unsaturated fatty acids, vitamins, or minerals. Also, the use of quinoa hydrolysates and peptides has been linked to numerous health benefits. Altogether, these aspects have situated quinoa as a crop able to contribute to food security worldwide. Aiming to deepen our understanding of the protein quality and function of quinoa seeds and how they can vary when this crop is subjected to water-limiting conditions, a shotgun proteomics analysis was performed to obtain the proteomes of quinoa seeds harvested from two different water regimes in the field: rainfed and irrigated conditions. Differentially increased levels of proteins determined in seeds from each field condition were analysed, and the enrichment of chitinase-related proteins in seeds harvested from rainfed conditions was found. These proteins are described as pathogen-related proteins and can be accumulated under abiotic stress. Thus, our findings suggest that chitinase-like proteins in quinoa seeds can be potential biomarkers of drought. Also, this study points to the need for further research to unveil their role in conferring tolerance when coping with water-deficient conditions.
Collapse
Affiliation(s)
- Laura Poza-Viejo
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Javier Matías
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | | | | | - Verónica Cruz
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | - Enrique Olmos
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Luis Bolaños
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Yang Z, Qin F. The battle of crops against drought: Genetic dissection and improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:496-525. [PMID: 36639908 DOI: 10.1111/jipb.13451] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With ongoing global climate change, water scarcity-induced drought stress remains a major threat to agricultural productivity. Plants undergo a series of physiological and morphological changes to cope with drought stress, including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake. Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species. The functional dissection of these genes using molecular techniques has enriched our understanding of drought responses in crops and has provided genetic targets for enhancing resistance to drought. Here, we review recent advances in the cloning and functional analysis of drought resistance genes and the development of technologies to mitigate the threat of drought to crop production.
Collapse
Affiliation(s)
- Zhirui Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Ali AEE, Husselmann LH, Tabb DL, Ludidi N. Comparative Proteomics Analysis between Maize and Sorghum Uncovers Important Proteins and Metabolic Pathways Mediating Drought Tolerance. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010170. [PMID: 36676117 PMCID: PMC9863747 DOI: 10.3390/life13010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Drought severely affects crop yield and yield stability. Maize and sorghum are major crops in Africa and globally, and both are negatively impacted by drought. However, sorghum has a better ability to withstand drought than maize. Consequently, this study identifies differences between maize and sorghum grown in water deficit conditions, and identifies proteins associated with drought tolerance in these plant species. Leaf relative water content and proline content were measured, and label-free proteomics analysis was carried out to identify differences in protein expression in the two species in response to water deficit. Water deficit enhanced the proline accumulation in sorghum roots to a higher degree than in maize, and this higher accumulation was associated with enhanced water retention in sorghum. Proteomic analyses identified proteins with differing expression patterns between the two species, revealing key metabolic pathways that explain the better drought tolerance of sorghum than maize. These proteins include phenylalanine/tyrosine ammonia-lyases, indole-3-acetaldehyde oxidase, sucrose synthase and phenol/catechol oxidase. This study highlights the importance of phenylpropanoids, sucrose, melanin-related metabolites and indole acetic acid (auxin) as determinants of the differences in drought stress tolerance between maize and sorghum. The selection of maize and sorghum genotypes with enhanced expression of the genes encoding these differentially expressed proteins, or genetically engineering maize and sorghum to increase the expression of such genes, can be used as strategies for the production of maize and sorghum varieties with improved drought tolerance.
Collapse
Affiliation(s)
- Ali Elnaeim Elbasheir Ali
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| | - Lizex Hollenbach Husselmann
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
| | - David L. Tabb
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
- Centre for Bioinformatics and Computational Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa
| | - Ndiko Ludidi
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
- DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Robert Sobukwe Road, Bellville 7530, South Africa
- Correspondence:
| |
Collapse
|
5
|
Wan D, Wan Y, Zhang T, Wang R, Ding Y. Multi-omics analysis reveals the molecular changes accompanying heavy-grazing-induced dwarfing of Stipa grandis. FRONTIERS IN PLANT SCIENCE 2022; 13:995074. [PMID: 36407579 PMCID: PMC9673880 DOI: 10.3389/fpls.2022.995074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Heavy grazing significantly reduces Stipa grandis growth. To enhance our understanding of plant responses to heavy grazing, we conducted transcriptomic, proteomic, and metabolic analyses of the leaves of non-grazed plants (NG) and heavy-grazing-induced dwarf plants (HG) of S. grandis. A total of 101 metabolites, 167 proteins, and 1,268 genes differed in abundance between the HG and NG groups. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways among differentially accumulated metabolites (DAMs) revealed that the most enriched pathways were flavone and flavonol biosynthesis, tryptophan metabolism, and phenylpropanoid biosynthesis. An integrative analysis of differentially expressed genes (DEGs) and proteins, and DAMs in these three pathways was performed. Heavy-grazing-induced dwarfism decreased the accumulation of DAMs enriched in phenylpropanoid biosynthesis, among which four DAMs were associated with lignin biosynthesis. In contrast, all DAMs enriched in flavone and flavonol biosynthesis and tryptophan metabolism showed increased accumulation in HG compared with NG plants. Among the DAMs enriched in tryptophan metabolism, three were involved in tryptophan-dependent IAA biosynthesis. Some of the DEGs and proteins enriched in these pathways showed different expression trends. The results indicated that these pathways play important roles in the regulation of growth and grazing-associated stress adaptions of S. grandis. This study enriches the knowledge of the mechanism of heavy-grazing-induced growth inhibition of S. grandis and provides valuable information for restoration of the productivity in degraded grassland.
