1
|
Chemerin and Chemokine-like Receptor 1 Expression Are Associated with Hepatocellular Carcinoma Progression in European Patients. Biomedicines 2023; 11:biomedicines11030737. [PMID: 36979716 PMCID: PMC10044805 DOI: 10.3390/biomedicines11030737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The chemoattractant protein chemerin is protective in experimental hepatocellular carcinoma (HCC), and high expression in HCC tissues of Asian patients was related to a favorable prognosis. Studies from Asia found reduced expression of chemerin in HCC compared to para-tumor tissues while our previous analysis observed the opposite. Aim of this study was to correlate chemerin expression in HCC tissues with disease severity of European patients Hepatocyte chemerin protein expression was assessed by immunohistochemistry in HCC tissue of 383 patients, and was low in 24%, moderate in 49% and high in 27%. High chemerin protein in the HCC tissues was related to the T stage, vessel invasion, histologic grade, Union for International Cancer Control (UICC) stage and tumor size. Chemokine-like receptor 1 (CMKLR1) is a functional chemerin receptor. CMKLR1 protein in hepatocytes was low expressed in HCC tissues of 36%, moderate in tissues of 32% and high in 32% of the HCCs. Tumor CMKLR1 was associated with the T stage, vessel invasion, histologic grade and UICC stage. Notably, sex-specific analysis revealed that associations of chemerin and CMKLR1 expression with HCC progression were significant in males but not in females. The tumor chemerin and CMKLR1 protein expression were not related to steatosis, inflammation and fibrosis grades. In summary, chemerin as well as CMKLR1 protein were related to disease severity of European HCC patients, and this was significant in males. This observation is in contrast to Asian patients where higher chemerin in the tumors was protective. Current analysis provides evidence for ethnicity and sex-related differences of tumor expressed chemerin and HCC severity.
Collapse
|
2
|
Yue G, An Q, Xu X, Jin Z, Ding J, Hu Y, Du Q, Xu J, Xie R. The role of Chemerin in human diseases. Cytokine 2023; 162:156089. [PMID: 36463659 DOI: 10.1016/j.cyto.2022.156089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Chemerin is a protein encoded by the Rarres2 gene that acts through endocrine or paracrine regulation. Chemerin can bind to its receptor, regulate insulin sensitivity and adipocyte differentiation, and thus affect glucose and lipid metabolism. There is growing evidence that it also plays an important role in diseases such as inflammation and cancer. Chemerin has been shown to play a role in the pathogenesis of inflammatory and metabolic diseases caused by leukocyte chemoattractants in a variety of organs, but its biological function remains controversial. In conclusion, the exciting findings collected over the past few years clearly indicate that targeting Chemerin signaling as a biological target will be a major research goal in the future. This article reviews the pathophysiological roles of Chemerin in various systems and diseases,and expect to provide a rationale for its role as a clinical therapeutic target.
Collapse
Affiliation(s)
- Gengyu Yue
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Qimin An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xiaolin Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jianhong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yanxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China; The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China.
