1
|
Joukhadar R, Trethowan RM, Thistlethwaite R, Hayden MJ, Stangoulis J, Cu S, Tibbits J, Daetwyler HD. Stable pleotropic loci controlling the accumulation of multiple nutritional elements in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:95. [PMID: 40205176 PMCID: PMC11982167 DOI: 10.1007/s00122-025-04877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/08/2025] [Indexed: 04/11/2025]
Abstract
Understanding the genetic basis of nutrient accumulation in wheat is crucial for improving its nutritional content and addressing global food security challenges. Here, we identified stable pleiotropic loci controlling the accumulation of 13 nutritional elements in wheat across diverse environments using a large wheat population of 1470 individuals. Our analysis revealed significant variability in SNP-based heritability values across 13 essential elements. Genetic correlations among elements uncovered complex relations, with positive correlations observed within two distinct groups, where calcium (Ca), cobalt (Co), potassium (K), and sodium (Na) formed one group, and copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), phosphorus (P), and zinc (Zn) formed the other. Negative correlations were observed among elements across both groups. Through MetaGWAS analysis, we identified stable QTL associated with individual elements and elements with high positive correlations. We identified 67 stable QTL across environments that are independent from grain yield, of which 56 were detected using the MetaGWAS analysis indicating their pleiotropic effect on multiple elements. A major QTL on chromosome 7D that can shift the phenotype up to one standard deviation compared to the mean phenotype in the population exhibited differential effects on multiple elements belonging to both groups. Our findings offer novel insights into the genetic architecture of nutrient accumulation in wheat and have practical implications for breeding programmes aimed at enhancing multiple nutrients simultaneously. By targeting stable QTL, breeders can develop wheat varieties with improved nutritional profiles, contributing to global food security and human health.
Collapse
Affiliation(s)
- Reem Joukhadar
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia.
| | - Richard M Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, Australia.
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW, Australia.
| | - Rebecca Thistlethwaite
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, Australia
| | - Matthew J Hayden
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - James Stangoulis
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Suong Cu
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Josquin Tibbits
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
| | - Hans D Daetwyler
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
| |
Collapse
|
2
|
Thakur NR, Gorthy S, Vemula A, Odeny DA, Ruperao P, Sargar PR, Mehtre SP, Kalpande HV, Habyarimana E. Genome-wide association study and expression of candidate genes for Fe and Zn concentration in sorghum grains. Sci Rep 2024; 14:12729. [PMID: 38830906 PMCID: PMC11148041 DOI: 10.1038/s41598-024-63308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
Sorghum germplasm showed grain Fe and Zn genetic variability, but a few varieties were biofortified with these minerals. This work contributes to narrowing this gap. Fe and Zn concentrations along with 55,068 high-quality GBS SNP data from 140 sorghum accessions were used in this study. Both micronutrients exhibited good variability with respective ranges of 22.09-52.55 ppm and 17.92-43.16 ppm. Significant marker-trait associations were identified on chromosomes 1, 3, and 5. Two major effect SNPs (S01_72265728 and S05_58213541) explained 35% and 32% of Fe and Zn phenotypic variance, respectively. The SNP S01_72265728 was identified in the cytochrome P450 gene and showed a positive effect on Fe accumulation in the kernel, while S05_58213541 was intergenic near Sobic.005G134800 (zinc-binding ribosomal protein) and showed negative effect on Zn. Tissue-specific in silico expression analysis resulted in higher levels of Sobic.003G350800 gene product in several tissues such as leaf, root, flower, panicle, and stem. Sobic.005G188300 and Sobic.001G463800 were expressed moderately at grain maturity and anthesis in leaf, root, panicle, and seed tissues. The candidate genes expressed in leaves, stems, and grains will be targeted to improve grain and stover quality. The haplotypes identified will be useful in forward genetics breeding.
Collapse
Affiliation(s)
- Niranjan Ravindra Thakur
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
- Vasantrao Naik Marathwada Agriculture University, Parbhani, Maharashtra, India
| | - Sunita Gorthy
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - AnilKumar Vemula
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Pradeep Ruperao
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Pramod Ramchandra Sargar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
- Vasantrao Naik Marathwada Agriculture University, Parbhani, Maharashtra, India
| | | | - Hirakant V Kalpande
- Vasantrao Naik Marathwada Agriculture University, Parbhani, Maharashtra, India
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India.
| |
Collapse
|
3
|
Abdi H, Alipour H, Bernousi I, Jafarzadeh J, Rodrigues PC. Identification of novel putative alleles related to important agronomic traits of wheat using robust strategies in GWAS. Sci Rep 2023; 13:9927. [PMID: 37336905 DOI: 10.1038/s41598-023-36134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
Principal component analysis (PCA) is widely used in various genetics studies. In this study, the role of classical PCA (cPCA) and robust PCA (rPCA) was evaluated explicitly in genome-wide association studies (GWAS). We evaluated 294 wheat genotypes under well-watered and rain-fed, focusing on spike traits. First, we showed that some phenotypic and genotypic observations could be outliers based on cPCA and different rPCA algorithms (Proj, Grid, Hubert, and Locantore). Hubert's method provided a better approach to identifying outliers, which helped to understand the nature of these samples. These outliers led to the deviation of the heritability of traits from the actual value. Then, we performed GWAS with 36,000 single nucleotide polymorphisms (SNPs) based on the traditional approach and two robust strategies. In the conventional approach and using the first three components of cPCA as population structure, 184 and 139 marker-trait associations (MTAs) were identified for five traits in well-watered and rain-fed environments, respectively. In the first robust strategy and when rPCA was used as population structure in GWAS, we observed that the Hubert and Grid methods identified new MTAs, especially for yield and spike weight on chromosomes 7A and 6B. In the second strategy, we followed the classical and robust principal component-based GWAS, where the first two PCs obtained from phenotypic variables were used instead of traits. In the recent strategy, despite the similarity between the methods, some new MTAs were identified that can be considered pleiotropic. Hubert's method provided a better linear combination of traits because it had the most MTAs in common with the traditional approach. Newly identified SNPs, including rs19833 (5B) and rs48316 (2B), were annotated with important genes with vital biological processes and molecular functions. The approaches presented in this study can reduce the misleading GWAS results caused by the adverse effect of outlier observations.