Collapse
Affiliation(s)
- Dongli Wan
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yongqing Wan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Tongrui Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong Ding
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
6
|
Proteomic Investigation of Molecular Mechanisms in Response to PEG-Induced Drought Stress in Soybean Roots. PLANTS 2022; 11:plants11091173. [PMID: 35567174 PMCID: PMC9100407 DOI: 10.3390/plants11091173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
Roots are generally the critical drought sensors, but little is known about their molecular response to drought stress. We used the drought-tolerant soybean variety ‘Jiyu 47’ to investigate the differentially expressed proteins (DEPs) in soybean roots during the seedling stage based on the tandem mass tag (TMT) proteomics analysis. Various expression patterns were observed in a total of six physiological parameters. A total of 468 DEPs (144 up-regulated and 324 down-regulated) among a total of 8687 proteins were identified in response to drought stress in 24 h. The expression of DEPs was further validated based on quantitative real-time PCR of a total of five genes (i.e., GmGSH, GmGST1, GmGST2 k GmCAT, and Gm6PGD) involved in the glutathione biosynthesis. Results of enrichment analyses revealed a coordinated expression pattern of proteins involved in various cellular metabolisms responding to drought stress in soybean roots. Our results showed that drought stress caused significant alterations in the expression of proteins involved in several metabolic pathways in soybean roots, including carbohydrate metabolism, metabolism of the osmotic regulation substances, and antioxidant defense system (i.e., the glutathione metabolism). Increased production of reduced glutathione (GSH) enhanced the prevention of the damage caused by reactive oxygen species and the tolerance of the abiotic stress. The glutathione metabolism played a key role in modifying the antioxidant defense system in response to drought stress in soybean roots. Our proteomic study suggested that the soybean plants responded to drought stress by coordinating their protein expression during the vegetative stage, providing novel insights into the molecular mechanisms regulating the response to abiotic stress in plants.
Collapse
|
7
|
Li R, Su X, Zhou R, Zhang Y, Wang T. Molecular mechanism of mulberry response to drought stress revealed by complementary transcriptomic and iTRAQ analyses. BMC PLANT BIOLOGY 2022; 22:36. [PMID: 35039015 PMCID: PMC8762937 DOI: 10.1186/s12870-021-03410-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The use of mulberry leaves has long been limited to raising silkworms, but with the continuous improvement of mulberry (Morus alba) resource development and utilization, various mulberry leaf extension products have emerged. However, the fresh leaves of mulberry trees have a specific window of time for picking and are susceptible to adverse factors, such as drought stress. Therefore, exploring the molecular mechanism by which mulberry trees resist drought stress and clarifying the regulatory network of the mulberry drought response is the focus of the current work. RESULTS In this study, natural and drought-treated mulberry grafted seedlings were used for transcriptomic and proteomic analyses (CK vs. DS9), aiming to clarify the molecular mechanism of the mulberry drought stress response. Through transcriptome and proteome sequencing, we identified 9889 DEGs and 1893 DEPs enriched in stress-responsive GO functional categories, such as signal transducer activity, antioxidant activity, and transcription regulator activity. KEGG enrichment analysis showed that a large number of codifferentially expressed genes were enriched in flavonoid biosynthesis pathways, hormone signalling pathways, lignin metabolism and other pathways. Through subsequent cooperation analysis, we identified 818 codifferentially expressed genes in the CK vs. DS9 comparison group, including peroxidase (POD), superoxide dismutase (SOD), aldehyde dehydrogenase (ALDHs), glutathione s-transferase (GST) and other genes closely related to the stress response. In addition, we determined that the mulberry gene MaWRKYIII8 (XP_010104968.1) underwent drought- and abscisic acid (ABA)-induced expression, indicating that it may play an important role in the mulberry response to drought stress. CONCLUSIONS Our research shows that mulberry can activate proline and ABA biosynthesis pathways and produce a large amount of proline and ABA, which improves the drought resistance of mulberry. MaWRKYIII8 was up-regulated and induced by drought and exogenous ABA, indicating that MaWRKYIII8 may be involved in the mulberry response to drought stress. These studies will help us to analyse the molecular mechanism underlying mulberry drought tolerance and provide important gene information and a theoretical basis for improving mulberry drought tolerance through molecular breeding in the future.