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China; The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
3
|
Pohl R, Eichelberger L, Feder S, Haberl EM, Rein-Fischboeck L, McMullen N, Sinal CJ, Bruckmann A, Weiss TS, Beck M, Höring M, Krautbauer S, Liebisch G, Wiest R, Wanninger J, Buechler C. Hepatocyte expressed chemerin-156 does not protect from experimental non-alcoholic steatohepatitis. Mol Cell Biochem 2022; 477:2059-2071. [PMID: 35449483 PMCID: PMC9237010 DOI: 10.1007/s11010-022-04430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a rapidly growing liver disease. The chemoattractant chemerin is abundant in hepatocytes, and hepatocyte expressed prochemerin protected from NASH. Prochemerin is inactive and different active isoforms have been described. Here, the effect of hepatocyte expressed muChem-156, a highly active murine chemerin isoform, was studied in the methionine–choline deficient dietary model of NASH. Mice overexpressing muChem-156 had higher hepatic chemerin protein. Serum chemerin levels and the capability of serum to activate the chemerin receptors was unchanged showing that the liver did not release active chemerin. Notably, activation of the chemerin receptors by hepatic vein blood did not increase in parallel to total chemerin protein in patients with liver cirrhosis. In experimental NASH, muChem-156 had no effect on liver lipids. Accordingly, overexpression of active chemerin in hepatocytes or treatment of hepatocytes with recombinant chemerin did not affect cellular triglyceride and cholesterol levels. Importantly, overexpression of muChem-156 in the murine liver did not change the hepatic expression of inflammatory and profibrotic genes. The downstream targets of chemerin such as p38 kinase were neither activated in the liver of muChem-156 producing mice nor in HepG2, Huh7 and Hepa1-6 cells overexpressing this isoform. Recombinant chemerin had no effect on global gene expression of primary human hepatocytes and hepatic stellate cells within 24 h of incubation. Phosphorylation of p38 kinase was, however, increased upon short-time incubation of HepG2 cells with chemerin. These findings show that muChem-156 overexpression in hepatocytes does not protect from liver steatosis and inflammation.
Collapse
Affiliation(s)
- Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Laura Eichelberger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Nichole McMullen
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher J Sinal
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Astrid Bruckmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Thomas S Weiss
- Children's University Hospital (KUNO), Regensburg University Hospital, 93053, Regensburg, Germany
| | - Michael Beck
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, University Inselspital, 3010, Bern, Switzerland
| | - Josef Wanninger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.
| |
Collapse
|
4
|
Fischer TF, Beck-Sickinger AG. Chemerin - exploring a versatile adipokine. Biol Chem 2022; 403:625-642. [PMID: 35040613 DOI: 10.1515/hsz-2021-0409] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Chemerin is a small chemotactic protein and a key player in initiating the early immune response. As an adipokine, chemerin is also involved in energy homeostasis and the regulation of reproductive functions. Secreted as inactive prochemerin, it relies on proteolytic activation by serine proteases to exert biological activity. Chemerin binds to three distinct G protein-coupled receptors (GPCR), namely chemokine-like receptor 1 (CMKLR1, recently named chemerin1), G protein-coupled receptor 1 (GPR1, recently named chemerin2), and CC-motif chemokine receptor-like 2 (CCRL2). Only CMKLR1 displays conventional G protein signaling, while GPR1 only recruits arrestin in response to ligand stimulation, and no CCRL2-mediated signaling events have been described to date. However, GPR1 undergoes constitutive endocytosis, making this receptor perfectly adapted as decoy receptor. Here, we discuss expression pattern, activation, and receptor binding of chemerin. Moreover, we review the current literature regarding the involvement of chemerin in cancer and several obesity-related diseases, as well as recent developments in therapeutic targeting of the chemerin system.
Collapse
Affiliation(s)
- Tobias F Fischer
- Institute of Biochemistry, University of Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | | |
Collapse
|
5
|
Chemerin Overexpression in the Liver Protects against Inflammation in Experimental Non-Alcoholic Steatohepatitis. Biomedicines 2022; 10:biomedicines10010132. [PMID: 35052810 PMCID: PMC8773259 DOI: 10.3390/biomedicines10010132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is marked by macrophage infiltration and inflammation. Chemerin is a chemoattractant protein and is abundant in hepatocytes. The aim of this study was to gain insight into the role of hepatocyte-produced prochemerin in NASH. Therefore, mice were infected with adeno-associated virus 8 to direct hepatic overexpression of prochemerin in a methionine–choline deficient dietary model of NASH. At the end of the study, hepatic and serum chemerin were higher in the chemerin-expressing mice. These animals had less hepatic oxidative stress, F4/80 and CC-chemokine ligand 2 (CCL2) protein, and mRNA levels of inflammatory genes than the respective control animals. In order to identify the underlying mechanisms, prochemerin was expressed in hepatocytes and the hepatic stellate cells, LX-2. Here, chemerin had no effect on cell viability, production of inflammatory, or pro-fibrotic factors. Notably, cultivation of human peripheral blood mononuclear cells (PBMCs) in the supernatant of Huh7 cells overexpressing chemerin reduced CCL2, interleukin-6, and osteopontin levels in cell media. CCL2 was also low in RAW264.7 cells exposed to Hepa1–6 cell produced chemerin. In summary, the current study showed that prochemerin overexpression had little effect on hepatocytes and hepatic stellate cells. Of note, hepatocyte-produced chemerin deactivated PBMCs and protected against inflammation in experimental NASH.