Collapse
Affiliation(s)
- Hossein Abdi
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Iraj Bernousi
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Jafar Jafarzadeh
- Dryland Agricultural Research Institute (DARI), Agriculture Research, Education and Extension Organization (AREEO), Maragheh, Iran
| | | |
Collapse
|
4
|
Kutlu I, Çelik S, Karaduman Y, Yorgancılar Ö. Phenotypic and genetic diversity of doubled haploid bread wheat population and molecular validation for spike characteristics, end-use quality, and biofortification capacity. PeerJ 2023; 11:e15485. [PMID: 37312880 PMCID: PMC10259445 DOI: 10.7717/peerj.15485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Increasing grain quality and nutritional value along with yield in bread wheat is one of the leading breeding goals. Selection of genotypes with desired traits using traditional breeding selection methods is very time-consuming and often not possible due to the interaction of environmental factors. By identifying DNA markers that can be used to identify genotypes with desired alleles, high-quality and bio-fortified bread wheat production can be achieved in a short time and cost-effectively. In the present study, 134 doubled haploid (DH) wheat lines and their four parents were phenotypically evaluated for yield components (spike characteristics), quality parameters, and grain Fe and Zn concentrations in two successive growing seasons. At the same time, ten genic simple sequence repeats (SSR) markers linked to genes related to the traits examined were validated and subsequently used for molecular characterization of trait-specific candidate genotypes. Significant genotypic variations were determined for all studied traits and many genotypes with desired phenotypic values were detected. The evaluation performed with 10 SSR markers revealed significant polymorphism between genotypes. The polymorphic information content (PIC) values of 10 markers ranged from 0.00 to 0.87. Six out of 10 SSRs could be more effective in representing the genotypic differentiation of the DH population as they demonstrated the highest genetic diversity. Both Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering and STRUCTURE analyses divided 138 wheat genotypes into five (K = 5) main groups. These analyzes were indicative of genetic variation due to hybridization and segregation in the DH population and the differentiation of the genotypes from their parents. Single marker regression analysis showed that both Xbarc61 and Xbarc146 had significant relationships with grain Fe and Zn concentrations, while Xbarc61 related to spike characteristics and Xbarc146 related to quality traits, separately. Other than these, Xgwm282 was associated with spike harvest index, SDS sedimentation value and Fe grain concentration, while Gwm445 was associated with spikelet number, grain number per spike and grain Fe concentration. These markers were validated for the studied DH population during the present study and they could be effectively used for marker-assisted selection to improve grain yield, quality, and bio-fortification capacity of bread wheat.
Collapse
Affiliation(s)
- Imren Kutlu
- Department of Field Crops, Faculty of Agriculture, Osmangazi University, Eskişehir, Turkey
| | - Sadettin Çelik
- Department of Forestry, Genç Vocational School, Bingöl University, Bingöl, Turkey
| | - Yaşar Karaduman
- Department of Food Engineering, Faculty of Agriculture, Osmangazi University, Eskişehir, Turkey
| | - Özcan Yorgancılar
- Department of Biotechnology, Transitional Zone Agricultural Research Institute, Eskişehir, Turkey
| |
Collapse
|
5
|
Ma J, Ren J, Yuan X, Yuan M, Zhang D, Li C, Zeng Q, Wu J, Han D, Jiang L. Genome-wide association study reveals the genetic variation and candidate gene for grain calcium content in bread wheat. PLANT CELL REPORTS 2023:10.1007/s00299-023-03036-3. [PMID: 37227494 DOI: 10.1007/s00299-023-03036-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE This study provides important information on the genetic basis of GCaC in wheat, thus contributing to breeding efforts to improve the nutrient quality of wheat. Calcium (Ca) plays important roles in the human body. Wheat grain provides the main diet for billions of people worldwide but is low in Ca content. Here, grain Ca content (GCaC) of 471 wheat accessions was determined in four field environments. A genome-wide association study (GWAS) was performed to reveal the genetic basis of GCaC using the phenotypic data form four environments and a wheat 660 K single nucleotide polymorphism (SNP) array. Twelve quantitative trait locus (QTLs) for GCaC were identified on chromosomes 1A, 1D, 2A, 3B, 6A, 6D, 7A, and 7D, which was significant in at least two environments. Haplotype analysis revealed that the phenotypic difference between the haplotypes of TraesCS6D01G399100 was significant (P ≤ 0.05) across four environments, suggesting it as an important candidate gene for GCaC. This research enhances our understanding of the genetic architecture of GCaC for further improving the nutrient quality of wheat.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Jingjie Ren
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xuqing Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Meng Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Chunxi Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China.
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
6
|
Manjunath KK, Krishna H, Devate NB, Sunilkumar VP, Chauhan D, Singh S, Mishra CN, Singh JB, Sinha N, Jain N, Singh GP, Singh PK. Mapping of the QTLs governing grain micronutrients and thousand kernel weight in wheat ( Triticum aestivum L.) using high density SNP markers. Front Nutr 2023; 10:1105207. [PMID: 36845058 PMCID: PMC9950559 DOI: 10.3389/fnut.2023.1105207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Biofortification is gaining importance globally to improve human nutrition through enhancing the micronutrient content, such as vitamin A, iron, and zinc, in staple food crops. The present study aims to identify the chromosomal regions governing the grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) using recombinant inbred lines (RILs) in wheat, developed from a cross between HD3086 and HI1500. The experiment was conducted in four different production conditions at Delhi viz., control, drought, heat, and combined heat and drought stress and at Indore under drought stress. Grain iron and zinc content increased under heat and combined stress conditions, while thousand kernel weight decreased. Medium to high heritability with a moderate correlation between grain iron and zinc was observed. Out of 4,106 polymorphic markers between the parents, 3,407 SNP markers were used for linkage map construction which spanned over a length of 14791.18 cm. QTL analysis identified a total of 32 chromosomal regions governing the traits under study, which includes 9, 11, and 12 QTLs for GFeC, GZnC, and TKW, respectively. A QTL hotspot was identified on chromosome 4B which is associated with grain iron, grain zinc, and thousand kernel weight explaining the phenotypic variance of 29.28, 10.98, and 17.53%, respectively. Similarly, common loci were identified on chromosomes 4B and 4D for grain iron, zinc, and thousand kernel weight. In silico analysis of these chromosomal regions identified putative candidate genes that code for proteins such as Inositol 1,3,4-trisphosphate 5/6-kinase, P-loop containing nucleoside triphosphate hydrolase, Pleckstrin homology (PH) domains, Serine-threonine/tyrosine-protein kinase and F-box-like domain superfamily proteins which play role in many important biochemical or physiological process. The identified markers linked to QTLs can be used in MAS once successfully validated.
