1
|
Feng Z, Xie D, Qiu F, Huang J, Wang Z, Liang C. Development of hybrid aptamers-engineered PROTACs for degrading VEGF165 in both tumor- and vascular endothelial cells. Eur J Med Chem 2025; 281:117027. [PMID: 39504794 DOI: 10.1016/j.ejmech.2024.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/20/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Tumors and angiogenesis are connected through a complex interplay. VEGF165, generated from both tumor and vascular endothelial cells, serves as a mutual benefit for both cell types. Therapeutic approaches modulating VEGF165 have been proposed as promising antitumor therapies. PROTACs are bifunctional molecules that exploit the intracellular ubiquitin-proteasome system to degrade specific proteins. To date, there are no targeted PROTACs designed to degrade VEGF165 in both tumor and vascular endothelial cells. The aptamer AS1411 is notable for its ability to selectively recognize and enter both tumor and vascular endothelial cells by targeting the cell surface nucleolin (NCL). Moreover, AS1411 has also been repurposed as an intracellular recruiter of E3 ligase MDM2 via leveraging NCL as a molecular bridge. In this study, we conjugated AS1411 with a VEGF165-specific aptamer V7t1, creating hybrid aptamers-engineered PROTACs. The PROTACs demonstrate remarkable selectivity for both tumor and vascular endothelial cells and facilitate the ubiquitination and proteasomal degradation of VEGF165. The PROTACs inhibit the growth of tumor cells and also impede angiogenesis, without causing toxicity to normal tissues. The hybrid aptamers-engineered PROTACs provide an avenue for disrupting the tumor-angiogenesis interplay through modulation of VEGF165 in both tumor and vascular endothelial cells.
Collapse
Affiliation(s)
- Ziting Feng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Duoli Xie
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Fang Qiu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Jie Huang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Zhuqian Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China; Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.
| |
Collapse
|
2
|
Napolitano E, Criscuolo A, Riccardi C, Platella C, Gaglione R, Arciello A, Musumeci D, Montesarchio D. When annealing is detrimental: The case of HMGB1-targeting G-quadruplex aptamers. Int J Biol Macromol 2024; 283:137148. [PMID: 39505169 DOI: 10.1016/j.ijbiomac.2024.137148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
In this work, we present the case of the G-quadruplex(G4)-forming aptamers we recently identified for the recognition of HMGB1, protein involved in inflammation, autoimmune diseases and cancer. These aptamers were previously analyzed, without annealing them, after proper dilution of the stock solution in a pseudo-physiological buffer mimicking the extracellular environment where the protein exerts its pathological activity, and showed high thermal stability and nuclease resistance, good protein affinity and remarkable in vitro activity. These features were more marked for the aptamers forming dimeric, parallel G4 structures in solution. Herein, we fully characterized the same anti-HMGB1 aptamers after a standard annealing procedure performed on diluted samples. Notably, upon a thermal unfolding/folding cycle, these aptamers, and particularly the best ones in the not-annealed form, showed significant conformational switches compared to the same systems analyzed without annealing, forming exclusively monomeric G4 structures, featured by poor thermal and enzymatic stabilities, along with lower protein affinities. These results prove that, for these aptamers, analyzed in the chosen conditions, annealing at low concentration does not produce a beneficial effect in terms of favouring the most bioactive species.
Collapse
Affiliation(s)
- Ettore Napolitano
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Andrea Criscuolo
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy; Institute of Biostructure and Bioimaging (IBB) - CNR, 80145 Napoli, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy.
| |
Collapse
|
3
|
Napolitano E, Criscuolo A, Riccardi C, Esposito CL, Catuogno S, Coppola G, Roviello GN, Montesarchio D, Musumeci D. Directing in Vitro Selection towards G-quadruplex-forming Aptamers to Inhibit HMGB1 Pathological Activity. Angew Chem Int Ed Engl 2024; 63:e202319828. [PMID: 38358301 DOI: 10.1002/anie.202319828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
In the search for novel, effective inhibitors of High-Mobility Group Box1 (HMGB1)-a protein involved in various inflammatory and autoimmune diseases as well as in cancer-we herein discovered a set of anti-HMGB1 G-quadruplex(G4)-forming aptamers by using an in vitro selection procedure applied to a doped library of guanine-rich oligonucleotides. The selected DNA sequences were then studied in a pseudo-physiological buffer mimicking the extracellular medium, where HMGB1 exerts its pathological activity, using spectroscopic, electrophoretic, and chromatographic techniques. All the oligonucleotides proved to fold into monomeric G4s and in some cases also dimeric species, stable at physiological temperature. Remarkably, the protein preferentially recognized the sequences forming dimeric parallel G4 structures, as evidenced by a properly designed chemiluminescent binding assay which also highlighted a good selectivity of these aptamers for HMGB1. Moreover, all aptamers showed anti-HMGB1 activity, inhibiting protein-induced cell migration. The acquired data allowed identifying L12 as the best anti-HMGB1 aptamer, featured by high thermal and enzymatic stability, no toxicity at least up to 5 μM concentration on healthy cells, along with potent anti-HMGB1 activity (IC50 ca. 28 nM) and good binding affinity for the protein, thus indicating it as a very promising lead candidate for in vivo studies.