Collapse
|
6
|
Haberl EM, Pohl R, Rein-Fischboeck L, Höring M, Krautbauer S, Liebisch G, Buechler C. Accumulation of cholesterol, triglycerides and ceramides in hepatocellular carcinomas of diethylnitrosamine injected mice. Lipids Health Dis 2021; 20:135. [PMID: 34629057 PMCID: PMC8502393 DOI: 10.1186/s12944-021-01567-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dysregulated lipid metabolism is critically involved in the development of hepatocellular carcinoma (HCC). The respective metabolic pathways affected in HCC can be identified using suitable experimental models. Mice injected with diethylnitrosamine (DEN) and fed a normal chow develop HCC. For the analysis of the pathophysiology of HCC in this model a comprehensive lipidomic analysis was performed. METHODS Lipids were measured in tumor and non-tumorous tissues by direct flow injection analysis. Proteins with a role in lipid metabolism were analysed by immunoblot. Mann-Whitney U-test or paired Student´s t-test were used for data analysis. RESULTS Intra-tumor lipid deposition is a characteristic of HCCs, and di- and triglycerides accumulated in the tumor tissues of the mice. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha, lipoprotein lipase and hepatic lipase protein were low in the tumors whereas proteins involved in de novo lipogenesis were not changed. Higher rates of de novo lipogenesis cause a shift towards saturated acyl chains, which did not occur in the murine HCC model. Besides, LDL-receptor protein and cholesteryl ester levels were higher in the murine HCC tissues. Ceramides are cytotoxic lipids and are low in human HCCs. Notably, ceramide levels increased in the murine tumors, and the simultaneous decline of sphingomyelins suggests that sphingomyelinases were involved herein. DEN is well described to induce the tumor suppressor protein p53 in the liver, and p53 was additionally upregulated in the tumors. CONCLUSIONS Ceramides mediate the anti-cancer effects of different chemotherapeutic drugs and restoration of ceramide levels was effective against HCC. High ceramide levels in the tumors makes the DEN injected mice an unsuitable model to study therapies targeting ceramide metabolism. This model is useful for investigating how tumors evade the cytotoxic effects of ceramides.
Collapse
Affiliation(s)
- Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.
| |
Collapse
|
7
|
Fischer TF, Czerniak AS, Weiß T, Zellmann T, Zielke L, Els-Heindl S, Beck-Sickinger AG. Cyclic Derivatives of the Chemerin C-Terminus as Metabolically Stable Agonists at the Chemokine-like Receptor 1 for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13153788. [PMID: 34359687 PMCID: PMC8345219 DOI: 10.3390/cancers13153788] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chemerin is a small chemotactic protein and a modulator of the innate immune system. Its activity is mainly mediated by the chemokine-like receptor 1 (CMKLR1), a receptor expressed by natural killer cells, dendritic cells, and macrophages. Downregulation of chemerin is part of the immune evasion strategy exploited by several cancer types, including melanoma, breast cancer, and hepatocellular carcinoma. Administration of chemerin can potentially counteract these effects, but synthetically accessible, metabolically stable analogs are required. Other tumors display overexpression of CMKLR1, offering a potential entry point for targeted delivery of chemotherapeutics. Here, we present cyclic derivatives of the chemerin C-terminus (chemerin-9), the minimal activation sequence of chemerin. Chemerin-9 derivatives that were cyclized through positions four and nine retained activity while displaying full stability in blood plasma for more than 24 h. Therefore, these peptides could be used as a drug shuttle system to target cancer cells as demonstrated here by methotrexate conjugates.