Collapse
Affiliation(s)
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - V. P. Sunilkumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Divya Chauhan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shweta Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - C. N. Mishra
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - J. B. Singh
- Regional Station, ICAR-Indian Agricultural Research Institute, Indore, India
| | - Nivedita Sinha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
7
|
Jadon V, Sharma S, Krishna H, Krishnappa G, Gajghate R, Devate NB, Panda KK, Jain N, Singh PK, Singh GP. Molecular Mapping of Biofortification Traits in Bread Wheat ( Triticum aestivum L.) Using a High-Density SNP Based Linkage Map. Genes (Basel) 2023; 14:221. [PMID: 36672962 PMCID: PMC9859277 DOI: 10.3390/genes14010221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
A set of 188 recombinant inbred lines (RILs) derived from a cross between a high-yielding Indian bread wheat cultivar HD2932 and a synthetic hexaploid wheat (SHW) Synthetic 46 derived from tetraploid Triticum turgidum (AA, BB 2n = 28) and diploid Triticum tauschii (DD, 2n = 14) was used to identify novel genomic regions associated in the expression of grain iron concentration (GFeC), grain zinc concentration (GZnC), grain protein content (GPC) and thousand kernel weight (TKW). The RIL population was genotyped using SNPs from 35K Axiom® Wheat Breeder's Array and 34 SSRs and phenotyped in two environments. A total of nine QTLs including five for GPC (QGpc.iari_1B, QGpc.iari_4A, QGpc.iari_4B, QGpc.iari_5D, and QGpc.iari_6B), two for GFeC (QGfec.iari_5B and QGfec.iari_6B), and one each for GZnC (QGznc.iari_7A) and TKW (QTkw.iari_4B) were identified. A total of two stable and co-localized QTLs (QGpc.iari_4B and QTkw.iari_4B) were identified on the 4B chromosome between the flanking region of Xgwm149-AX-94559916. In silico analysis revealed that the key putative candidate genes such as P-loop containing nucleoside triphosphatehydrolase, Nodulin-like protein, NAC domain, Purine permease, Zinc-binding ribosomal protein, Cytochrome P450, Protein phosphatase 2A, Zinc finger CCCH-type, and Kinesin motor domain were located within the identified QTL regions and these putative genes are involved in the regulation of iron homeostasis, zinc transportation, Fe, Zn, and protein remobilization to the developing grain, regulation of grain size and shape, and increased nitrogen use efficiency. The identified novel QTLs, particularly stable and co-localized QTLs are useful for subsequent use in marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Vasudha Jadon
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Amity Institute of Biotechnology, Amity University, Noida 201313, India
| | - Shashi Sharma
- Amity Institute of Biotechnology, Amity University, Noida 201313, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gopalareddy Krishnappa
- ICAR-Sugarcane Breeding Institute, Coimbatore 641007, India
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Rahul Gajghate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
- National Bureau of Plant Genetic Resources, New Delhi 110012, India
| |
Collapse
|
8
|
Ma J, Ye M, Liu Q, Yuan M, Zhang D, Li C, Zeng Q, Wu J, Han D, Jiang L. Genome-wide association study for grain zinc concentration in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1169858. [PMID: 37077637 PMCID: PMC10106671 DOI: 10.3389/fpls.2023.1169858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Introduction Zinc (Zn) deficiency causes serious diseases in people who rely on cereals as their main food source. However, the grain zinc concentration (GZnC) in wheat is low. Biofortification is a sustainable strategy for reducing human Zn deficiency. Methods In this study, we constructed a population of 382 wheat accessions and determined their GZnC in three field environments. Phenotype data was used for a genome-wide association study (GWAS) using a 660K single nucleotide polymorphism (SNP) array, and haplotype analysis identified an important candidate gene for GZnC. Results We found that GZnC of the wheat accessions showed an increasing trend with their released years, indicating that the dominant allele of GZnC was not lost during the breeding process. Nine stable quantitative trait loci (QTLs) for GZnC were identified on chromosomes 3A, 4A, 5B, 6D, and 7A. And an important candidate gene for GZnC, namely, TraesCS6D01G234600, and GZnC between the haplotypes of this gene showed, significant difference (P ≤ 0.05) in three environments. Discussion A novel QTL was first identified on chromosome 6D, this finding enriches our understanding of the genetic basis of GZnC in wheat. This study provides new insights into valuable markers and candidate genes for wheat biofortification to improve GZnC.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang, China
- *Correspondence: Lina Jiang, ; Jianhui Ma, ; Dejun Han,
| | - Miaomiao Ye
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Qianqian Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Meng Yuan
- College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Chunxi Li
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
- *Correspondence: Lina Jiang, ; Jianhui Ma, ; Dejun Han,
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang, China
- *Correspondence: Lina Jiang, ; Jianhui Ma, ; Dejun Han,
| |
Collapse
|
9
|
Hua YP, Chen JF, Zhou T, Zhang TY, Shen DD, Feng YN, Guan PF, Huang SM, Zhou ZF, Huang JY, Yue CP. Multiomics reveals an essential role of long-distance translocation in regulating plant cadmium resistance and grain accumulation in allohexaploid wheat (Triticum aestivum). JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7516-7537. [PMID: 36063365 DOI: 10.1093/jxb/erac364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that readily enters cereals, such as wheat, via the roots and is translocated to the shoots and grains, thereby posing high risks to human health. However, the vast and complex genome of allohexaploid wheat makes it challenging to understand Cd resistance and accumulation. In this study, a Cd-resistant cultivar of wheat, 'ZM1860', and a Cd-sensitive cultivar, 'ZM32', selected from a panel of 442 accessions, exhibited significantly different plant resistance and grain accumulation. We performed an integrated comparative analysis of the morpho-physiological traits, ionomic and phytohormone profiles, genomic variations, transcriptomic landscapes, and gene functionality in order to identify the mechanisms underlying these differences. Under Cd toxicity, 'ZM1860' outperformed 'ZM32', which showed more severe leaf chlorosis, poorer root architecture, higher accumulation of reactive oxygen species, and disordered phytohormone homeostasis. Ionomics showed that 'ZM32' had a higher root-to-shoot translocation coefficient of Cd and accumulated more Cd in the grains than 'ZM1860'. Whole-genome re-sequencing (WGS) and transcriptome sequencing identified numerous DNA variants and differentially expressed genes involved in abiotic stress responses and ion transport between the two genotypes. Combined ionomics, transcriptomics, and functional gene analysis identified the plasma membrane-localized heavy metal ATPase TaHMA2b-7A as a crucial Cd exporter regulating long-distance Cd translocation in wheat. WGS- and PCR-based analysis of sequence polymorphisms revealed a 25-bp InDel site in the promoter region of TaHMA2b-7A, and this was probably responsible for the differential expression. Our multiomics approach thus enabled the identification of a core transporter involved in long-distance Cd translocation in wheat, and it may provide an elite genetic resource for improving plant Cd resistance and reducing grain Cd accumulation in wheat and other cereal crops.