Collapse
Affiliation(s)
- Ettore Napolitano
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
| | - Andrea Criscuolo
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
| | - Carla L Esposito
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Silvia Catuogno
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Gabriele Coppola
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Via Sergio Pansini 5, 80131, Napoli, Italy
| | - Giovanni N Roviello
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 80145, Napoli, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, 80126, Napoli, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 80145, Napoli, Italy
| |
Collapse
|
4
|
Riccardi C, Pérez de Carvasal K, Platella C, Meyer A, Smietana M, Morvan F, Montesarchio D. Probing naphthalene diimide and 3-hydroxypropylphosphate as end-conjugating moieties for improved thrombin binding aptamers: Structural and biological effects. Bioorg Chem 2023; 141:106917. [PMID: 37865055 DOI: 10.1016/j.bioorg.2023.106917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
The limitations associated with the in vivo use of the thrombin binding aptamer (TBA or TBA15) have dramatically stimulated the search of suitable chemically modified analogues in order to discover effective and reversible inhibitors of thrombin activity. In this context, we previously proposed cyclic and pseudo-cyclic TBA analogues with improved stability that proved to be more active than the parent aptamer. Herein, we have investigated a novel library of TBA derivatives carrying naphthalene diimide (NDI) moieties at the 3'- or 5'-end. In a subset of the investigated oligonucleotides, additional 3-hydroxypropylphosphate (HPP) groups were introduced at one or both ends of the TBA sequence. Evaluation of the G-quadruplex thermal stability, serum nuclease resistance and in vitro anticoagulant activity of the new TBA analogues allowed rationalizing the effect of these appendages on the activity of the aptamer on the basis of their relative position. Notably, most of the different TBA analogues tested were more potent thrombin inhibitors than unmodified TBA. Particularly, the analogue carrying an NDI group at the 5'-end and an HPP group at the 3'-end, named N-TBA-p, exhibited enhanced G-quadruplex thermal stability (ΔTm + 14° C) and ca. 10-fold improved nuclease resistance in serum compared to the native aptamer. N-TBA-p also induced prolonged and dose-dependent clotting times, showing a ca. 11-fold higher anticoagulant activity compared to unmodified TBA, as determined by spectroscopic methods. Overall, N-TBA-p proved to be in vitro a more efficient thrombin inhibitor than all the best ones previously investigated in our group. Its interesting features, associated with its easy preparation, make it a very promising candidate for future in vivo studies.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Kévan Pérez de Carvasal
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - François Morvan
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
5
|
Riccardi C, D’Aria F, Fasano D, Digilio FA, Carillo MR, Amato J, De Rosa L, Paladino S, Melone MAB, Montesarchio D, Giancola C. Truncated Analogues of a G-Quadruplex-Forming Aptamer Targeting Mutant Huntingtin: Shorter Is Better! Int J Mol Sci 2022; 23:ijms232012412. [PMID: 36293267 PMCID: PMC9604342 DOI: 10.3390/ijms232012412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Two analogues of the MS3 aptamer, which was previously shown to have an exquisite capability to selectively bind and modulate the activity of mutant huntingtin (mHTT), have been here designed and evaluated in their physicochemical and biological properties. Featured by a distinctive propensity to form complex G-quadruplex structures, including large multimeric aggregates, the original 36-mer MS3 has been truncated to give a 33-mer (here named MS3-33) and a 17-mer (here named MS3-17). A combined use of different techniques (UV, CD, DSC, gel electrophoresis) allowed a detailed physicochemical characterization of these novel G-quadruplex-forming aptamers, tested in vitro on SH-SY5Y cells and in vivo on a Drosophila Huntington’s disease model, in which these shorter MS3-derived oligonucleotides proved to have improved bioactivity in comparison with the parent aptamer.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Dominga Fasano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Naples, Italy
| | - Maria Rosaria Carillo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Laura De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Correspondence: (D.M.); (C.G.)