Collapse
|
8
|
Fischer TF, Schoeder CT, Zellmann T, Stichel J, Meiler J, Beck-Sickinger AG. Cyclic Analogues of the Chemerin C-Terminus Mimic a Loop Conformation Essential for Activating the Chemokine-like Receptor 1. J Med Chem 2021; 64:3048-3058. [PMID: 33705662 DOI: 10.1021/acs.jmedchem.0c01804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chemokine-like receptor 1 (CMKLR1) is a promising target for treating autoinflammatory diseases, cancer, and reproductive disorders. However, the interaction between CMKLR1 and its protein-ligand chemerin remains uncharacterized, and no drugs targeting this interaction have passed clinical trials. Here, we identify the binding mode of chemerin-9, the C-terminus of chemerin, at the receptor by combining complementary mutagenesis with structure-based modeling. Incorporating our experimental data, we present a detailed model of this binding site, including experimentally confirmed pairwise interactions for the most critical ligand residues: Chemerin-9 residue F8 binds to a hydrophobic pocket in CMKLR1 formed by the extracellular loop (ECL) 2, while F6 interacts with Y2.68, suggesting a turn-like structure. On the basis of this model, we created the first cyclic peptide with nanomolar activity, confirming the overall binding conformation. This constrained agonist mimics the loop conformation adopted by the natural ligand and can serve as a lead compound for future drug design.
Collapse
Affiliation(s)
- Tobias F Fischer
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Clara T Schoeder
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, 465 21st Avenue South, Nashville, Tennessee37212, United States
| | - Tristan Zellmann
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Jens Meiler
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, 465 21st Avenue South, Nashville, Tennessee37212, United States.,Institute for Drug Discovery, Leipzig University Medical School, 04103 Leipzig, Germany
| | | |
Collapse
|
9
|
Chemerin-156 is the Active Isoform in Human Hepatic Stellate Cells. Int J Mol Sci 2020; 21:ijms21207555. [PMID: 33066326 PMCID: PMC7589075 DOI: 10.3390/ijms21207555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
The chemokine chemerin exists as C-terminally processed isoforms whose biological functions are mostly unknown. A highly active human chemerin variant (huChem-157) was protective in experimental hepatocellular carcinoma (HCC) models. Hepatic stellate cells (HSCs) are central mediators of hepatic fibrogenesis and carcinogenesis and express the chemerin receptors chemokine-like receptor 1 (CMKLR1) and G protein-coupled receptor 1 (GPR1). Here we aimed to analyse the effect of chemerin isoforms on the viability, proliferation and secretome of the human HSC cell line LX-2. Therefore, huChem-157, 156 and 155 were over-expressed in LX-2 cells, which have low endogenous chemerin levels. HuChem-157 produced in LX-2 cells activated CMKLR1 and GPR1, and huChem-156 modestly induced GPR1 signaling. HuChem-155 is an inactive chemerin variant. Chemerin isoforms had no effect on cell viability and proliferation. Cellular expression of the fibrotic proteins galectin-3 and alpha-smooth muscle actin was not regulated by any chemerin isoform. HuChem-156 increased IL-6, IL-8 and galectin-3 in cell media. HuChem-157 was ineffective, and accordingly, did not enhance levels of these proteins in media of primary human hepatic stellate cells when added exogenously. These analyses provide evidence that huChem-156 is the biologic active chemerin variant in hepatic stellate cells and acts as a pro-inflammatory factor.