Collapse
Affiliation(s)
- Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dan-Dan Shen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pan-Feng Guan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shao-Min Huang
- Institute of Plant Nutrient and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zheng-Fu Zhou
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Wu Z, Qiu H, Tian Z, Liu C, Qin M, Li W, Yang P, Wen Y, Tian B, Wei F, Zhou Z, Lei Z, Hou J. Uncovering the genetic basis of gluten aggregation parameters by genome-wide association analysis in wheat (Triticum aestivum L.) using GlutoPeak. BMC PLANT BIOLOGY 2022; 22:493. [PMID: 36271339 PMCID: PMC9585721 DOI: 10.1186/s12870-022-03874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Numerous studies have shown that gluten aggregation properties directly affect the processing quality of wheat, however, the genetic basis of gluten aggregation properties were rarely reported. RESULTS To explore the genetic basis of gluten aggregation properties in wheat, an association population consisted with 207 wheat genotypes were constructed for evaluating nine parameters of aggregation properties on GlutoPeak across three-year planting seasons. A total of 940 significant SNPs were detected for 9 GlutoPeak parameters through genome-wide association analysis (GWAS). Finally, these SNPs were integrated to 68 non-redundant QTL distributed on 20 chromosomes and 54 QTL was assigned as pleiotropic loci which accounting for multiple parameters of gluten aggregation property. Furthermore, the peak SNPs representing 54 QTL domonstrated additive effect on all the traits. There was a significant positive correlation between the number of favorable alleles and the phenotypic values of each parameter. Peak SNPs of two novel QTL, q3AL.2 and q4DL, which contributing to both PMT (peak maximum time) and A3 (area from the first minimum to torque 15 s before the maximum torque) parameters, were selected for KASP (Kompetitive Allele Specific PCR) markers development and the KASP markers can be used for effectively evaluating the quality of gluten aggregation properties in the association population. CONCLUSION The rapid and efficient GlutoPeak method for gluten measurement can be used for early selection of wheat breeding. This study revealed the genetic loci related to GlutoPeak parameters in association population, which would be helpful to develop wheat elite lines with improved gluten aggregation through molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Postgraduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongxia Qiu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Postgraduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhaoran Tian
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Postgraduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Postgraduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Postgraduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Postgraduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Pan Yang
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Postgraduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Yao Wen
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Baoming Tian
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Postgraduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fang Wei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Postgraduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Postgraduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Shennong Laboratory, Zhengzhou, 450002, Henan, China.
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Postgraduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.
- Shennong Laboratory, Zhengzhou, 450002, Henan, China.
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Postgraduate T & R Base of Zhengzhou University, Zhengzhou, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study. Sci Rep 2022; 12:12444. [PMID: 35858934 PMCID: PMC9300641 DOI: 10.1038/s41598-022-15992-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/04/2022] [Indexed: 01/13/2023] Open
Abstract
Genetic biofortification is recognized as a cost-effective and sustainable strategy to reduce micronutrient malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association (GWAS) panel was genotyped using 35 K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 17 Bonferroni-corrected marker-trait associations (MTAs) in nine chromosomes representing all the three wheat subgenomes. The TKW showed the highest MTAs (7), followed by GZnC (5) and GFeC (5). Furthermore, 14 MTAs were identified with more than 10% phenotypic variation. One stable MTA i.e. AX-95025823 was identified for TKW in both E4 and E5 environments along with pooled data, which is located at 68.9 Mb on 6A chromosome. In silico analysis revealed that the SNPs were located on important putative candidate genes such as Multi antimicrobial extrusion protein, F-box domain, Late embryogenesis abundant protein, LEA-18, Leucine-rich repeat domain superfamily, and C3H4 type zinc finger protein, involved in iron translocation, iron and zinc homeostasis, and grain size modifications. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection. The identified SNPs will be valuable in the rapid development of biofortified wheat varieties to ameliorate the malnutrition problems.
Collapse
|
12
|
Wani SH, Gaikwad K, Razzaq A, Samantara K, Kumar M, Govindan V. Improving Zinc and Iron Biofortification in Wheat through Genomics Approaches. Mol Biol Rep 2022; 49:8007-8023. [PMID: 35661970 PMCID: PMC9165711 DOI: 10.1007/s11033-022-07326-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/09/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
Globally, about 20% of calories (energy) come from wheat. In some countries, it is more than 70%. More than 2 billion people are at risk for zinc deficiency and even more, people are at risk of iron deficiency, nearly a quarter of all children underage group of 5 are physically and cognitively stunted, and lack of dietary zinc is a major contributing factor. Biofortified wheat with elevated levels of zinc and iron has several potential advantages as a delivery vehicle for micronutrients in the diets of resource-poor consumers who depend on cereal-based diets. The conventional breeding strategies have been successful in the introduction of novel alleles for grain Zn and Fe that led to the release of competitive Zn enriched wheat varieties in South Asia. The major challenge over the next few decades will be to maintain the rates of genetic gains for grain yield along with increased grain Zn/Fe concentration to meet the food and nutritional security challenges. Therefore, to remain competitive, the performance of Zn-enhanced lines/varieties must be equal or superior to that of current non-biofortified elite lines/varieties. Since both yield and Zn content are invisible and quantitatively inherited traits except few intermediate effect QTL regions identified for grain Zn, increased breeding efforts and new approaches are required to combine them at high frequency, ensuring that Zn levels are steadily increased to the required levels across the breeding pipelines. The current review article provides a comprehensive list of genomic regions for enhancing grain Zn and Fe concentrations in wheat including key candidate gene families such NAS, ZIP, VLT, ZIFL, and YSL. Implementing forward breeding by taking advantage of the rapid cycling trait pipeline approaches would simultaneously introgress high Zn and Fe QTL into the high Zn and normal elite lines, further increasing Zn and Fe concentrations.