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (D.M.); (C.G.)
| |
Collapse
|
6
|
Selective light-up of dimeric G-quadruplex forming aptamers for efficient VEGF165 detection. Int J Biol Macromol 2022; 224:344-357. [DOI: 10.1016/j.ijbiomac.2022.10.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
7
|
Riccardi C, D’Aria F, Digilio FA, Carillo MR, Amato J, Fasano D, De Rosa L, Paladino S, Melone MAB, Montesarchio D, Giancola C. Fighting the Huntington's Disease with a G-Quadruplex-Forming Aptamer Specifically Binding to Mutant Huntingtin Protein: Biophysical Characterization, In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:4804. [PMID: 35563194 PMCID: PMC9101412 DOI: 10.3390/ijms23094804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
A set of guanine-rich aptamers able to preferentially recognize full-length huntingtin with an expanded polyglutamine tract has been recently identified, showing high efficacy in modulating the functions of the mutated protein in a variety of cell experiments. We here report a detailed biophysical characterization of the best aptamer in the series, named MS3, proved to adopt a stable, parallel G-quadruplex structure and show high nuclease resistance in serum. Confocal microscopy experiments on HeLa and SH-SY5Y cells, as models of non-neuronal and neuronal cells, respectively, showed a rapid, dose-dependent uptake of fluorescein-labelled MS3, demonstrating its effective internalization, even in the absence of transfecting agents, with no general cytotoxicity. Then, using a well-established Drosophila melanogaster model for Huntington's disease, which expresses the mutated form of human huntingtin, a significant improvement in the motor neuronal function in flies fed with MS3 was observed, proving the in vivo efficacy of this aptamer.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy;
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Napoli, Italy; (F.A.D.); (M.R.C.)
| | - Maria Rosaria Carillo
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Napoli, Italy; (F.A.D.); (M.R.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Napoli, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
- Center for Rare Diseases and Inter University Center for Research in Neurosciences, Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, 80131 Napoli, Italy;
| | - Laura De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
| | - Mariarosa Anna Beatrice Melone
- Center for Rare Diseases and Inter University Center for Research in Neurosciences, Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, 80131 Napoli, Italy;
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy;
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| |
Collapse
|
8
|
Pérez de Carvasal K, Riccardi C, Russo Krauss I, Cavasso D, Vasseur JJ, Smietana M, Morvan F, Montesarchio D. Charge-Transfer Interactions Stabilize G-Quadruplex-Forming Thrombin Binding Aptamers and Can Improve Their Anticoagulant Activity. Int J Mol Sci 2021; 22:9510. [PMID: 34502432 PMCID: PMC8430690 DOI: 10.3390/ijms22179510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
In the search for optimized thrombin binding aptamers (TBAs), we herein describe the synthesis of a library of TBA analogues obtained by end-functionalization with the electron-rich 1,5-dialkoxy naphthalene (DAN) and the electron-deficient 1,8,4,5-naphthalenetetra-carboxylic diimide (NDI) moieties. Indeed, when these G-rich oligonucleotides were folded into the peculiar TBA G-quadruplex (G4) structure, effective donor-acceptor charge transfer interactions between the DAN and NDI residues attached to the extremities of the sequence were induced, providing pseudo-cyclic structures. Alternatively, insertion of NDI groups at both extremities produced TBA analogues stabilized by π-π stacking interactions. All the doubly-modified TBAs were characterized by different biophysical techniques and compared with the analogues carrying only the DAN or NDI residue and unmodified TBA. These modified TBAs exhibited higher nuclease resistance, and their G4 structures were markedly stabilized, as evidenced by increased Tm values compared to TBA. These favorable properties were also associated with improved anticoagulant activity for one DAN/NDI-modified TBA, and for one NDI/NDI-modified TBA. Our results indicated that TBA pseudo-cyclic structuring by ad hoc designed end-functionalization represents an efficient approach to improve the aptamer features, while pre-organizing and stabilizing the G4 structure but allowing sufficient flexibility to the aptamer folding, which is necessary for optimal thrombin recognition.
Collapse
Affiliation(s)
- Kévan Pérez de Carvasal
- Institut des Biomolécules Max Mousseron, University Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (K.P.d.C.); (J.-J.V.); (M.S.)
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (I.R.K.); (D.C.)
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (I.R.K.); (D.C.)
- CSGI—Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| | - Domenico Cavasso
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (I.R.K.); (D.C.)
- CSGI—Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, University Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (K.P.d.C.); (J.-J.V.); (M.S.)