Collapse
Affiliation(s)
- Ruixue Li
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xueqiang Su
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Rong Zhou
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yuping Zhang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Taichu Wang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China.
| |
Collapse
|
8
|
Sheoran S, Kaur Y, Kumar S, Shukla S, Rakshit S, Kumar R. Recent Advances for Drought Stress Tolerance in Maize ( Zea mays L.): Present Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:872566. [PMID: 35707615 PMCID: PMC9189405 DOI: 10.3389/fpls.2022.872566] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 05/04/2023]
Abstract
Drought stress has severely hampered maize production, affecting the livelihood and economics of millions of people worldwide. In the future, as a result of climate change, unpredictable weather events will become more frequent hence the implementation of adaptive strategies will be inevitable. Through utilizing different genetic and breeding approaches, efforts are in progress to develop the drought tolerance in maize. The recent approaches of genomics-assisted breeding, transcriptomics, proteomics, transgenics, and genome editing have fast-tracked enhancement for drought stress tolerance under laboratory and field conditions. Drought stress tolerance in maize could be considerably improved by combining omics technologies with novel breeding methods and high-throughput phenotyping (HTP). This review focuses on maize responses against drought, as well as novel breeding and system biology approaches applied to better understand drought tolerance mechanisms and the development of drought-tolerant maize cultivars. Researchers must disentangle the molecular and physiological bases of drought tolerance features in order to increase maize yield. Therefore, the integrated investments in field-based HTP, system biology, and sophisticated breeding methodologies are expected to help increase and stabilize maize production in the face of climate change.
Collapse
|
9
|
Li H, Yang M, Zhao C, Wang Y, Zhang R. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties. BMC PLANT BIOLOGY 2021; 21:513. [PMID: 34736392 PMCID: PMC8567644 DOI: 10.1186/s12870-021-03295-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Drought stress severely limits maize seedling growth and crop yield. Previous studies have elucidated the mechanisms by which maize acquires drought resistance and contends with water deficiency. However, the link between the physiological and molecular variations among maize cultivars are unknown. Here, physiological and proteomic analyses were conducted to compare the stress responses of two maize cultivars with contrasting drought stress tolerance. RESULTS The physiological analysis showed that the drought-tolerant SD609 maize variety maintains relatively high photochemical efficiency by enhancing its protective cyclic electron flow (CEF) mechanism and antioxidative enzymes activities. Proteomics analysis revealed that 198 and 102 proteins were differentially expressed in SD609 and the drought-sensitive SD902 cultivar, respectively. GO and KEGG enrichments indicated that SD609 upregulated proteins associated with photosynthesis, antioxidants/detoxifying enzymes, molecular chaperones and metabolic enzymes. Upregulation of the proteins related to PSII repair and photoprotection improved photochemical capacity in SD609 subjected to moderate drought stress. In SD902, however, only the molecular chaperones and sucrose synthesis pathways were induced and they failed to protect the impaired photosystem. Further analysis demonstrated that proteins related to the electron transport chain (ETC) and redox homeostasis as well as heat shock proteins (HSPs) may be important in protecting plants from drought stress. CONCLUSIONS Our experiments explored the mechanism of drought tolerance and clarified the interconnections between the physiological and proteomic factors contributing to it. In summary, our findings aid in further understanding of the drought tolerance mechanisms in maize.
Collapse
Affiliation(s)
- Hongjie Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mei Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chengfeng Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifan Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Renhe Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Modulation of photosynthesis and other proteins during water-stress. Mol Biol Rep 2021; 48:3681-3693. [PMID: 33856605 DOI: 10.1007/s11033-021-06329-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 10/25/2022]
Abstract
Protein changes under drought or water stress conditions have been widely investigated. These investigations have given us enormous understanding of how drought is manifested in plants and how plants respond and adopt to such conditions. Chlorophyll fluoroescence, gas exchange, OMICS, biochemical and molecular analyses have shed light on regulation of physiology and photosynthesis of plants under drought. Use of proteomics has greatly increased the repertoire of drought-associated proteins which nevertheless, need to be investigated for their mechanistic and functional roles. Roles of such proteins have been succinctly discussed in various review articles, however more information on their functional role in countering drought is needed. In this review, recent developments in the field, alterations in the abundance of plant proteins in response to drought, monitored through numerous proteomic and immuno-blot analyses, and how these could affect plants growth and development, are discussed.