Collapse
Affiliation(s)
- Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 192102 Khudwani, J&K India
| | - Kiran Gaikwad
- ICAR-Indian Agricultural Research Institute, Pusa Campus, 110012 New Delhi, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, 761211 Odisha, India
| | - Manjeet Kumar
- ICAR-Indian Agricultural Research Institute, Pusa Campus, 110012 New Delhi, India
| | - Velu Govindan
- Global Wheat Program International Maize and Wheat Improvement Center Texcoco Mexico, Texcoco, Mexico
| |
Collapse
|
13
|
Nyiraguhirwa S, Grana Z, Ouabbou H, Iraqi D, Ibriz M, Mamidi S, Udupa SM. A Genome-Wide Association Study Identifying Single-Nucleotide Polymorphisms for Iron and Zinc Biofortification in a Worldwide Barley Collection. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101349. [PMID: 35631775 PMCID: PMC9148054 DOI: 10.3390/plants11101349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 05/12/2023]
Abstract
Micronutrient deficiency affects half of the world’s population, mostly in developing countries. Severe health issues such as anemia and inadequate growth in children below five years of age and pregnant women have been linked to mineral deficiencies (mostly zinc and iron). Improving the mineral content in staple crops, also known as mineral biofortification, remains the best approach to address mineral malnutrition. Barley is a staple crop in some parts of the world and is a healthy choice since it contains β-glucan, a high dietary protein. Barley mineral biofortification, especially with zinc and iron, can be beneficial since barley easily adapts to marginalized areas and requires less input than other frequently consumed cereals. In this study, we analyzed zinc and iron content in 496 barley samples. The samples were genotyped with an Illumina 50 K SNP chip. Genome-wide association studies (GWAS) identified 62 SNPs and 68 SNPs (p < 0.001) associated with iron and zinc content in grains, respectively. After a Bonferroni correction (p < 0.005), there were 12 SNPs (single-nucleotide polymorphism) associated with Zn and 6 for iron. SNP annotations revealed proteins involved in membrane transport, Zn and Fe binding, linked to nutrient remobilization in grains. These results can be used to develop biofortified barley via marker-assisted selection (MAS), which could alleviate mineral malnutrition.
Collapse
Affiliation(s)
- Solange Nyiraguhirwa
- International Center for Agriculture Research in Dry Areas (ICARDA), Rue Hafiane Chekaoui, P.O. Box 6299, Rabat 10000, Morocco; (S.N.); (Z.G.)
- Institut National de Recherche Agronomique (INRA), Avenue Ennasr, P.O. Box 415, Rabat 10080, Morocco; (H.O.); (D.I.)
- Faculty of Sciences, Ibn Tofail University, University Campus, P.O. Box 133, Kénitra 14000, Morocco;
| | - Zahra Grana
- International Center for Agriculture Research in Dry Areas (ICARDA), Rue Hafiane Chekaoui, P.O. Box 6299, Rabat 10000, Morocco; (S.N.); (Z.G.)
- Institut National de Recherche Agronomique (INRA), Avenue Ennasr, P.O. Box 415, Rabat 10080, Morocco; (H.O.); (D.I.)
- Faculty of Sciences, Ibn Tofail University, University Campus, P.O. Box 133, Kénitra 14000, Morocco;
| | - Hassan Ouabbou
- Institut National de Recherche Agronomique (INRA), Avenue Ennasr, P.O. Box 415, Rabat 10080, Morocco; (H.O.); (D.I.)
| | - Driss Iraqi
- Institut National de Recherche Agronomique (INRA), Avenue Ennasr, P.O. Box 415, Rabat 10080, Morocco; (H.O.); (D.I.)
| | - Mohammed Ibriz
- Faculty of Sciences, Ibn Tofail University, University Campus, P.O. Box 133, Kénitra 14000, Morocco;
| | - Sujan Mamidi
- Hudson Alpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA;
| | - Sripada M. Udupa
- International Center for Agriculture Research in Dry Areas (ICARDA), Rue Hafiane Chekaoui, P.O. Box 6299, Rabat 10000, Morocco; (S.N.); (Z.G.)
- Correspondence: ; Tel.: +212-673346102
| |
Collapse
|
14
|
Shi X, Zhou Z, Li W, Qin M, Yang P, Hou J, Huang F, Lei Z, Wu Z, Wang J. Genome-wide association study reveals the genetic architecture for calcium accumulation in grains of hexaploid wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2022; 22:229. [PMID: 35508960 PMCID: PMC9066855 DOI: 10.1186/s12870-022-03602-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/15/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Hexaploid wheat (Triticum aestivum L.) is a leading cereal crop worldwide. Understanding the mechanism of calcium (Ca) accumulation in wheat is important to reduce the risk of human micronutrient deficiencies. However, the mechanisms of Ca accumulation in wheat grain are only partly understood. RESULTS Here, a genome-wide association study (GWAS) was performed to dissect the genetic basis of Ca accumulation in wheat grain using an association population consisting of 207 varieties, with phenotypic data from three locations. In total, 11 non-redundant genetic loci associated with Ca concentration were identified and they explained, on average, 9.61-26.93% of the phenotypic variation. Cultivars containing more superior alleles had increased grain Ca concentrations. Notably, four non-redundant loci were mutually verified by different statistical models in at least two environments, indicating their stability across different environments. Four putative candidate genes linked to Ca accumulation were revealed from the stable genetic loci. Among them, two genes, associated with the stable genetic loci on chromosomes 4A (AX-108912427) and 3B (AX-110922471), encode the subunits of V-type Proton ATPase (TraesCS4A02G428900 and TraesCS3B02G241000), which annotated as the typical generators of a proton gradient that might be involved in Ca homeostasis in wheat grain. CONCLUSION To identify genetic loci associated with Ca accumulation, we conducted GWAS on Ca concentrations and detected 11 genetic loci; whereas four genetic loci were stable across different environments. A genetic loci hot spot exists at the end of chromosome 4A and associated with the putative candidate gene TraesCS4A02G428900. The candidate gene TraesCS4A02G428900 encodes V-type proton ATPase subunit e and highly expressed in wheat grains, and it possibly involved in Ca accumulation. This study increases our understanding of the genetic architecture of Ca accumulation in wheat grains, which is potentially helpful for wheat Ca biofortification pyramid breeding.
Collapse
Affiliation(s)
- Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Pan Yang
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Fangfang Huang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China.
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China.