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, University Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (K.P.d.C.); (J.-J.V.); (M.S.)
| | - François Morvan
- Institut des Biomolécules Max Mousseron, University Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (K.P.d.C.); (J.-J.V.); (M.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (I.R.K.); (D.C.)
| |
Collapse
|
9
|
Man J, Dong J, Wang Y, He L, Yu S, Yu F, Wang J, Tian Y, Liu L, Han R, Guo H, Wu Y, Qu L. Simultaneous Detection of VEGF and CEA by Time-Resolved Chemiluminescence Enzyme-Linked Aptamer Assay. Int J Nanomedicine 2020; 15:9975-9985. [PMID: 33363367 PMCID: PMC7754089 DOI: 10.2147/ijn.s286317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As two important tumor markers, vascular endothelial growth factor (VEGF) and carcinoembryonic antigen (CEA) have a great value for clinical application in the early diagnosis of cancer. Due to the complex composition of biological samples, the results from combined detection of CEA and VEGF are often taken as a comprehensive indicator in order to make an accurate judgment on a disease. However, most of the current methods can only be used to detect the content of one biomarker. Therefore, it is necessary to explore a simple, rapid, low-cost, and highly sensitive method for the simultaneous detection of CEA and VEGF. METHODS Based on specific aptamers and magnetic separation, a time-resolved chemiluminescence enzyme-linked aptamer assay was developed for the simultaneous detections of CEA and VEGF in serum samples. RESULTS Under the optimal conditions, the linear range of the calibration curve for VEGF was from 0.5 to 80 ng mL-1, and the limit of detection was 0.1 ng mL-1. The linear range of the calibration curve for CEA was 0.5 to 160 ng mL-1, and the limit of detection was 0.1 ng mL-1. The established method was applied to detect VEGF and CEA in serum samples. The results were consistent with those of commercial kits. CONCLUSION The method has high sensitivity and can quickly obtain accurate results, which could greatly improve the measurement efficiency, reduce the cost, and also reduce the volume of sample consumed. It can be seen that the method established in this study has important application value and broad application prospect in clinical diagnosis.
Collapse
Affiliation(s)
- Jin Man
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Jiajia Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Jia Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Yongmei Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Lie Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Runping Han
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Hongchao Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan450001, People’s Republic of China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan450001, People’s Republic of China
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou, Henan450001, People’s Republic of China
| |
Collapse
|
10
|
Riccardi C, Napolitano E, Musumeci D, Montesarchio D. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules 2020; 25:E5227. [PMID: 33182593 PMCID: PMC7698228 DOI: 10.3390/molecules25225227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| |
Collapse
|
11
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Melone MAB, Montesarchio D. Anti-VEGF DNA-based aptamers in cancer therapeutics and diagnostics. Med Res Rev 2020; 41:464-506. [PMID: 33038031 DOI: 10.1002/med.21737] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
The vascular endothelial growth factor (VEGF) family and its receptors play fundamental roles not only in physiological but also in pathological angiogenesis, characteristic of cancer progression. Aiming at finding putative treatments for several malignancies, various small molecules, antibodies, or protein-based drugs have been evaluated in vitro and in vivo as VEGF inhibitors, providing efficient agents approved for clinical use. Due to the high clinical importance of VEGF, also a great number of anti-VEGF nucleic acid-based aptamers-that is, oligonucleotides able to bind with high affinity and specificity a selected biological target-have been developed as promising agents in anticancer strategies. Notable research efforts have been made in optimization processes of the identified aptamers, searching for increased target affinity and/or bioactivity by exploring structural analogues of the lead compounds. This review is focused on recent studies devoted to the development of DNA-based aptamers designed to target VEGF. Their therapeutic potential as well as their significance in the construction of highly selective biosensors is here discussed.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter-University Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Institute of Biostructures and Bioimages, Naples, Italy
| | - Mariarosa A B Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter-University Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
13
|
Design, Synthesis and Characterization of Cyclic NU172 Analogues: A Biophysical and Biological Insight. Int J Mol Sci 2020; 21:ijms21113860. [PMID: 32485818 PMCID: PMC7312020 DOI: 10.3390/ijms21113860] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 11/16/2022] Open
Abstract
NU172—a 26-mer oligonucleotide able to bind exosite I of human thrombin and inhibit its activity—was the first aptamer to reach Phase II clinical studies as an anticoagulant in heart disease treatments. With the aim of favoring its functional duplex-quadruplex conformation and thus improving its enzymatic stability, as well as its thrombin inhibitory activity, herein a focused set of cyclic NU172 analogues—obtained by connecting its 5′- and 3′-extremities with flexible linkers—was synthesized. Two different chemical approaches were exploited in the cyclization procedure, one based on the oxime ligation method and the other on Cu(I)-assisted azide-alkyne cycloaddition (CuAAC), affording NU172 analogues including circularizing linkers with different length and chemical nature. The resulting cyclic NU172 derivatives were characterized using several biophysical techniques (ultraviolet (UV) and circular dichroism (CD) spectroscopies, gel electrophoresis) and then investigated for their serum resistance and anticoagulant activity in vitro. All the cyclic NU172 analogues showed higher thermal stability and nuclease resistance compared to unmodified NU172. These favorable properties were, however, associated with reduced—even though still significant—anticoagulant activity, suggesting that the conformational constraints introduced upon cyclization were somehow detrimental for protein recognition. These results provide useful information for the design of improved analogues of NU172 and related duplex-quadruplex structures.
Collapse
|