Collapse
|
11
|
Pacholak A, Gao ZL, Gong XY, Kaczorek E, Cui YW. The metabolic pathways of polyhydroxyalkanoates and exopolysaccharides synthesized by Haloferax mediterranei in response to elevated salinity. J Proteomics 2020; 232:104065. [PMID: 33276193 DOI: 10.1016/j.jprot.2020.104065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
How polymer synthesis is mobilized or activated as a biological response of Haloferax mediterranei against hypertonic conditions remains largely unexplored. This study investigated the protein expression of H. mediterranei in response to high salinity by using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis. The microbes were harvested at end of fermentation at the NaCl salinity of 75 and 250 g L-1. Among the identified 2123 proteins, 170 proteins were differentially expressed. Gene ontology annotation revealed that the highest number of proteins was annotated in biological process category, which was responsible for metabolic process, cellular component and catalytic activity. Differentially expressed proteins were belonged to the class of response to stimulus as well as catalytic activity and binding. Under high salinity conditions, three pathways were established as key responses of PHA and EPS production to hypertonic pressure. Two overexpressed proteins, beta-ketoacyl-ACP reductase and 3-hydroxyacyl-CoA dehydrogenase, enhanced the synthesis of PHAs. The serine-pyruvate transaminase and serine-glyoxylate transaminase were upregulated, thereby increasing the conversion of glucose to PHA. Downregulated levels of sulfate-adenylyl transferase and adenylyl-sulfate kinase could cause diminished EPS synthesis. This study could contribute to better understanding of the proteomic mechanisms of the synthesized polymers in defending against salt stress. SIGNIFICANCE: Haloferax mediterranei, a family member of halophilic archaea, is well known for its fermentative production of poly-β-hydroxyalkanoates (PHAs). PHAs are natural polymers that exhibit great potential in a wide range of applications such as a good alternative to petroleum-based plastics and the biocompatible material. For decades, the functional role of PHAs synthesized by H. mediterranei is deemed to be carbon and energy reservations. The finding proved that differential production of PHA and EPS in H. mediterranei exposed to elevated salinity was caused by differential protein expression. This is the first report on how PHA and EPS synthesized by H. mediterranei is mobilized as the response of increased salinity, contributing to the understanding of halophilic archaea's response to hypertonic stress and the precise control of fermentation production. Despite its advantages as a PHA cell factory, H. mediterranei synthesized EPS simultaneously, thereby lowering the maximum yield of PHA production. Overall, salinity can be used as a vital microbial fermentation parameter to obtain the highest harvest of PHA, as well as the lowest EPS synthesis in industrial fermentation.
Collapse
Affiliation(s)
- Amanda Pacholak
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Energy and Environmental Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China; Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Ze-Liang Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Energy and Environmental Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xiao-Yu Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Energy and Environmental Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Energy and Environmental Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| |
Collapse
|
12
|
Chen Q, Huang R, Xu Z, Zhang Y, Li L, Fu J, Wang G, Wang J, Du X, Gu R. Label-Free Comparative Proteomic Analysis Combined with Laser-Capture Microdissection Suggests Important Roles of Stress Responses in the Black Layer of Maize Kernels. Int J Mol Sci 2020; 21:ijms21041369. [PMID: 32085613 PMCID: PMC7072901 DOI: 10.3390/ijms21041369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/20/2022] Open
Abstract
The black layer (BL) is traditionally used as an indicator for kernel harvesting in maize, as it turns visibly dark when the kernel reaches physiological maturity. However, the molecular roles of BL in kernel development have not been fully elucidated. In this work, microscopy images showed that BL began to appear at a growth stage earlier than 10 days after pollination (DAP), and its color gradually deepened to become dark as the development period progressed. Scanning electron microscopy observations revealed that BL is a tissue structure composed of several layers of cells that are gradually squeezed and compressed during kernel development. Laser-capture microdissection (LCM) was used to sample BL and its neighboring inner tissue, basal endosperm transfer layer (BETL), and outer tissue, inner epidermis (IEP), from 20 DAP of kernels. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling (MALDI-TOF MS profiling) detected 41, 104, and 120 proteins from LCM-sampled BL, BETL, and IEP, respectively. Gene ontology (GO) analysis indicated that the 41 BL proteins were primarily involved in the response to stress and stimuli. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that the BL proteins were enriched in several defense pathways, such as the ascorbate and aldarate metabolic pathways. Among the 41 BL proteins, six were BL-specific proteins that were only detected from BL. Annotations of five BL-specific proteins were related to stress responses. During kernel development, transcriptional expression of most BL proteins showed an increase, followed by a decrease, and reached a maximum zero to 20 DAP. These results suggest a role for BL in stress responses for protecting filial tissue against threats from maternal sides, which helps to elucidate the biological functions of BL.