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Jiansheng Wang
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China.
| |
Collapse
|
15
|
Zhou Z, Geng S, Guan H, Liu C, Qin M, Li W, Shi X, Dai Z, Yao W, Lei Z, Wu Z, Hou J. Dissection of the Genetic Architecture for Quantities of Gliadins Fractions in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:826909. [PMID: 35401644 PMCID: PMC8988047 DOI: 10.3389/fpls.2022.826909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Gliadin is a group of grain storage proteins that confers extensibility/viscosity to the dough and are vital to end-use quality in wheat. Moreover, gliadins are one of the important components for nutritional quality because they contain the nutritional unprofitable epitopes that cause chronic immune-mediated intestinal disorder in genetically susceptible individuals designated celiac disease (CD). The main genetic loci encoding the gliadins were revealed by previous studies; however, the genes related to the content of gliadins and their fractions were less elucidated. To illustrate the genetic basis of the content of gliadins and their fractions comprehensively, a recombinant inbred line (RIL) population that consisted of 196 lines was constructed from the two parents, Luozhen No.1 and Zhengyumai 9987. Quantitative trait loci (QTL) controlling the content of total gliadins and their fractions (ω-, α-, and γ-gliadin) were screened genome-widely under four environments across 2 years. Totally, thirty QTL which explained 1.97-12.83% of the phenotypic variation were detected to be distributed on 17 chromosomes and they were gathered into 12 clusters. One hundred and one pairs of epistatic QTL (E-QTL) were revealed, among which five were involved with the total gliadins and its fractions content QTL located on chromosome 1AS, 1DS, 4DS, 1DL, and 6AS. Three Kompetitive Allele-Specific PCR (KASP) markers were developed from three major QTL clusters located on chromosomes 6A, 6D, and 7D, respectively. The present research not only dissects the genetic loci for improving the content of gliadins and their three fractions, but may also contribute to marker-assisted selection of varieties with appropriate gliadin fractions content for end-use quality and health benefit at the early developmental stages and early breeding generations.
Collapse
Affiliation(s)
- Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shenghui Geng
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiyue Guan
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ziju Dai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
16
|
Jin X, Zou Z, Wu Z, Liu C, Yan S, Peng Y, Lei Z, Zhou Z. Genome-Wide Association Study Reveals Genomic Regions Associated With Molybdenum Accumulation in Wheat Grains. FRONTIERS IN PLANT SCIENCE 2022; 13:854966. [PMID: 35310638 PMCID: PMC8924584 DOI: 10.3389/fpls.2022.854966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for almost all organisms. Wheat, a major staple crop worldwide, is one of the main dietary sources of Mo. However, the genetic basis for the variation of Mo content in wheat grains remains largely unknown. Here, a genome-wide association study (GWAS) was performed on the Mo concentration in the grains of 207 wheat accessions to dissect the genetic basis of Mo accumulation in wheat grains. As a result, 77 SNPs were found to be significantly associated with Mo concentration in wheat grains, among which 52 were detected in at least two sets of data and distributed on chromosome 2A, 7B, and 7D. Moreover, 48 out of the 52 common SNPs were distributed in the 726,761,412-728,132,521 bp genomic region of chromosome 2A. Three putative candidate genes, including molybdate transporter 1;2 (TraesCS2A02G496200), molybdate transporter 1;1 (TraesCS2A02G496700), and molybdopterin biosynthesis protein CNX1 (TraesCS2A02G497200), were identified in this region. These findings provide new insights into the genetic basis for Mo accumulation in wheat grains and important information for further functional characterization and breeding to improve wheat grain quality.
Collapse
Affiliation(s)
- Xiaojie Jin
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhaojun Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Songxian Yan
- Department of Resources and Environment, Moutai Institute, Renhuai, China
| | - Yanchun Peng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
17
|
Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:1. [PMID: 37309486 PMCID: PMC10248672 DOI: 10.1007/s11032-021-01272-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) are effectively applied to detect the marker trait associations (MTAs) using whole genome-wide variants for complex quantitative traits in different crop species. GWAS has been applied in wheat for different quality, biotic and abiotic stresses, and agronomic and yield-related traits. Predictions for marker-trait associations are controlled with the development of better statistical models taking population structure and familial relatedness into account. In this review, we have provided a detailed overview of the importance of association mapping, population design, high-throughput genotyping and phenotyping platforms, advancements in statistical models and multiple threshold comparisons, and recent GWA studies conducted in wheat. The information about MTAs utilized for gene characterization and adopted in breeding programs is also provided. In the literature that we surveyed, as many as 86,122 wheat lines have been studied under various GWA studies reporting 46,940 loci. However, further utilization of these is largely limited. The future breakthroughs in area of genomic selection, multi-omics-based approaches, machine, and deep learning models in wheat breeding after exploring the complex genetic structure with the GWAS are also discussed. This is a most comprehensive study of a large number of reports on wheat GWAS and gives a comparison and timeline of technological developments in this area. This will be useful to new researchers or groups who wish to invest in GWAS.
Collapse
Affiliation(s)
- Dinesh K. Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
| | - Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, 202002 India
| | - Sumandeep Bazzer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
18
|
Zhou Z, Guan H, Liu C, Zhang Z, Geng S, Qin M, Li W, Shi X, Dai Z, Lei Z, Wu Z, Tian B, Hou J. Identification of genomic regions affecting grain peroxidase activity in bread wheat using genome-wide association study. BMC PLANT BIOLOGY 2021; 21:523. [PMID: 34758752 PMCID: PMC8579651 DOI: 10.1186/s12870-021-03299-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Peroxidase (POD) activity plays an important role in flour-based product quality, which is mainly associated with browning and bleaching effects of flour. Here, we performed a genome-wide association study (GWAS) on POD activity using an association population consisted with 207 wheat world-wide collected varieties. Our study also provide basis for the genetic improvement of flour color-based quality in wheat. RESULTS Twenty quantitative trait loci (QTLs) were detected associated with POD activity, explaining 5.59-12.67% of phenotypic variation. Superior alleles were positively correlated with POD activity. In addition, two SNPs were successfully developed to KASP (Kompetitive Allele-Specific PCR) markers. Two POD genes, TraesCS2B02G615700 and TraesCS2D02G583000, were aligned near the QTLs flanking genomic regions, but only TraesCS2D02G583000 displayed significant divergent expression levels (P < 0.001) between high and low POD activity varieties in the investigated association population. Therefore, it was deduced to be a candidate gene. The expression level of TraesCS2D02G583000 was assigned as a phenotype for expression GWAS (eGWAS) to screen regulatory elements. In total, 505 significant SNPs on 20 chromosomes (excluding 4D) were detected, and 9 of them located within 1 Mb interval of TraesCS2D02G583000. CONCLUSIONS To identify genetic loci affecting POD activity in wheat grain, we conducted GWAS on POD activity and the candidate gene TraesCS2D02G583000 expression. Finally, 20 QTLs were detected for POD activity, whereas two QTLs associated SNPs were converted to KASP markers that could be used for marker-assisted breeding. Both cis- and trans-acting elements were revealed by eGWAS of TraesCS2D02G583000 expression. The present study provides genetic loci for improving POD activity across wide genetic backgrounds and largely improved the selection efficiency for breeding in wheat.