Collapse
|
10
|
Chemerin Is Induced in Non-Alcoholic Fatty Liver Disease and Hepatitis B-Related Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12102967. [PMID: 33066325 PMCID: PMC7602083 DOI: 10.3390/cancers12102967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Chemerin is protective in experimental models of hepatocellular carcinoma (HCC). Noteworthy, chemerin mRNA and protein were reduced in HCC tissues of Asian patients with mostly hepatitis B disease etiology. The current study nevertheless showed that chemerin protein was induced in tumor tissues of European HCC patients with non-alcoholic fatty liver disease (NAFLD) and patients with unclear disease etiology. A similar regulation was observed in hepatitis B virus (HBV), but not in hepatitis C virus (HCV), related HCC. The apparent discrepancy between the regulation of chemerin in HBV-HCC obtained from our study and recent reports led us to use the chemerin antibodies applied in the previous assays. These antibodies could not equally detect different chemerin isoforms, which were overexpressed in HepG2 cells. Higher chemerin protein in HCC was nevertheless confirmed by the use of all antibodies. Chemerin protein was low in Huh7 and PLC/PRF/5 cells whereas HepG2 and Hep3B cells had chemerin protein similar as primary human hepatocytes. Besides, the anti-tumor effects of retinoids in hepatocyte cell lines did not enclose upregulation of chemerin, which was initially discovered as a tazarotene induced protein in the skin. Finally, protein levels of the chemerin receptor, chemokine-like receptor 1 (CMKLR1), declined in non-viral, and tended to be lower in HBV-HCC tissues suggesting reduced chemerin activity in the tumors. To sum up, our work showed an opposite regulation of chemerin and CMKLR1 in NAFLD and HBV associated HCC. In HCV-HCC neither chemerin nor its receptor were changed in the tumor tissues. Current findings do not support a critical role of total chemerin protein levels in HCC of non-viral and viral etiology. Accordingly, tumor-localized chemerin protein was not associated with tumor-node-metastasis classification.
Collapse
|
11
|
Feder S, Bruckmann A, McMullen N, Sinal CJ, Buechler C. Chemerin Isoform-Specific Effects on Hepatocyte Migration and Immune Cell Inflammation. Int J Mol Sci 2020; 21:ijms21197205. [PMID: 33003572 PMCID: PMC7582997 DOI: 10.3390/ijms21197205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Murine chemerin is C-terminally processed to the bioactive isoforms, muChem-156 and muChem-155, among which the longer variant protects from hepatocellular carcinoma (HCC). However, the role of muChem-155 is mostly unknown. Here, we aimed to compare the effects of these isoforms on the proliferation, migration and the secretome of the human hepatocyte cell lines HepG2 and Huh7 and the murine Hepa1-6 cell line. Therefore, huChem-157 and -156 were overexpressed in the human cells, and the respective murine variants, muChem-156 and -155, in the murine hepatocytes. Both chemerin isoforms produced by HepG2 and Hepa1-6 cells activated the chemerin receptors chemokine-like receptor 1 (CMKLR1) and G protein-coupled receptor 1 (GPR1). HuChem-157 was the active isoform in the Huh7 cell culture medium. The potencies of muChem-155 and muChem-156 to activate human GPR1 and mouse CMKLR1 were equivalent. Human CMKLR1 was most responsive to muChem-156. Chemerin variants showed no effect on cell viability and proliferation. Activation of the mitogen-activated protein kinases Erk1/2 and p38, and protein levels of the epithelial–mesenchymal transition marker, E-cadherin, were not regulated by the chemerin variants. Migration was reduced in HepG2 and Hepa1-6 cells by the longer isoform. Protective effects of chemerin in HCC include the modulation of cytokines but huChem-156 and huChem-157 overexpression did not change IL-8, CCL20 or osteopontin in the hepatocytes. The conditioned medium of the transfected hepatocytes failed to alter these soluble factors in the cell culture medium of peripheral blood mononuclear cells (PBMCs). Interestingly, the cell culture medium of Huh7 cells producing the inactive variant huChem-155 reduced CCL2 and IL-8 in PBMCs. To sum up, huChem-157 and muChem-156 inhibited hepatocyte migration and may protect from HCC metastasis. HuChem-155 was the only human isoform exerting anti-inflammatory effects on immune cells.
Collapse
Affiliation(s)
- Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany;
| | - Astrid Bruckmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93042 Regensburg, Germany;
| | - Nichole McMullen
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (N.M.); (C.J.S.)
| | - Christopher J. Sinal
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (N.M.); (C.J.S.)
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany;
- Correspondence: ; Tel.: +49-941-944-7009
| |
Collapse
|