Collapse
Affiliation(s)
- Quanquan Chen
- Center for Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Key Laboratory of Crop Heterosis Utilization (MOE), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Q.C.); (R.H.); (Z.X.); (Y.Z.); (L.L.); (J.W.)
| | - Ran Huang
- Center for Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Key Laboratory of Crop Heterosis Utilization (MOE), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Q.C.); (R.H.); (Z.X.); (Y.Z.); (L.L.); (J.W.)
| | - Zhenxiang Xu
- Center for Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Key Laboratory of Crop Heterosis Utilization (MOE), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Q.C.); (R.H.); (Z.X.); (Y.Z.); (L.L.); (J.W.)
| | - Yaxin Zhang
- Center for Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Key Laboratory of Crop Heterosis Utilization (MOE), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Q.C.); (R.H.); (Z.X.); (Y.Z.); (L.L.); (J.W.)
| | - Li Li
- Center for Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Key Laboratory of Crop Heterosis Utilization (MOE), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Q.C.); (R.H.); (Z.X.); (Y.Z.); (L.L.); (J.W.)
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.F.); (G.W.)
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.F.); (G.W.)
| | - Jianhua Wang
- Center for Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Key Laboratory of Crop Heterosis Utilization (MOE), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Q.C.); (R.H.); (Z.X.); (Y.Z.); (L.L.); (J.W.)
| | - Xuemei Du
- Center for Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Key Laboratory of Crop Heterosis Utilization (MOE), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Q.C.); (R.H.); (Z.X.); (Y.Z.); (L.L.); (J.W.)
- Correspondence: (X.D.); (R.G.)
| | - Riliang Gu
- Center for Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Key Laboratory of Crop Heterosis Utilization (MOE), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Q.C.); (R.H.); (Z.X.); (Y.Z.); (L.L.); (J.W.)
- Correspondence: (X.D.); (R.G.)
| |
Collapse
|
13
|
Lai Y, Zhang D, Wang J, Wang J, Ren P, Yao L, Si E, Kong Y, Wang H. Integrative Transcriptomic and Proteomic Analyses of Molecular Mechanism Responding to Salt Stress during Seed Germination in Hulless Barley. Int J Mol Sci 2020; 21:ijms21010359. [PMID: 31935789 PMCID: PMC6981547 DOI: 10.3390/ijms21010359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Hulless barley (Hordeum vulgare L. var. nudum) is one of the most important crops in the Qinghai-Tibet Plateau. Soil salinity seriously affects its cultivation. To investigate the mechanism of salt stress response during seed germination, two contrasting hulless barley genotypes were selected to first investigate the molecular mechanism of seed salinity response during the germination stage using RNA-sequencing and isobaric tags for relative and absolute quantitation technologies. Compared to the salt-sensitive landrace lk621, the salt-tolerant one lk573 germinated normally under salt stress. The changes in hormone contents also differed between lk621 and lk573. In lk573, 1597 differentially expressed genes (DEGs) and 171 differentially expressed proteins (DEPs) were specifically detected at 4 h after salt stress, and correspondingly, 2748 and 328 specifically detected at 16 h. Most specific DEGs in lk573 were involved in response to oxidative stress, biosynthetic process, protein localization, and vesicle-mediated transport, and most specific DEPs were assigned to an oxidation-reduction process, carbohydrate metabolic process, and protein phosphorylation. There were 96 genes specifically differentially expressed at both transcriptomic and proteomic levels in lk573. These results revealed the molecular mechanism of salt tolerance and provided candidate genes for further study and salt-tolerant improvement in hulless barley.
Collapse
Affiliation(s)
- Yong Lai
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
| | - Dangquan Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
| | - Jinmin Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
| | - Panrong Ren
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
| | - Erjing Si
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Yuhua Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (Y.L.); (D.Z.)
- Correspondence: (Y.K.); (H.W.)
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.K.); (H.W.)
| |
Collapse
|