Collapse
Affiliation(s)
- Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Postgraduate T & R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
- Agronomy college, Zhengzhou University, Zhengzhou, 450001 China
| | - Huiyue Guan
- Henan Institute of Crop Molecular Breeding, Postgraduate T & R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
- Agronomy college, Zhengzhou University, Zhengzhou, 450001 China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Postgraduate T & R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Ziwei Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Shenghui Geng
- Henan Institute of Crop Molecular Breeding, Postgraduate T & R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
- Agronomy college, Zhengzhou University, Zhengzhou, 450001 China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Postgraduate T & R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Postgraduate T & R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Xia Shi
- Henan Institute of Crop Molecular Breeding, Postgraduate T & R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Ziju Dai
- Henan Institute of Crop Molecular Breeding, Postgraduate T & R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Postgraduate T & R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
- Agronomy college, Zhengzhou University, Zhengzhou, 450001 China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Postgraduate T & R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
- Agronomy college, Zhengzhou University, Zhengzhou, 450001 China
| | - Baoming Tian
- Henan Institute of Crop Molecular Breeding, Postgraduate T & R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
- Agronomy college, Zhengzhou University, Zhengzhou, 450001 China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Postgraduate T & R Base of Zhengzhou University, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| |
Collapse
|
19
|
Xu J, Wang X, Zhu H, Yu F. Maize Genotypes With Different Zinc Efficiency in Response to Low Zinc Stress and Heterogeneous Zinc Supply. FRONTIERS IN PLANT SCIENCE 2021; 12:736658. [PMID: 34691112 PMCID: PMC8531504 DOI: 10.3389/fpls.2021.736658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
All over the world, a common problem in the soil is the low content of available zinc (Zn), which is unevenly distributed and difficult to move. However, information on the foraging strategies of roots in response to heterogeneous Zn supply is still very limited. Few studies have analyzed the adaptability of maize inbred lines with different Zn efficiencies to different low Zn stress time lengths in maize. This study analyzed the effects of different time lengths of low Zn stress on various related traits in different inbred lines. In addition, morphological plasticity of roots and the response of Zn-related important gene iron-regulated transporter-like proteins (ZIPs) were studied via simulating the heterogeneity of Zn nutrition in the soil. In this report, when Zn deficiency stress duration was extended (from 14 to 21 days), under Zn-deficient supply (0.5 μM), Zn efficiency (ZE) based on shoot dry weight of Wu312 displayed no significant difference, and ZE for Ye478 was increased by 92.9%. Under longer-term Zn deficiency, shoot, and root dry weights of Ye478 were 6.5 and 2.1-fold higher than those of Wu312, respectively. Uneven Zn supply strongly inhibited the development of some root traits in the -Zn region. Difference in shoot dry weights between Wu312 and Ye478 was larger in T1 (1.97 times) than in T2 (1.53 times). Under heterogeneous condition of Zn supply, both the -Zn region and the +Zn region upregulated the expressions of ZmZIP3, ZmZIP4, ZmZIP5, ZmZIP7, and ZmZIP8 in the roots of two inbred lines. These results indicate that extended time length of low-Zn stress will enlarge the difference of multiple physiological traits, especially biomass, between Zn-sensitive and Zn-tolerant inbred lines. There were significant genotypic differences of root morphology in response to heterogeneous Zn supply. Compared with split-supply with +Zn/+Zn, the difference of above-ground biomass between Zn-sensitive and Zn-tolerant inbred lines under split-supply with -Zn/+Zn was higher. Under the condition of heterogeneous Zn supply, several ZmZIP genes may play important roles in tolerance to low Zn stress, which can provide a basis for further functional characterization.
Collapse
|
20
|
Zhou Z, Zhang Z, Mason AS, Chen L, Liu C, Qin M, Li W, Tian B, Wu Z, Lei Z, Hou J. Quantitative traits loci mapping and molecular marker development for total glutenin and glutenin fraction contents in wheat. BMC PLANT BIOLOGY 2021; 21:455. [PMID: 34615486 PMCID: PMC8493754 DOI: 10.1186/s12870-021-03221-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Glutenin contents and compositions are crucial factors influencing the end-use quality of wheat. Although the composition of glutenin fractions is well known, there has been relatively little research on the genetic basis of glutenin fractions in wheat. RESULTS To elucidate the genetic basis for the contents of glutenin and its fractions, a population comprising 196 recombinant inbred lines (RILs) was constructed from two parents, Luozhen No.1 and Zhengyumai 9987, which differ regarding their total glutenin and its fraction contents (except for the By fraction). Forty-one additive Quantitative Trait Loci (QTL) were detected in four environments over two years. These QTL explained 1.3% - 53.4% of the phenotypic variation in the examined traits. Forty-three pairs of epistatic QTL (E-QTL) were detected in the RIL population across four environments. The QTL controlling the content of total glutenin and its seven fractions were detected in clusters. Seven clusters enriched with QTL for more than three traits were identified, including a QTL cluster 6AS-3, which was revealed as a novel genetic locus for glutenin and related traits. Kompetitive Allele-Specific PCR (KASP) markers developed from the main QTL cluster 1DL-2 and the previously developed KASP marker for the QTL cluster 6AS-3 were validated as significantly associated with the target traits in the RIL population and in natural varieties. CONCLUSIONS This study identified novel genetic loci related to glutenin and its seven fractions. Additionally, the developed KASP markers may be useful for the marker-assisted selection of varieties with high glutenin fraction content and for identifying individuals in the early developmental stages without the need for phenotyping mature plants. On the basis of the results of this study and the KASP markers described herein, breeders will be able to efficiently select wheat lines with favorable glutenin properties and develop elite lines with high glutenin subunit contents.
Collapse
Affiliation(s)
- Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Agronomy College, Zhengzhou University, 450001, Zhengzhou, China
| | - Ziwei Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Annaliese S Mason
- Chair of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Lingzhi Chen
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Baoming Tian
- Agronomy College, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Agronomy College, Zhengzhou University, 450001, Zhengzhou, China.
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Agronomy College, Zhengzhou University, 450001, Zhengzhou, China.
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Agronomy College, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
21
|
Krishnappa G, Rathan ND, Sehgal D, Ahlawat AK, Singh SK, Singh SK, Shukla RB, Jaiswal JP, Solanki IS, Singh GP, Singh AM. Identification of Novel Genomic Regions for Biofortification Traits Using an SNP Marker-Enriched Linkage Map in Wheat ( Triticum aestivum L.). Front Nutr 2021; 8:669444. [PMID: 34211996 PMCID: PMC8239140 DOI: 10.3389/fnut.2021.669444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
Micronutrient and protein malnutrition is recognized among the major global health issues. Genetic biofortification is a cost-effective and sustainable strategy to tackle malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), grain protein content (GPC), and thousand kernel weight (TKW) were investigated in a set of 163 recombinant inbred lines (RILs) derived from a cross between cultivated wheat variety WH542 and a synthetic derivative (Triticum dicoccon PI94624/Aegilops tauschii [409]//BCN). The RIL population was genotyped using 100 simple-sequence repeat (SSR) and 736 single nucleotide polymorphism (SNP) markers and phenotyped in six environments. The constructed genetic map had a total genetic length of 7,057 cM. A total of 21 novel quantitative trait loci (QTL) were identified in 13 chromosomes representing all three genomes of wheat. The trait-wise highest number of QTL was identified for GPC (10 QTL), followed by GZnC (six QTL), GFeC (three QTL), and TKW (two QTL). Four novel stable QTL (QGFe.iari-7D.1, QGFe.iari-7D.2, QGPC.iari-7D.2, and QTkw.iari-7D) were identified in two or more environments. Two novel pleiotropic genomic regions falling between Xgwm350-AX-94958668 and Xwmc550-Xgwm350 in chromosome 7D harboring co-localized QTL governing two or more traits were also identified. The identified novel QTL, particularly stable and co-localized QTL, will be validated to estimate their effects on different genetic backgrounds for subsequent use in marker-assisted selection (MAS). Best QTL combinations were identified by the estimation of additive effects of the stable QTL for GFeC, GZnC, and GPC. A total of 11 RILs (eight for GZnC and three for GPC) having favorable QTL combinations identified in this study can be used as potential donors to develop bread wheat varieties with enhanced micronutrients and protein.
Collapse
Affiliation(s)
- Gopalareddy Krishnappa
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India.,Division of Crop Improvement, Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Deepmala Sehgal
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Arvind Kumar Ahlawat
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Santosh Kumar Singh
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Sumit Kumar Singh
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Ram Bihari Shukla
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Jai Prakash Jaiswal
- Department of Genetics and Plant Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Ishwar Singh Solanki
- Indian Council of Agricultural Research-Indian Agricultural Research Institute, Regional Station, Samastipur, India
| | - Gyanendra Pratap Singh
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Anju Mahendru Singh
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
22
|
Liu Y, Chen Y, Yang Y, Zhang Q, Fu B, Cai J, Guo W, Shi L, Wu J, Chen Y. A thorough screening based on QTLs controlling zinc and copper accumulation in the grain of different wheat genotypes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15043-15054. [PMID: 33230790 DOI: 10.1007/s11356-020-11690-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Excess trace metals may cause damage to human health due to the consumption of food grain grown in contaminated soils. This study was designed to understand the genetic mechanisms of copper (Cu) and zinc (Zn) accumulation in wheat grain under stressed environments. The differences of Cu/Zn contents in the grain among 246 wheat varieties were analyzed, and the wheat varieties with low or high accumulation of Cu and Zn in the safe range were also screened out. The accumulation of Cu and Zn in grains of "Chushanbao" was lowest, which could be used as a novel germplasm for wheat breeding under heavy metal stress. We found that Cu contents of wheat grain were significantly and positively correlated with Zn. The quantitative trait loci (QTLs) for grain Cu content (GCuC) and grain Zn content (GZnC) were detected by genome-wide association study (GWAS). Twenty-three loci affecting GCuC were identified on chromosomes 1A, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B 4D, 5A, 6D, 7A, and 7B, explaining 2.6-5.8% of the phenotypic variation. Sixteen loci associated with the GZnC on 11 different chromosomes 1B, 2B, 2D, 3A, 3D, 4A, 4B, 5A, 5D, 6B, and 7D were detected, which could explain 2.7~6.6% of phenotypic variance. We also determined five associated loci on chromosomes 2B, 2D, 3A, 4B, and 5A were in pleiotropic regions affecting both GCuC and GZnC. This study would help in better understanding the molecular basis of Cu/Zn accumulation in wheat grain, and the associated markers may be useful for marker-assisted selection (MAS) breeding program.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | - Yang Yang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiaofeng Zhang
- Provincial Key Laboratory of Agrobiology, The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Bisheng Fu
- Provincial Key Laboratory of Agrobiology, The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jin Cai
- Provincial Key Laboratory of Agrobiology, The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Wei Guo
- Provincial Key Laboratory of Agrobiology, The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Liang Shi
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Jizhong Wu
- Provincial Key Laboratory of Agrobiology, The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| | - Yahua Chen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
23
|
Tu M, Li Y. Toward the Genetic Basis and Multiple QTLs of Kernel Hardness in Wheat. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1631. [PMID: 33255282 PMCID: PMC7760206 DOI: 10.3390/plants9121631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022]
Abstract
Kernel hardness is one of the most important single traits of wheat seed. It classifies wheat cultivars, determines milling quality and affects many end-use qualities. Starch granule surfaces, polar lipids, storage protein matrices and Puroindolines potentially form a four-way interaction that controls wheat kernel hardness. As a genetic factor, Puroindoline polymorphism explains over 60% of the variation in kernel hardness. However, genetic factors other than Puroindolines remain to be exploited. Over the past two decades, efforts using population genetics have been increasing, and numerous kernel hardness-associated quantitative trait loci (QTLs) have been identified on almost every chromosome in wheat. Here, we summarize the state of the art for mapping kernel hardness. We emphasize that these steps in progress have benefitted from (1) the standardized methods for measuring kernel hardness, (2) the use of the appropriate germplasm and mapping population, and (3) the improvements in genotyping methods. Recently, abundant genomic resources have become available in wheat and related Triticeae species, including the high-quality reference genomes and advanced genotyping technologies. Finally, we provide perspectives on future research directions that will enhance our understanding of kernel hardness through the identification of multiple QTLs and will address challenges involved in fine-tuning kernel hardness and, consequently, food properties.
Collapse
Affiliation(s)
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| |
Collapse
|